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EXISTENCE AND BOUNDS OF POSITIVE SOLUTIONS

FOR A NONLINEAR SCHRÖDINGER SYSTEM

BENEDETTA NORIS AND MIGUEL RAMOS

(Communicated by Matthew J. Gursky)

Abstract. We prove that, for any λ ∈ R, the system −∆u+λu = u3−βuv2,
−∆v + λv = v3 − βvu2, u, v ∈ H1

0 (Ω), where Ω is a bounded smooth domain

of R3, admits a bounded family of positive solutions (uβ , vβ) as β → +∞. An
upper bound on the number of nodal sets of the weak limits of uβ − vβ is also
provided. Moreover, for any sufficiently large fixed value of β > 0 the system
admits infinitely many positive solutions.

1. Introduction

We consider systems of the form

(1.1) −∆u+ λu = u3 − βuv2, −∆v + µv = v3 − βvu2, u, v ∈ H1
0 (Ω),

where Ω is a smooth bounded domain in R
3 and λ, µ, β are real parameters. We are

mainly interested in the case where λ = µ and β is positive and large. Such a system
arises when searching for standing wave solutions of the associated time-dependent
Schrödinger system, which consists of two coupled Gross–Pitaevskii equations. This
has been proposed as a mathematical model to describe both phenomena arising in
nonlinear optics (see for example the references in [18]) and binary Bose–Einstein
condensation.

In this second case the parameter β represents the interspecies scattering length,
which determines the interaction between unlike particles: the choice β > 0 corre-
sponds to repulsive interaction (we refer to [16] for an exhaustive physical review
on B–E condensation). It has been shown experimentally that a large interspecies
scattering length may induce the interesting phenomenon of phase separation; that
is, the two different states may repel each other and form segregated domains.
Hence the analysis of system (1.1) with β positive and large, besides its mathe-
matical significance, also assumes physical relevance and has recently raised a lot
of interest (see the references hereafter). As it concerns the self-interaction of one
single state, we concentrate on the focusing case (attractive interaction), which
corresponds to our choice of sign in the pure power nonlinear terms in the system
(1.1). We stress that in our results below we could replace the constants λ and µ

Received by the editors July 29, 2009.
2010 Mathematics Subject Classification. Primary 35J57, 35J50, 58E05.
Key words and phrases. Elliptic systems, phase segregation, Morse index.
The first author was partially supported by MIUR, Project “Metodi Variazionali ed Equazioni

Differenziali Non Lineari”.

c©2010 American Mathematical Society
Reverts to public domain 28 years from publication

1681



1682 BENEDETTA NORIS AND MIGUEL RAMOS

by trapping potentials λ(x) and µ(x), provided these are smooth and bounded in
the C1-norm in Ω.

The existence of minimal energy solutions of (1.1) in the whole space R
3 has

been established in [1, 11, 14, 18]. These results concern the focusing case, both for
the attractive and repulsive problems (see also the references therein and [12, 13]
for a related problem).

Namely, for definiteness let us consider the system (1.1) with λ = µ = 1 and
solutions u, v ∈ H1(R3); we denote by Iβ the associated energy functional, whose
expression is given below, and

cβ = inf{Iβ(u, v) : u �= 0, v �= 0, I ′β(u, v)(u, 0) = 0, I ′β(u, v)(0, v) = 0}.
In [11, Theorem 1] it is shown that cβ is not attained in case β > 0 while in [18,
Theorem 1] it is proved that cβ is indeed attained in case β � 0, β �= −1; in fact, cβ
is attained by the diagonal pair ( w√

