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RANDOM 𝑝-ADIC RIESZ PRODUCTS:

CONTINUITY, SINGULARITY, AND DIMENSION

NARN-RUEIH SHIEH AND XIONG-YING ZHANG

(Communicated by Richard C. Bradley)

Abstract. We study precise conditions for mutual absolute continuity and
mutual singularity of two random 𝑝-adic Riesz products, defined respectively
by two sequences of coefficients 𝑎𝑘, 𝑏𝑘. Our conditions and assertions are spe-
cific to the 𝑝-adic case. We also calculate explicitly the Hausdorff dimension,
and in case the defining coefficients are constant, we have an integral repre-
sentation of the dimension formula with a rapid convergence rate 𝑝−𝑘.

1. Introduction and main results

Let 𝑝 ≥ 2 be a prime number and let ℚ𝑝 be the field of 𝑝-adic numbers (see
[10, 14, 15, 16] for more information about 𝑝-adic numbers and 𝑝-adic analysis).
The absolute value on ℚ𝑝, denoted by ∣ ⋅ ∣𝑝, is non-Archimedean. The unit ball
ℤ𝑝 = {𝑥 ∈ ℚ𝑝 : ∣𝑥∣𝑝 ≤ 1} is a local ring, called the ring of 𝑝-adic integers. The
ℚ𝑝 and ℤ𝑝 are very important non-Archimedean structures in mathematics and
mathematical physics. The purpose of this paper is to study some fundamental
properties of random Riesz products defined on the additive group (ℤ𝑝,+) (in the
following context, the + denotes both the real addition and the 𝑝-adic addition for
notational convenience). Let (Ω,A ,P) be a probability space, and 𝜔𝑘, 𝑘 ≥ 1, be a
sequence of i.i.d. random variables defined on Ω, with the normalized Haar measure,
denoted by 𝑑𝑥, on ℤ𝑝 as common probability law. The random p-adic Riesz product
(measure) on ℤ𝑝 denoted by 𝜇𝑎,𝜔 (here, 𝜔 ∈ Ω indicates the randomness) is a
random measure formally expressed as

𝑑𝜇𝑎,𝜔 =
∞∏
𝑘=1

(1 +Re𝑎𝑘𝛾𝑘(𝑥+ 𝜔𝑘))𝑑𝑥,

where 𝑎 := {𝑎𝑘} is a sequence of complex numbers with ∣𝑎𝑘∣ ≤ 1 and 𝛾𝑘 is a
sequence of characters of ℤ𝑝 taken to be 𝛾𝑘(𝑡) = exp(2𝜋𝑖{𝑝−𝑘𝑡}). See Section 2 for
the definitions.

In this work, we will study precise conditions for the mutual absolute continuity
and the mutual singularity of such two Riesz products 𝜇𝑎,𝜔, 𝜇𝑏,𝜔 on ℤ𝑝, and also
calculate explicitly the Hausdorff dimension of such 𝜇𝑎,𝜔. The study of mutual
absolute continuity and mutual singularity of infinite product measures has a long
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history since the seminal work of Kakutani ([8]). We mention that such a study for
both deterministic and random Riesz products on the circle has been investigated
intensively by various authors ([1, 9, 12, 13]), and Fan ([3]) has extended it in the
framework of influential Kahane’s T-martingale Theory. Fan ([4]) also calculated
the Hausdorff dimension of Riesz products. We are also motivated by the deter-
ministic Riesz products on ℤ𝑝, for which Fan and Zhang ([6]) have done a fairly
complete study from the viewpoints of harmonic analysis and dynamical systems.

Now we state our main results as follows. Firstly, let ∼ and ⊥ denote respectively
the mutually absolute continuity and mutual singularity. To state Theorem 1.1, let

𝑠𝑘 =
1

2𝜋
arg(𝑎𝑘 − 𝑏𝑘), 𝑡𝑘 =

1

2𝜋
arg(𝑎𝑘 + 𝑏𝑘), 𝑢𝑘 =

𝑎𝑘 + 𝑏𝑘
2

,

and 𝑗𝑘 be the unique index such that

∣ 𝑗𝑘
𝑝𝑘

+ 𝑡𝑘 − 1

2
∣ = min

0≤𝑗≤𝑝𝑘−1
∣ 𝑗
𝑝𝑘

+ 𝑡𝑘 − 1

2
∣,

in which the absolute value denotes the distance to the nearest integer. We note
that the above value is ≤ 1

2𝑝𝑘 . Now, set

𝑞𝑘 =
𝑗𝑘
𝑝𝑘

+ 𝑡𝑘 − 1

2
.

