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A SPECTRAL THEORETIC APPROACH
TO THE KIRILLOV-DUFLO CORRESPONDENCE
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(Communicated by Varghese Mathai)

Abstract. The Kirillov-Duflo orbit correspondance for compact Lie groups
is parametrisation of the unitary dual, associating to the irreducible repre-
sentation of highest weight λ the coadjoint orbit through λ + δ, where δ is
half the sum of the positive roots and justified by the character formulae of
Weyl or Kirillov. In this paper we obtain this correspondence independently

of character theory, showing that it arises from a convexity property of the
Weyl functional calculus of the infinitesimal generators of the representation.

1. Introduction

Let G be a semisimple compact connected Lie group with Lie algebra g and let
g∗ be the vector space dual of g. Fix a Cartan subalgebra t, denote the Weyl group
by W and distinguish a positive Weyl chamber. Let treg denote the set of regular
elements of t, i.e. those H for which iH does not belong to a wall of any Weyl
chamber.

Let π be an irreducible representation of G with highest weight λ. Denote by δ
the half-sum of the positive roots of (g, t). The Weyl character formula states that
the character χπ is given by the closed-form expression

χπ(expH) =
∑

w∈W sgn(w)ew(λ+δ)(H)

∆(H)
for all H ∈ treg, where ∆ is the Weyl denominator function defined as

∆(H) :=
∑

w∈W

sgn(w)ewδ(H)

for all H ∈ t. This relation implies a parametrisation of the set of irreducible
representations of G by positive integral weights in t∗, whereby a representation π
of highest weight λ is associated to the linear functional λ + δ.

A still more precise form of this correspondence is achieved by the Kirillov char-
acter formula. On every coadjoint orbit O of G, the Kirillov-Kostant-Souriau 2-form
ωO is defined by

ωO(ξ)(ad∗(X)ξ, ad∗(Y )ξ) := 〈ξ, [X, Y ]〉
for all X, Y ∈ g and ξ ∈ g∗, and it endows the manifold O with a symplectic
structure. If 2d is the dimension of the orbit O, then the expression 1

dωO ∧ · · ·∧ωO
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(d times) is the Liouville measure µO on O. The following relation was first proved
by Kirillov [9]:

j(H)χπ(expH) =
∫
Oλ+δ

eiβ(H) dµOλ+δ
(β),

where Oλ+δ denotes the coadjoint orbit through λ + δ and

j(X) := det1/2

(
sinh ad(X/2)

ad(X/2)

)

for all X ∈ g. Here, a one-to-one correspondence between irreducible representa-
tions and coadjoint orbits is explicit. This is known as the “Kirillov-Duflo corre-
spondence” and is applicable to a wide variety of Lie groups (see [13] for a survey).

In the sequel, we derive this correspondence without resorting to character the-
ory.1 To the unitary irreducible representation π, we associate a vector dπ(X) of
self-adjoint operators given by the values of the derived representation dπ on a fixed
basis of X of g, orthonormal with respect to the Killing form. It is shown that the
set of extremal points of the convex hull of the support of the Weyl functional cal-
culus distribution of dπ(X) is exactly the orbit Oλ (Theorem 6.12). The bijection
π ↔ Oλ+δ is obtained by convolving the Weyl calculus of dπ(X) with the Fourier
transform of the function j defined above (Theorem 6.15).

Key to our analysis is a result of E. Nelson which states that the support of the
Weyl calculus of a d-tuple of hermitian elements in a Banach algebra is equal to
the joint spectrum of the same d-tuple in a certain commutative Banach algebra of
“operants”. We present this fact in Section 4 (Theorem 4.9), after some background
material is introduced.

The Nelson algebra of operants is a special case of the more general notion of
“operating algebras”, introduced by E. Albrecht [1], which are discussed in the next
section.

The author thanks A. Dooley for many helpful discussions on this work through-
out the course of the former’s PhD degree, and M. Duflo for providing much useful
feedback on an earlier version of this article. The support of the Australian Re-
search Council is also gratefully acknowledged.

2. Operating algebras

Let R be a complex unital Banach algebra with unit 1R. Let E be any vector
subspace of R and let D be a complex unital Banach algebra with unit 1D. Let
φ : E→D be a one-to-one linear mapping and denote by 〈φ(E)〉 the subalgebra of
D generated by φ(E). Denote by Sn the symmetric group of order n.