Theorem 1.1. Suppose that ∣𝑎𝑘∣ ≤ 1, ∣𝑏𝑘∣ ≤ 1 for all 𝑘 ≥ 1. Then 𝜇𝑎,𝜔 ∼ 𝜇𝑏,𝜔 a.s.
if

∞∑
𝑘=1

∣𝑎𝑘 − 𝑏𝑘∣2
(

1

1− ∣𝑢𝑘∣ cos 𝜋
𝑝𝑘

+
cos2 2𝜋(𝑠𝑘 − 𝑡𝑘 + 𝑞𝑘)
𝑝𝑘(1− ∣𝑢𝑘∣ cos 2𝜋𝑞𝑘)

)
<∞;

and 𝜇𝑎,𝜔 ⊥ 𝜇𝑏,𝜔 a.s. if
∞∑
𝑘=1

∣𝑎𝑘 − 𝑏𝑘∣2
(
1 +

cos2 2𝜋(𝑠𝑘 − 𝑡𝑘 + 𝑞𝑘)
𝑝𝑘(1− ∣𝑢𝑘∣ cos 2𝜋𝑞𝑘)

)
= ∞.

Remark. Since both ∣𝑎𝑘∣ ≤ 1 and ∣𝑏𝑘∣ ≤ 1, we have ∣𝑢𝑘∣ ≤ 1 and ∣𝑢𝑘∣ = 1 only when
𝑎𝑘 = 𝑏𝑘 with ∣𝑎𝑘∣ = 1, while in this case the corresponding summand in the above
two series vanishes automatically.

Under an additional assumption that the decay rate of (2− ∣𝑎𝑘 + 𝑏𝑘∣)2 does not
exceed 𝑝−𝑘, we have the following dichotomy. However, at this stage, we are not
able to see whether this assumption is an optimal one to guarantee the dichotomy.

Theorem 1.2. Suppose that ∣𝑎𝑘∣ ≤ 1, ∣𝑏𝑘∣ ≤ 1 for all 𝑘 ≥ 1, and suppose that there
exists some 𝑐 > 0 such that 𝑝𝑘(2− ∣𝑎𝑘 + 𝑏𝑘∣)2 > 𝑐 for all large 𝑘 with 𝑎𝑘 ∕= 𝑏𝑘.
Then 𝜇𝑎,𝜔 ∼ 𝜇𝑏,𝜔 a.s. if

∞∑
𝑘=1

∣𝑎𝑘 − 𝑏𝑘∣2
(
1 +

cos2 2𝜋(𝑠𝑘 − 𝑡𝑘)√
2− ∣𝑎𝑘 + 𝑏𝑘∣

)
<∞,

and 𝜇𝑎,𝜔 ⊥ 𝜇𝑏,𝜔 a.s. otherwise.
Remark. The remark below Theorem 1.1 still applies.

Secondly, let dimH 𝜇 denote the Hausdorff dimension of a measure on ℤ𝑝 with
respect to the 𝑝-adic norm ∣ ⋅ ∣𝑝.
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Theorem 1.3. We have, a.s.,

dimH 𝜇𝑎,𝜔 = 1− 1

log 𝑝
⋅ lim sup

𝑛→∞
1

𝑛

𝑛∑
𝑘=1

𝜎𝑘(𝑎𝑘),

where

𝜎𝑘(𝑎𝑘) = 𝑝
−𝑘

𝑝𝑘−1∑
𝑗=0

(1 +Re𝑎𝑘𝑒
2𝜋𝑖 𝑗

𝑝𝑘 ) log(1 +Re𝑎𝑘𝑒
2𝜋𝑖 𝑗

𝑝𝑘 ).

Assume further that 𝑎𝑘 = 𝑎 with ∣𝑎∣ < 1 for all 𝑘 ≥ 1. Then,

dimH 𝜇𝑎,𝜔 = 1− 𝜏 (𝑎)

log 𝑝
, 𝑎.𝑠.,

where

𝜏 (𝑎) =

∫ 1

0

(1 +Re𝑎𝑒2𝜋𝑖𝑥) log(1 +Re𝑎𝑒2𝜋𝑖𝑥)𝑑𝑥,

and in this case the convergence rate is dominated by

∣𝜎𝑘(𝑎)− 𝜎𝑘−1(𝑎)∣ ≤ 𝐶𝑝,𝑎

𝑝𝑘
,

where 𝐶𝑝,𝑎 is a constant.