Definition 2.1 ([1]). A commutative complex unital Banach algebra D is called
an operating algebra with respect to E and R if there exists a one-to-one linear
mapping φ :E→D such that 〈φ(E)〉 is dense in D and a continuous linear mapping
Sym

(D, φ)
R

: D→R determined uniquely by the conditions Sym
(D, φ)
R

(1D) = 1R and

(2.1) Sym
(D, φ)
R

(y1 . . . yn) :=
1
n!

∑
σ∈Sn

φ−1yσ(1) · · ·φ−1yσ(n)

for all y1, . . . , yn ∈ 〈φ(E)〉, n ∈ N.

1See [7] for an alternative approach using Dirac operators.
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Let S(E) be the symmetric algebra of E and let ˆ:E → S(E) be the canonical
inclusion mapping. It is well-known that any α ∈ S(E) can be written in the form

(2.2) α = a +
n∑

i=1

x̂
(i)
j1

· · · x̂(i)
ji

,

where a ∈ C, n, j1, . . . , jn ∈ N and x
(j)
k ∈ E.

It can be checked [11] that the formula

(2.3) ‖α‖S(E) := inf {|a| +
n∑

i=1

‖x(i)
j1
‖R · · · ‖x(i)

ji
‖R},

where the infimum is taken over all representations of α of the form (2.2), defines
an algebra norm on S(E). The completion of S(E) with respect to this norm is a
commutative Banach algebra, which we denote S̄(E). For simplicity of notation,
we write Sym

(E)
R

for Sym
(S̄(E), )̂
R

.

Lemma 2.2. The complete symmetric algebra S̄(E) is an operating algebra with
respect to E and R.

Proposition 2.3 ([1], Proposition 3.3). Every operating algebra D with respect
to E and R is isometrically isomorphic to the completion of a quotient of S(E)
endowed with some algebra norm.

3. Numerical ranges and hermitian elements

Let R∗ be the dual space of continuous linear functionals on R. By the Hahn-
Banach theorem the following set is not void:

D(R, 1) := {f ∈ R
∗ : f(1R) = 1 = ‖f‖}.

This enables us to make the next

Definition 3.1. Let x = (x1, . . . , xd) ∈ Rd. The numerical range of x with respect
to R is the set VR(x) := {(f(x1), . . . , f(xd)) | f ∈ D(R, 1)}.

We note that if R is a C∗-algebra, then D(R, 1) is exactly the set of states of
R.

Let H be a Hilbert space and denote by L(H) the algebra of bounded linear
operators on H. It is well-known that the defining representation is the only irre-
ducible representation of L(H); hence, by the GNS construction, the pure states of
L(H) are exactly the set of functionals φ :L(H)→ C of the form φ(x) := 〈xu, u〉
(x ∈ L(H)) for some fixed unit vector u ∈ H.

Let A ⊆ Cn. We write co A for the convex hull of A. By the preceding discussion
and the Krĕın-Milman theorem we immediately have the following.

Theorem 3.2. Let R = L(H) and let x = (x1, . . . , xd) ∈ Rd. Then

(3.1) VL(H)(x) := co {(〈x1u, u〉, . . . , 〈xdu, u〉) : u ∈ H, ‖u‖ = 1}.

Lemma 3.3. Let T : Cd → Cd be a linear mapping. Let x = (x1, . . . , xd) ∈ Rd.
Then VR(Tx) = TVR(x).

Theorem 3.4 ([5], Theorem 1.2.3). Let x = (x1, . . . , xd) ∈ Rd. The numerical
range VR(x) is a compact, convex subset of Cd.

Proof. See [5], Theorem 3, Chapter 1, Section 2. �
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An element x = (x1, . . . , xd) ∈ Rd satisfying the following equivalence will be
called hermitian.

Theorem 3.5 ([5], Lemma 2.2.5). Let x = (x1, . . . , xd) ∈ Rd. Then VR(x) ⊆ Rd

if and only if ‖eiξ·x‖ = 1 for all ξ ∈ Rd.

Definition 3.6. Let x = (x1, . . . , xd) ∈ Rd. The two sets

σL
R(x) := {λ ∈ Cd :

∑
i

R · (λi1R − xi) 	= R}

and
σR

R(x) := {λ ∈ Cd :
∑

i

(λi1R − xi) · R 	= R}

are called respectively the left spectrum and the right spectrum of x with respect to
R. The set σR(x) := σL

R(x) ∪ σR
R(x) is called the spectrum of x with respect to R.