Remark. In Theorem 1.3, we may relax the condition on the coefficients 𝑎𝑘 to
assume both that sup ∣𝑎𝑘∣ < 1 and that lim

𝑛→∞
1
𝑛

∑𝑛
𝑘=1 ∣𝑎𝑘 − 𝑎∣ = 0, and we may still

get the same integral representation on the Hausdorff dimension. However, we may
then only get a poor convergence rate such as

∣𝜎𝑘(𝑎𝑘)− 𝜎𝑘−1(𝑎𝑘−1)∣ ≤ 𝐶𝑝,𝑎(
1

𝑝𝑘
+ ∣𝑎𝑘 − 𝑎𝑘−1∣).

To mention the significance, we remark that the conditions and the assertions
in our theorems are specific to the 𝑝-adic case, which do not appear in previous
literatures on the circle case, to our knowledge. Therefore, our theorems may
compare significantly to the well-known circle case. We should remark that the
work of Fan ([3]), which is based on T-martingale theory, is applied to any compact
Abelian group, yet his general conditions may take different forms on different
groups, and thus it is worthwhile to work out precise conditions for the particularly
meaningful 𝑝-adic case (we thank A.H. Fan for bringing this to our attention).

In Section 2, we provide some preliminaries of random Riesz products and prove
Theorems 1.1 and 1.2 via a proposition which may be of intrinsic interest. In
Section 3, we provide some notions of Hausdorff dimension and prove Theorem 1.3.
A remark on ℤ𝑝: It is intriguing to ask whether the work in this paper should

be carried out for a larger class of “adic” groups rather than merely for prime 𝑝-
adic. Though we may modify most parts of the work to hold for the structure ℤ𝑛 of
general positive integer 𝑛 ≥ 2, we are leaning towards regarding the Riesz product
as an object defined for a “simple” group ℤ𝑝 (inherited from the local field ℚ𝑝).
In the case of, say, ℤ6, we may instead develop our results on the product group
ℤ2

⊕
ℤ3, which could be potentially interesting, and some deterministic theory is

also sketched in the last section of Peyrière [13]. We thank the referee for bringing
this observation to our attention.
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2. Preliminaries, mutually absolute continuity
and mutual singularity

We use the notation in Section 1 and define, for each 𝑛 = 1, 2, 3, ⋅ ⋅ ⋅ ,

𝑄𝑎,𝑛(𝑥) = 𝑄𝑎,𝑛(𝑥, 𝜔) =
𝑛∏

𝑘=1

(1 +Re𝑎𝑘𝛾𝑘(𝑥+ 𝜔𝑘)),

where 𝑎 := {𝑎𝑘}, 𝑘 ≥ 1, is a sequence of complex numbers with ∣𝑎𝑘∣ ≤ 1 and 𝛾𝑘 is a
sequence of characters of the additive group ℤ𝑝 which we take, in this paper, to be
𝛾𝑘(𝑡) = exp(2𝜋𝑖{𝑝−𝑘𝑡}). We remark that {𝛾𝑘 : 𝑘 ≥ 1} is only a subset of the dual

group ℤ̂𝑝; see [15, 16]. We recall that each number 𝑥 ∈ ℚ𝑝 has a unique expansion
in the following form:

𝑥 =

∞∑
𝑗=−𝑚

𝑥𝑗𝑝
𝑗 , 𝑥𝑗 ∈ {0, 1, ⋅ ⋅ ⋅ , 𝑝− 1}, 𝑚 ∈ ℤ.

Then, we use {𝑥} to denote the rational number
∑−1

𝑗=−𝑚 𝑥𝑗𝑝
𝑗 associated with 𝑥,

and we define that ∣𝑥∣𝑝 := 𝑝𝑛 whenever 𝑥−𝑛 ∕= 0.
We denote by 𝑑𝑥 the normalized Haar measure on ℤ𝑝. By the Kahane’s

T-martingale theory ([7]), it is known that the random probability measures
𝑄𝑎,𝑛(𝑥)𝑑𝑥, for 𝑎.𝑠. 𝜔, converge weakly to a non-degenerate random measure on
ℤ𝑝, denoted by 𝜇𝑎,𝜔, which is called a random p-adic Riesz product (measure). We
write formally

𝑑𝜇𝑎,𝜔 =

∞∏
𝑘=1

(1 +Re𝑎𝑘𝛾𝑘(𝑥+ 𝜔𝑘))𝑑𝑥.

The measure 𝜇𝑎,𝜔 is, for almost sure 𝜔, a measure of total mass one. This can be
obtained by the T-martingale theory (see, for example, [3]) or by the dissociation
of characters. The essential methods and results in this paper are probabilistic,
though we believe that the analytic approach could be used to obtain the parallel
results by the methodology of the dissociation of characters (we thank the referee
for pointing out the dissociation to us).

Let 𝜇𝑎,𝜔 and 𝜇𝑏,𝜔 be the random 𝑝-adic Riesz products defined by coefficients
𝑎 := {𝑎𝑘} and 𝑏 := {𝑏𝑘} respectively. In this section, we will discuss mutual
absolute continuity and mutual singularity of 𝜇𝑎,𝜔 and 𝜇𝑏,𝜔, which will lead to the
proofs of Theorems 1.1 and 1.2.
Notice: In the following context, we only concern ourselves with those 𝑘’s for

which 𝑎𝑘 ∕= 𝑏𝑘 (see the remark below Theorem 1.1 in Section 1) and thus all
𝑢𝑘 := (𝑎𝑘 + 𝑏𝑘)/2 are of ∣𝑢𝑘∣ < 1 in the following context.

We state a dichotomy criterion for random Riesz products as follows, in which
there is no decay assumption imposed on 𝑎 and 𝑏. The proposition can be traced
back to the seminal [8]. Let

𝐿𝑘(𝑎𝑘, 𝑏𝑘) =
1

𝑝𝑘

𝑝𝑘−1∑
𝑗=0

cos2 2𝜋( 𝑗
𝑝𝑘 + 𝑠𝑘)

1 + ∣𝑢𝑘∣ cos 2𝜋( 𝑗
𝑝𝑘 + 𝑡𝑘)

,

where 𝑠𝑘, 𝑡𝑘, 𝑢𝑘 are those quantities defined in Section 1. We have
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Proposition 2.1. Suppose that ∣𝑎𝑘∣ ≤ 1, ∣𝑏𝑘∣ ≤ 1 for all 𝑘 ≥ 1. Then 𝜇𝑎,𝜔 ∼ 𝜇𝑏,𝜔
a.s. if

∞∑
𝑘=1

𝐿𝑘(𝑎𝑘, 𝑏𝑘)∣𝑎𝑘 − 𝑏𝑘∣2 <∞,

and 𝜇𝑎,𝜔 ⊥ 𝜇𝑏,𝜔 a.s. otherwise.
Proof. Write

𝐼𝑘(𝑎𝑘, 𝑏𝑘) =

∫
ℤ𝑝

√
(1 +Re𝑎𝑘𝛾𝑘(𝑥))(1 +Re𝑏𝑘𝛾𝑘(𝑥))𝑑𝑥.

By Theorem 2.1 in Fan [3] (which is adapted from those in [8, 9]), stochastic inde-
pendence of the 𝜔𝑘’s and translation-invariance of the Haar measure, we have

𝜇𝑎,𝜔 ∼ 𝜇𝑏,𝜔 𝑎.𝑠.⇐⇒
∞∏
𝑘=1

𝐼𝑘(𝑎𝑘, 𝑏𝑘) > 0,(2.1)

𝜇𝑎,𝜔 ⊥ 𝜇𝑏,𝜔 𝑎.𝑠.⇐⇒
∞∏
𝑘=1

𝐼𝑘(𝑎𝑘, 𝑏𝑘) = 0.(2.2)

To estimate the above products, we note that ℤ𝑝 can be expressed as a collection
of 𝑝𝑘 disjoint balls with the same size. Namely,

ℤ𝑝 =

𝑝𝑘−1⊔
𝑗=0

𝐵𝑘(𝑗).

Moreover, 𝛾𝑘(𝑥) takes a constant 𝑒
2𝜋𝑖 𝑗

𝑝𝑘 on each ball 𝐵𝑘(𝑗). Hence

𝐼𝑘(𝑎𝑘, 𝑏𝑘) =
1

𝑝𝑘

𝑝𝑘−1∑
𝑗=0

√
(1 +Re𝑎𝑘𝑒

2𝜋𝑖 𝑗

𝑝𝑘 )(1 +Re𝑏𝑘𝑒
2𝜋𝑖 𝑗

𝑝𝑘 ).

Denote by 𝐼𝑘(𝑎𝑘, 𝑏𝑘, 𝑗) the general term in the last sum. Write

𝐼𝑘(𝑎𝑘, 𝑏𝑘, 𝑗) =
√
(1 + 𝜉𝑘,𝑗 + 𝜂𝑘,𝑗)(1 + 𝜉𝑘,𝑗 − 𝜂𝑘,𝑗)

= (1 + 𝜉𝑘,𝑗)

√
1−

(
𝜂𝑘,𝑗

1 + 𝜉𝑘,𝑗

)2

,

where

𝜉𝑘,𝑗 = Re
𝑎𝑘 + 𝑏𝑘

2
𝑒
2𝜋𝑖 𝑗

𝑝𝑘 , 𝜂𝑘,𝑗 = Re
𝑎𝑘 − 𝑏𝑘

2
𝑒
2𝜋𝑖 𝑗

𝑝𝑘 .