Theorem 3.7 ([5], Theorem 1.2.12). Let x = (x1, . . . , xd) ∈ Rd. Then coσR(x) ⊆
VR(x).

Following [5], we denote by N the set of all algebra norms equivalent to the given
norm. We write V

(p)
R

(x) for the numerical range of x with respect to the norm p.

Theorem 3.8 ([5], Theorem 1.2.13). Let x = (x1, . . . , xd) ∈ Rd be a d-tuple of
commuting elements. Then

co σR(x) =
⋂

p∈N

V
(p)
R

(x).

For the remainder of this section we fix x = (x1, . . . , xd) ∈ Rd. Suppose that
E is the linear span of 1R and x1, . . . , xd, the linear mapping φ :E → D satisfies
‖φ‖ = 1, and φ(1R) = 1D. Let φ(x) denote the d-tuple (φ(x1), . . . , φ(xd)).

Proposition 3.9 ([1], Lemma 5.3). The inclusion

VD(φ(x)) ⊆ VR(x)

holds with equality if φ is an isometry.

Corollary 3.10. Suppose that R is a C∗-algebra and that x = (x1, . . . , xd) ∈ Rd

is a d-tuple of pairwise commuting elements. Then

(3.2) coσD(φ(x)) ⊆ VR(x).

Proof. By Theorem 3.8,

coσD(φ(x)) =
⋂

p∈N

V
(p)
D

(φ(x))

and by Lemma 3.9, V
(p)
D

(φ(x)) ⊆ V
(p)
R

(x) with equality if φ is an isometry. Since⋂
p∈N V

(p)
R

(x) ⊆ VR(x), the result follows. �

Theorem 3.11 ([1], Theorem 5.7). Suppose that R is a C∗-algebra, that x =
(x1, . . . , xd) ∈ Rd is a d-tuple of pairwise commuting elements and that D is an
operating algebra. Then

co σD(φ(x)) = VD(φ(x)) = VR(x) = σB(x) = coσR(x),

where B is an arbitrary C∗-subalgebra of R containing 1R, x1, . . . , xd.
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4. The Weyl functional calculus

Let x = (x1, . . . , xd) ∈ Rd be a hermitian element and let E be the vector
subspace of R spanned by 1R, x1, . . . , xd. Let φ : E→D be a linear mapping with
‖φ‖ = 1 and φ(1R) = 1D. By Lemma 3.9, φ(x) is a hermitian element of D. Hence,
for any function f : Rd →C with integrable Fourier transform f̂ , the following D-
valued Bochner integral converges:

f
(D, φ)
R

(x) :=
∫

Rd

f̂(λ)eiλ·φ(x) dλ.

Here the Fourier transform f̂ and the normalisation of Lebesgue measure dx are
chosen exactly so that when R = D = C and φ is the identity mapping id, then
f(x) := f

(C, id)
C

(x) has the usual meaning.
Let S(Rd) be the Schwartz space [8] of rapidly decreasing functions on Rd. The

mapping W
(D, φ)
R

(x) given by 〈W (D, φ)
R

(x), f〉 := f
(D, φ)
R

(x) for all f ∈ S(Rd) is
continuous and linear on S(Rd) and hence defines a tempered distribution taking
values in the Banach algebra D.

Definition 4.1. The D-valued tempered distribution W
(D, φ)
R

(x) is called the Weyl
calculus of x with respect to D and φ.

Let id be the identity mapping on R. We write WR(x) for W
(R, id)
R

(x).
The following lemma is proved in [12] using the Trotter product formula for

bounded self-adjoint operators on a Hilbert space. As every C∗-algebra is isomet-
rically isomorphic to a closed subalgebra of bounded operators on some Hilbert
space, we are able to state this lemma in slightly more generality.

Lemma 4.2 ([12], p.92). Suppose that D is a unital C∗-algebra and let x1, x2 be
hermitian elements of D. Then

‖ exp(x1 + ix2)‖ ≤ ‖ expx1‖.
For z = (z1, . . . , zd) ∈ Cd, let �z := (�z1, . . . ,�zd) and z := (z1, . . . ,zd).