Let 𝑠𝑘 and 𝑡𝑘 be the two argument numbers associated with 𝑎 and 𝑏, as defined in
Section 1, and

𝐿𝑘(𝑎𝑘, 𝑏𝑘) =
1

𝑝𝑘

𝑝𝑘−1∑
𝑗=0

cos2 2𝜋( 𝑗
𝑝𝑘 + 𝑠𝑘)

1 + ∣(𝑎𝑘 + 𝑏𝑘)/2∣ cos 2𝜋( 𝑗
𝑝𝑘 + 𝑡𝑘)

.

Now, using the inequalities 1 − 𝑥 ≤ √
1− 𝑥 ≤ 1 − 𝑥

2 for all 𝑥 ∈ [0, 1] and the fact

that
∑𝑝𝑘−1

𝑗=0 𝜉𝑘,𝑗 = 0, we get

1− 1

4
∣𝑎𝑘 − 𝑏𝑘∣2𝐿𝑘(𝑎𝑘, 𝑏𝑘) ≤ 𝐼𝑘(𝑎𝑘, 𝑏𝑘) ≤ 1− 1

8
∣𝑎𝑘 − 𝑏𝑘∣2𝐿𝑘(𝑎𝑘, 𝑏𝑘).(2.3)
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Hence by (2.1) and the left side of (2.3), we obtain the first assertion on the
mutual absolute continuity (note that 𝐼𝑘 is symmetric in 𝑎𝑘, 𝑏𝑘). At the same time,
the mutual singularity is a direct consequence of (2.2) and the right side of (2.3).
This completes the proof of Proposition 2.1. □

The apparent drawback of Proposition 2.1 is that 𝐿𝑘(𝑎𝑘, 𝑏𝑘) is not readily ex-
pressed. We proceed with some proper reshaping, which will lead to the proofs of
Theorems 1.1 and 1.2.

Proof of Theorem 1.1. We divide 𝐿𝑘 into two parts. Let

𝐿′
𝑘 =

1

𝑝𝑘

∑
𝑗 ∕=𝑗𝑘

cos2 2𝜋( 𝑗
𝑝𝑘 + 𝑠𝑘)

1 + ∣𝑢𝑘∣ cos 2𝜋( 𝑗
𝑝𝑘 + 𝑡𝑘)

, 𝐿′′
𝑘 =

1

𝑝𝑘
⋅

cos2 2𝜋( 𝑗𝑘
𝑝𝑘 + 𝑠𝑘)

1 + ∣𝑢𝑘∣ cos 2𝜋( 𝑗𝑘𝑝𝑘 + 𝑡𝑘)
.

Hence

𝐿′
𝑘 ≥ 1

𝑝𝑘

∑
𝑗 ∕=𝑗𝑘

cos2 2𝜋( 𝑗
𝑝𝑘 + 𝑠𝑘)

2
≥ 1

𝑝𝑘

⎛⎝𝑝𝑘−1∑
𝑗=0

cos2 2𝜋( 𝑗
𝑝𝑘 + 𝑠𝑘)

2
− 1

2

⎞⎠
=

1

𝑝𝑘
(
𝑝𝑘

4
− 1

2
) ≥ 1

8
(2.4)

for all 𝑘 ≥ 2, 𝑝 ≥ 2. On the other hand,

𝐿′
𝑘 ≤ 1

𝑝𝑘

∑
𝑗 ∕=𝑗𝑘

cos2 2𝜋( 𝑗
𝑝𝑘 + 𝑠𝑘)

1− ∣𝑢𝑘∣ cos 𝜋
𝑝𝑘

≤ 1

𝑝𝑘

𝑝𝑘−1∑
𝑗=0

cos2 2𝜋( 𝑗
𝑝𝑘 + 𝑠𝑘)

1− ∣𝑢𝑘∣ cos 𝜋
𝑝𝑘

=
1

2(1− ∣𝑢𝑘∣ cos 𝜋
𝑝𝑘 )
.(2.5)

Now we consider 𝐿′′
𝑘 and recall that 𝑞𝑘 = 𝑗𝑘

𝑝𝑘 + 𝑡𝑘 − 1
2 . Then

𝐿′′
𝑘 =

1

𝑝𝑘
⋅ cos

2 2𝜋(𝑠𝑘 − 𝑡𝑘 + 𝑞𝑘)
1− ∣𝑢𝑘∣ cos 2𝜋𝑞𝑘 .(2.6)

Hence the assertions of Theorem 1.1 are a consequence of (2.4), (2.5), (2.6) and
Proposition 2.1. □

Proof of Theorem 1.2. We observe that 𝐿𝑘(𝑎𝑘, 𝑏𝑘) can be rewritten as

𝐿𝑘(𝑎𝑘, 𝑏𝑘) =

𝑝𝑘−1∑
𝑗=0

∫ 𝑗+1

𝑝𝑘

𝑗

𝑝𝑘

cos2 2𝜋( 𝑗
𝑝𝑘 + 𝑠𝑘)

1 + ∣𝑢𝑘∣ cos 2𝜋( 𝑗
𝑝𝑘 + 𝑡𝑘)

𝑑𝑥.

Let

𝐻𝑘(𝑎𝑘, 𝑏𝑘) =

∫ 1

0

cos2 2𝜋(𝑥+ 𝑠𝑘)

1 + ∣𝑢𝑘∣ cos 2𝜋(𝑥+ 𝑡𝑘)𝑑𝑥 =

𝑝𝑘−1∑
𝑗=0

∫ 𝑗+1

𝑝𝑘

𝑗

𝑝𝑘

cos2 2𝜋(𝑥+ 𝑠𝑘)

1 + ∣𝑢𝑘∣ cos 2𝜋(𝑥+ 𝑡𝑘)𝑑𝑥.

It is easy to obtain that∣∣∣∣∣ cos2 2𝜋( 𝑗
𝑝𝑘 + 𝑠𝑘)

1 + ∣𝑢𝑘∣ cos 2𝜋( 𝑗
𝑝𝑘 + 𝑡𝑘)

− cos2 2𝜋(𝑥+ 𝑠𝑘)

1 + ∣𝑢𝑘∣ cos 2𝜋(𝑥+ 𝑡𝑘)

∣∣∣∣∣ ≤ 𝐶

𝑝𝑘(1− ∣𝑢𝑘∣)2
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for all 𝑥 ∈ [ 𝑗
𝑝𝑘 ,

𝑗+1
𝑝𝑘 ], where 𝐶 is an absolute constant. Hence, under our additional

assumption on 𝑎𝑘, 𝑏𝑘, we have ∣𝐿𝑘(𝑎𝑘, 𝑏𝑘)−𝐻𝑘(𝑎𝑘, 𝑏𝑘)∣ ≤ 2𝐶/𝑐, whence

∞∑
𝑘=1

𝐿𝑘(𝑎𝑘, 𝑏𝑘)∣𝑎𝑘 − 𝑏𝑘∣2 <∞ ⇐⇒
∞∑
𝑘=1

𝐻𝑘(𝑎𝑘, 𝑏𝑘)∣𝑎𝑘 − 𝑏𝑘∣2 <∞,

since, if
∑ ∣𝑎𝑘−𝑏𝑘∣2 = ∞, then both series diverge. We then apply a direct formula

for 𝐻𝑘(𝑎𝑘, 𝑏𝑘) (see [9]):

𝐻𝑘(𝑎𝑘, 𝑏𝑘) =
cos2 2𝜋(𝑠𝑘 − 𝑡𝑘)√
1− ∣𝑢𝑘∣2 + 1− ∣𝑢𝑘∣2

+
sin2 2𝜋(𝑠𝑘 − 𝑡𝑘)√

1− ∣𝑢𝑘∣2 + 1
.

We observe that

𝐻𝑘(𝑎𝑘, 𝑏𝑘) ≤ cos2 2𝜋(𝑠𝑘 − 𝑡𝑘)√
1− ∣𝑢𝑘∣

+ 1 ≤ 4
√
2𝐻𝑘(𝑎𝑘, 𝑏𝑘).

Therefore the assertions of Theorem 1.2 follow from the corresponding results in
𝐻𝑘(𝑎𝑘, 𝑏𝑘). □

3. Hausdorff dimension

Recall that, since ℤ𝑝 is equipped with the 𝑝-adic norm ∣ ⋅ ∣𝑝, the Hausdorff dimen-
sion of a set is well defined (see [2, 11]). The Hausdorff dimension of 𝜇𝑎,𝜔, denoted
by dimH 𝜇𝑎,𝜔, is defined to be the infimum of the dim𝐸’s such that 𝜇𝑎,𝜔(𝐸) = 1
(see [5, 11] for more details).

Before calculating the Hausdorff dimension of 𝜇𝑎,𝜔, we need to introduce a new
measure called the Peyrière measure ([7]), which may also be regarded as a kind of
Palm distribution. This is the unique probability measure q on the 𝜎-field generated
by the 𝐵 ×𝐴 (𝐵: Borel set in ℤ𝑝, 𝐴: event in Ω) which satisfies

𝔼q𝑓 :=

∫
ℤ𝑝×Ω

𝑓(𝑥, 𝜔)𝑑q(𝑥, 𝜔) = 𝔼P

∫
ℤ𝑝

𝑓(𝑥, 𝜔)𝑑𝜇𝑎,𝜔

for all positive measurable functions 𝑓(𝑥, 𝜔). Then we have the following lemma
which is a consequence of the Kolmogorov Three-Series Theorem (see Theorem 1.5
in [4]).