The Hahn-Banach theorem ensures that there are sufficiently many linear func-
tionals to obtain the following vector-valued extension of the usual Paley-Wiener
theorem [8].

Theorem 4.3 (Paley-Wiener). An R-valued tempered distribution u on Rd has
compact support if and only if u is the Fourier transform of an analytic function
e : Cd → R for which there exist constants C ≥ 0, s ≥ 0 such that ‖e(ζ)‖R ≤
C(1 + |ζ|)ser|�ζ| for all ζ ∈ Cd.

Theorem 4.4. Suppose that D is a unital C∗-algebra. Then the distribution
W

(D, φ)
R

(x) has compact support.

Proof. We verify that the entire function e(z) := exp(i〈z, φ(x)〉), for z ∈ Cd, satis-
fies the estimate required by Theorem 4.3. We have

‖ exp i〈z, φ(x)〉‖ = ‖ exp (〈�z, φ(x)〉 − i〈z, φ(x)〉)‖
≤ ‖ exp〈�z, φ(x)〉‖
≤ exp ‖〈�z, φ(x)〉‖
≤ exp |�z|‖φ(x)‖
≤ exp |�z|‖x‖. �
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Let C∞(Rd) be the space of infinitely differentiable C-valued functions on Rd.

Corollary 4.5. Suppose that D is a unital C∗-algebra. Then W
(D, φ)
R

(x) extends
uniquely to a distribution on C∞(Rd).

The following theorem gives a characterisation of the Weyl calculus distribution
by its values on polynomials.

Theorem 4.6 ([2], Theorem 2.8). Suppose that R is a unital C∗-algebra and let
the monomial p : Rd→R be given by p(λ1, . . . , λd) := λk1

1 · · ·λkd

d for k1, . . . , kd ∈ N.
Then WR(x) is the unique R-valued distribution such that

〈WR(x), p〉 =
k1! · · · kd!

k!

∑
π

xπ(1) · · ·xπ(k),

where k = k1 + · · · + kd and π runs over the set of all maps from {1, . . . , k} into
{1, . . . , d} that assume the value j exactly kj times for j = 1, . . . , d.

Corollary 4.7. Suppose that f ∈ C∞(Rd) and for some g ∈ C∞(Rd), d′ < d,
f(ξ1, . . . , ξd) = g(ξ1, . . . , ξd′) for all ξ1, . . . , ξd ∈ R. Then

〈WR(x), f〉 = 〈WR(x′), g〉,
where x′ = (x1, . . . , xd′).

If D is an operating algebra, let

I := I(D, φ) = {y1 ∈ D |Sym
(D, φ)
R

(y1y2) = 0 for all y2 ∈ D}.
Then I is a closed ideal of D, which allows us to define the quotient Banach algebra
D′ := D/I. Denote by φ′ the map induced by φ : E→D.

Lemma 4.8. Suppose that D is an operating algebra with respect to E and R.
Then D′ is also an operating algebra with respect to E and R.

Proof. Clearly φ′(1R) = 1D′ and 〈φ′(E)〉 is dense in D′. Since Sym
(D, φ)
R

vanishes
on I, the map Sym

(D′, φ)
R

is well-defined and has all the properties required by
Definition 2.1. �

Theorem 4.9 ([1], Theorem 5.10; [11], Theorem 8). Suppose that D is a unital
commutative C∗-algebra and an operating algebra with respect to E and R. Then

(4.1) supp W
(D′, φ′)
R

(x) = supp WR(x) = σD′(φ′(x)).

5. A canonical quotient operating algebra

Suppose that V is a normed vector subspace of R containing 1R. As in Section 2,
denote by S(V ) the symmetric algebra of V and by S̄(V ) the completion of S(V )
with respect to norm (2.3). Let ˆ:V → S̄(V ) be the canonical inclusion mapping.

Definition 5.1. Let I = I(V ) := {α ∈ S̄(V ) |Sym
(V )
R

(αβ) = 0 for all β ∈ S̄(V )}.
The quotient A = A(V ) := S̄(V )/I is called the Nelson algebra of operants over V .

Let ˜: V →A be the canonical projection.