Lemma 3.1. Suppose that 𝑓𝑘, 𝑘 ≥ 1, is a sequence of functions in 𝐿2(𝑑𝑥). Then
almost surely the series

∞∑
𝑘=1

(𝑓𝑘(𝑥+ 𝜔𝑘)− 𝔼q𝑓𝑘(𝑥+ 𝜔𝑘))

converges for 𝜇𝑎,𝜔-a.e. 𝑥 if and only if the series

∞∑
𝑘=1

(𝑀𝑘 −𝑚2
𝑘)

converges, where

𝑀𝑘 =

∫
ℤ𝑝

𝑓2
𝑘 (𝑥)(1 +Re𝑎𝑘𝛾𝑘(𝑥))𝑑𝑥; 𝑚𝑘 =

∫
ℤ𝑝

𝑓𝑘(𝑥)(1 +Re𝑎𝑘𝛾𝑘(𝑥))𝑑𝑥.
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Now we apply Lemma 3.1 to calculate the Hausdorff dimension of 𝜇𝑎,𝜔. Recall
that the Hausdorff dimension of a measure 𝜇 is defined by dimH 𝜇 = inf{dimH𝐸 :
𝐸 a Borel set and 𝜇(𝐸𝑐) = 0} (see [5]). Let 𝐵𝑛(𝑥) = {𝑦 ∈ ℤ𝑝 : ∣𝑥 − 𝑦∣𝑝 ≤ 𝑝−𝑛}.
Then the dimension dimH 𝜇 is equal to the essential supremum of the lower local
density

𝐷(𝜇, 𝑥) = lim inf
𝑛→∞

log 𝜇(𝐵𝑛(𝑥))

log ∣𝐵𝑛(𝑥)∣ ,

where ∣𝐵𝑛(𝑥)∣ denotes the Haar measure of 𝐵𝑛(𝑥) (see [5]).
From the definition of 𝜇𝑎,𝜔, for a.s. 𝜔, for any given 𝑛 and 𝑥,

𝜇𝑎,𝜔(𝐵𝑛(𝑥)) = lim
𝑁→∞

∫
𝐵𝑛(𝑥)

𝑄𝑎,𝑁 (𝑦)𝑑𝑦 = 𝑝−𝑛𝑄𝑎,𝑛(𝑥).

The reason for the equality in the above display is that 𝑦 �→ 𝑄𝑎,𝑁 (𝑥+𝑦)/𝑄𝑎,𝑛(𝑥)
is a finite Riesz product on the subgroup 𝐵𝑛(0), and thus its integral is equal to
1 for the normalized Haar measure and to 𝑝−𝑛 for the induced measure (here, we
thank the referee for pointing out an error and providing the correct argument for
this equality).

Hence

𝐷(𝜇𝑎,𝜔, 𝑥) = 1− 1

log 𝑝
⋅ lim sup

𝑛→∞
1

𝑛

𝑛∑
𝑘=1

log(1 +Re𝑎𝑘𝛾𝑘(𝑥+ 𝜔𝑘)).

Now take

𝑓𝑘(𝑥) =
1

𝑘
log(1 +Re𝑎𝑘𝛾𝑘(𝑥))

in Lemma 3.1 and let

𝜎𝑘(𝑎𝑘) =

∫
ℤ𝑝

(1 +Re𝑎𝑘𝛾𝑘(𝑥)) log(1 +Re𝑎𝑘𝛾𝑘(𝑥))𝑑𝑥.

Then 𝔼q𝑓𝑘(𝑥 + 𝜔𝑘) = 1
𝑘𝜎𝑘(𝑎𝑘). By Lemma 3.1 and Kronecker’s lemma, almost

surely

1

𝑛

𝑛∑
𝑘=1

[log(1 +Re𝑎𝑘𝛾𝑘(𝑥+ 𝜔𝑘))− 𝜎𝑘(𝑎𝑘)]

converges to zero for 𝜇𝑎,𝜔-a.e. 𝑥. Thus, almost surely

𝐷(𝜇𝑎,𝜔, 𝑥) = 1− 1

log 𝑝
⋅ lim sup

𝑛→∞
1

𝑛

𝑛∑
𝑘=1

𝜎𝑘(𝑎𝑘), 𝜇𝑎,𝜔-a.e. 𝑥.