Lemma 5.2. 1̃R = 1A.
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Proof. The unit in A is clearly the image of 1 ∈ C. However, for any α ∈ S(V ),

Sym
(V )
R

(1 − 1̂R)α = Sym
(V )
R

(α − 1̂Rα)

= Sym
(V )
R

α − Sym
(V )
R

1̂Rα

= 0.

By continuity, Sym
(V )
R

(1 − 1̂R)α = 0 for all α ∈ S̄(V ). The result follows. �

Lemma 5.3. The maps ˆ:E→S(E) and ˜: E→A(E) are isometries. Furthermore,
‖ˆ‖ = ‖˜‖ = 1.

Theorem 5.4 ([11], Theorem 8). Suppose that R is a unital C∗-algebra. Then

(5.1) supp W
(A(E), )̃
R

(x) = suppWR(x) = σA(x̃).

Proof. By Lemma 2.2, S̄(E) is an operating algebra with respect to E and R;
hence by Lemma 4.8, A is an operating algebra with respect to E and R. Since
‖˜‖ = 1, the distribution W

(A(E), )̃
R

(x) is defined and equality (5.1) follows from
Theorem 4.9. �

By Proposition 2.3 all operating algebras with respect to E and R are comple-
tions of quotients of S(E) for some norm; hence A is the freest (E, R)-operating
algebra for which (4.1) holds.

Example 5.5. Let A =
(

1 0
0 −1

)
. Let I be the identity of dimension 2 and set

E := SpanC{I, A}. Then S(E) ∼= C[A]. Since A2 − I = 0 and Sym := Sym
(E)
L(C2)

is a homomorphism we have (Â2 − Î)S̄(E) ⊆ I(E). On the other hand, if c0Î +
c1Â + · · · + cnÂn ∈ I(E), then

c0I + c1A + · · · + cnAn = Sym(c0Î + c1Â + · · · + cnÂn)
= 0

and it follows that I(E) = (1 − Î)S̄(E) + (Â2 − Î)S̄(E) by continuity.
Suppose that φ ∈ σ(S̄(E)). Then in particular φ(I(E)) = {0}, or equivalently

φ(1 − Î) = φ(Â2 − I) = 0; hence φ(Î) = 1 and φ(A) = {−1, 1}, and it follows that
σ(Â) = {−1, 1}.

However, for f ∈ S(R) we have

〈WL(C2)(A), f〉 =
∫

R

f̂(ξ)eiξA dξ

=
(

f(1) 0
0 f(−1)

)

and it follows that supp WL(C2)(A) = {−1, 1}. Hence we have shown that σ(A) =
supp WL(C2)(A).

6. Spectra and matrix coefficients

Let G be a real, semisimple, compact and connected Lie group with Lie algebra
g. Let X := (X1, . . . , Xd) be any basis of g which is orthogonal with respect to the
Killing form and such that for some 0 < l ≤ d, X ′ := (X1, . . . , Xl) is a basis of a
Cartan subalgebra of g which we fix and denote by t. Let W be the Weyl group.
Let (π,H) be a unitary irreducible representation of G of highest weight λ. We



2792 R. W. RAFFOUL

write dπ for the Lie derivative of π. In this section, we study the support of the
Weyl calculus of 1

i dπ(X) := ( 1
i dπ(X1), . . . , 1

i dπ(Xd)).
Let g∗ be the dual of g. Let λ1, . . . , λn ∈ t∗ be the weights of π. Denote by

p : g∗→ t∗ the canonical projection of g∗ onto t∗; i.e., p(ξ) := ξ|t∗ for all ξ ∈ g∗.
We write Wπ(X) for WL(H)( 1

i dπ(X)).

Definition 6.1. The moment set of π is the set

Iπ := {1
i
〈dπ( · )u, u〉 |u ∈ H, ‖u‖ = 1}.

Theorem 6.2 ([3, 14]). Let π be an irreducible representation of G of highest
weight λ. If the set {λ − wλ : w ∈ W} does not contain a root, then Iπ = coOλ;
otherwise, Iπ is not convex and Iπ � coOλ.

Lemma 6.3. p(Iπ) = co {λ1, . . . , λn}.

Proposition 6.4. co supp Wπ|T (X ′) = co (W · λ).

Proof. Clearly Iπ|T = p(Iπ). In view of Lemma 6.3, the result now follows from
Theorem 3.11 and Theorem 3.2, and the fact that λ1, . . . , λn ∈ co (W · λ). �
Lemma 6.5. Oλ ⊆ Iπ.