By the definition of Hausdorff dimension of a measure, we have, a.s.,

dimH 𝜇𝑎,𝜔 = 1− 1

log 𝑝
⋅ lim sup

𝑛→∞
1

𝑛

𝑛∑
𝑘=1

𝜎𝑘(𝑎𝑘).

Now we explore the integral 𝜎𝑘(𝑎𝑘). By the same argument as has been done
for 𝐼𝑘(𝑎𝑘, 𝑏𝑘), we obtain

𝜎𝑘(𝑎𝑘) = 𝑝
−𝑘

𝑝𝑘−1∑
𝑗=0

(1 +Re𝑎𝑘𝑒
2𝜋𝑖 𝑗

𝑝𝑘 ) log(1 +Re𝑎𝑘𝑒
2𝜋𝑖 𝑗

𝑝𝑘 ).
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Under the assumption that 𝑎𝑘 = 𝑎 with ∣𝑎∣ < 1 for all 𝑘 ≥ 1, the above is a Riemann
sum, and thus

lim
𝑘→∞

𝜎𝑘(𝑎) =

∫ 1

0

(1 +Re𝑎𝑒2𝜋𝑖𝑥) log(1 +Re𝑎𝑒2𝜋𝑖𝑥)𝑑𝑥 := 𝜏 (𝑎).

It follows that, almost surely,

dimH 𝜇𝑎,𝜔 = 1− 𝜏 (𝑎)

log 𝑝
.

As for the convergence rate in this case, we calculate that

∣𝜎𝑘(𝑎)− 𝜎𝑘−1(𝑎)∣ ≤ 𝐶𝑝,𝑎

𝑝𝑘
,

where 𝐶𝑝,𝑎 is a constant specified below, as follows. We identify ℤ/𝑝ℤ as {0, ⋅ ⋅ ⋅ ,
𝑝 − 1} and the integration over ℤ/𝑝ℤ as the summation over 𝑗 ∈ {0, ⋅ ⋅ ⋅ , 𝑝 − 1}
divided by 𝑝. Then we rewrite 𝜎𝑘(𝑎) formally as a multiple integral:

𝜎𝑘(𝑎) =

∫
(ℤ/𝑝ℤ)𝑘

(
1 +Re𝑎𝑒

2𝜋𝑖
𝑥0+𝑥1𝑝+⋅⋅⋅+𝑥𝑘−1𝑝𝑘−1

𝑝𝑘

)

⋅ log
(
1 +Re𝑎𝑒

2𝜋𝑖
𝑥0+𝑥1𝑝+⋅⋅⋅+𝑥𝑘−1𝑝𝑘−1

𝑝𝑘

)
𝑑𝑥0𝑑𝑥1 ⋅ ⋅ ⋅ 𝑑𝑥𝑘−1

=

∫
ℤ/𝑝ℤ

𝑑𝑥0

∫
(ℤ/𝑝ℤ)𝑘−1

(
1 +Re𝑎𝑒

2𝜋𝑖
𝑥0
𝑝𝑘 𝑒

2𝜋𝑖
𝑥1+𝑥2𝑝+⋅⋅⋅+𝑥𝑘−1𝑝𝑘−2

𝑝𝑘−1

)

⋅ log
(
1 +Re𝑎𝑒

2𝜋𝑖
𝑥0
𝑝𝑘 𝑒

2𝜋𝑖
𝑥1+𝑥2𝑝+⋅⋅⋅+𝑥𝑘−1𝑝𝑘−2

𝑝𝑘−1

)
𝑑𝑥1𝑑𝑥2 ⋅ ⋅ ⋅ 𝑑𝑥𝑘−1.

Using the above formal integration, we may proceed with a certain change of vari-
ables to obtain that

𝜎𝑘(𝑎) =

∫
ℤ/𝑝ℤ

𝑑𝑡

∫
ℤ𝑝

(1 +Re𝑎𝑒
2𝜋𝑖 𝑡

𝑝𝑘 𝛾𝑘−1(𝑥)) log(1 +Re𝑎𝑒
2𝜋𝑖 𝑡

𝑝𝑘 𝛾𝑘−1(𝑥))𝑑𝑥.

Note that 𝜎𝑘−1(𝑎) can also be written in the integral form as

𝜎𝑘−1(𝑎) =

∫
ℤ/𝑝ℤ

𝑑𝑡

∫
ℤ𝑝

(1 +Re𝑎𝛾𝑘−1(𝑥)) log(1 +Re𝑎𝛾𝑘−1(𝑥))𝑑𝑥.

We observe that the absolute value of the difference of the two integrands in the
above two integral displays is uniformly dominated by 𝑝−𝑘(𝑝− 1)(2− log(1− ∣𝑎∣)).
Therefore, the assertion on the convergence rate in Theorem 1.3 follows from the
above estimate.
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