Proof. We define the inclusion t∗ ⊆ g∗ by the Killing form. Since Iπ is invariant
under Ad∗ and Oλ ∩ t∗ = W · λ, the statement follows from the containment
W · λ ⊆ Iπ. �
Proposition 6.6 ([3], Proposition 16). G · co {λ1, . . . , λn} = coOλ.

By Lemma 3.3, the numerical range VL(H)( 1
i dπ(X)) does not depend on the

choice of orthogonal basis X. We write Vπ for VL(H)( 1
i dπ(X)).

Theorem 6.7. Vπ = coOλ.

Proof. We have Iπ = G·(Iπ∩t∗) ⊆ G·p(Iπ) = coOλ, where the last equality follows
from Lemma 6.3 and Proposition 6.6. By Lemma 6.5 we have coOλ ⊆ co Iπ. Hence
co Iπ = coOλ, and the result follows from Theorem 3.2. �
Lemma 6.8. supp Wπ(X) = G · supp Wπ(X).

Proof. Suppose that ξ ∈ g∗ \ supp Wπ(X). Then there exists φ ∈ S(g∗) such that
φ is nonvanishing in a neighbourhood of ξ and 〈Wπ(X), φ〉 = 0. Let g ∈ G. Set
φ̃ := φ ◦ Ad∗(g−1). Then φ̃ ∈ S(g∗) and φ̃ is nonzero near g · ξ. Now,

〈Wπ(X), φ̃〉 =
∫

g

φ̂(g · X)edπ(X) dX

=
∫

g

φ̂(X)edπ(g−1·X) dX

= π(g−1)
∫

g

φ̂(X)edπ(X) dXπ(g)

= π(g−1)〈Wπ(X), φ〉π(g)
= 0.

Hence g · ξ ∈ g∗ \ supp Wπ(X), and it follows that G · supp Wπ(X) ⊆ supp Wπ(X).
The reverse inclusion is clear. This completes the proof. �
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Theorem 6.9. G · suppWπ|T (X ′) ⊆ supp Wπ(X).

Proof. By Corollary 4.7, supp Wπ|T (X ′) ⊆ supp Wπ(X), and the result follows by
Lemma 6.8. �

Let A be a subset of Rd. The set of extremal points of A, denoted Ext A, is the
collection of points in A that are not contained in any open interval, the endpoints
of which lie in A.

Lemma 6.10 ([3], Lemme 15). Ext co {λ1 . . . , λn} = W · λ.

Corollary 6.11. Ext coOλ = Oλ.

Theorem 6.12. co supp Wπ(X) = coOλ.

Proof. By Corollary 6.9,

co supp Wπ(X) ⊇ co G · supp Wπ|T (X ′)

⊇ G · co supp Wπ|T (X ′)
= G · Vπ|T ,

where the last equality follows from Theorem 3.11. By Theorem 6.7, Vπ|T =
co {λ1, . . . , λn}, and we have co supp Wπ(X) ⊇ coOλ by Lemma 6.6. By Theo-
rem 3.7, co supp Wπ(X) ⊆ Vπ and the reverse inclusion follows. This completes the
proof. �

Theorem 6.13 ([8], Theorem 4.3.3). Let u1, u2 be compactly supported distribu-
tions on Rd. Then

(6.1) co supp u1 ∗ u2 = co supp u1 + co supp u2.

Lemma 6.14. coOλ+δ = coOλ + coOδ.

Proof. We have

Ext (coOλ + co Oδ) ⊆ Ext (Ext coOλ + Ext coOδ)
= Ext (Oλ + Oδ)
= Oλ+δ.

Therefore, by the Krĕın-Milman theorem, coOλ+δ is the closure of coOλ + coOδ.
Since the coadjoint orbits of G are compact and the convex hull of a closed set is
closed, the result follows. �

Identifying the Lie algebra g with Rdim G, let ĵ denote the distributional Fourier
transform of the j-function. It is well known that ĵ = µOδ

(see [4], Corollary 7.25).

Theorem 6.15. co suppĵ ∗ Wπ(X) = coOλ+δ.

Proof. This is immediate from Theorem 6.13 and Theorem 6.12. �

Hence by Corollary 6.11, we reobtain the Kirillov-Duflo correspondence.
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