1−β
, w√

1−β
), where w is a positive ground state

solution of the equation −∆w + w = w3 in H1(R3). The existence of a positive
solution was already observed in [1, Theorem 5.4] in case β ∈ (−1, 0). Moreover,
by combining [18, Theorem 1] with [1, Theorem 5.3] or [14, Theorem 2.3] we infer
that if β < −1, then cβ = Iβ(

w√
1−β

, w√
1−β

) is the least energy critical level among

all nonzero solutions of the problem, i.e. solutions (u, v) with u �= 0 or v �= 0. In
contrast with the quoted negative result in [11], in case β > 0 it is also proved in
[18, Theorem 2] that a solution with nonzero and nonnegative components always
exists; the existence of a nonzero solution was already observed in [1, Theorem 5.4].
All these solutions are shown to be radially symmetric. In connection with our
Theorem 1.2 below, we mention that the computation of the Morse index of the
solutions is a crucial tool in the work [1]. We stress that the quoted papers deal
with more general systems, namely by allowing linear terms λu, µv with λ �= µ,
and nonlinear terms µ1u

3, µ2v
3 with µ1 �= µ2; in particular, in this case one can

find ranges of β < 0 for which the problem has no solutions with nonzero and
nonnegative components at all; see [18, Theorem 1].

We now concentrate on the bounded domain case. We denote by λ1(Ω) the
first eigenvalue of (−∆, H1

0 (Ω)). It has been proved by Dancer, Wei and Weth
in [8, Theorem 1.2] that for any fixed λ = µ > −λ1(Ω) and β > 0 sufficiently
large (specifically, β � 1 in the case of system (1.1)), the system admits a positive
solution (u, v) (i.e. u > 0 and v > 0 in Ω); in fact, they proved that the system
admits an unbounded sequence of positive solutions (uk,β, vk,β)k∈N, in the sense
that ||uk,β||H1

0 (Ω) + ||vk,β ||H1
0 (Ω) → ∞ as k → ∞. Their proof also provides a

bound ||uk,β ||H1
0 (Ω) + ||vk,β ||H1

0 (Ω) � Ck as β → +∞, for every fixed k ∈ N. We

mention that such large positive solutions do not exist in case β < 1 (cf. [8,
Theorem 1.1]), although trivial solutions can be found by simply taking a diagonal
pair ( w√

1−β
, w√

1−β
), where w is any positive solution of the equation −∆w+λw = w3

in H1
0 (Ω).

Since we assume λ = µ, we rewrite our problem as

(1.2) −∆u+ λu = u3 − βuv2, −∆v + λv = v3 − βvu2, u, v ∈ H1
0 (Ω).

We recall that solutions of (1.2) can be seen as critical points of the C2 energy
functional Iβ : H1

0 (Ω)×H1
0 (Ω) → R,

Iβ(u, v) =
1

2

∫
Ω

(|∇u|2+|∇v|2+λu2+λv2)−1

4

∫
Ω

(u4+v4)+
β

2

∫
Ω

u2v2, u,v ∈ H1
0 (Ω).



SOLUTIONS FOR A NONLINEAR SCHRÖDINGER SYSTEM 1683

The invariance of Iβ with respect to the involution (u, v) �→ (v, u) is a key ingredient
in the proof of the quoted existence result in [8]. Besides, heuristically speaking,
these solutions can somehow be seen as bifurcating from the ground state positive
solutions of the single equation −∆u+λu = u3 in H1

0 (Ω), as β decreases from +∞;
we stress that such positive solutions do exist since λ > −λ1(Ω).

Of course, the latter feature changes drastically in case λ � −λ1(Ω). However,
our previous motivation to the system (1.2) suggests that the mere existence of
positive solutions of the system should not depend on the value of the parameter
λ. We will prove that this is indeed the case, namely that positive solutions of the
system always do exist, and this will be due to the actual presence of the (sufficiently
large) parameter β.

Theorem 1.1. For any λ ∈ R and sufficiently large β > 0, the system (1.2) admits
an unbounded sequence of solutions (u, v) with u > 0, v > 0, u �= v.

In order to prove Theorem 1.1 we will introduce a suitable minimax framework
which takes advantage, as in the work of [8], of the above-mentioned symmetry
property of the energy functional. This is described in Section 2. We mention that
in the case when the quadratic part of Iβ is coercive (that is, in case λ > −λ1(Ω)),
bounds on the critical points and, more generally, on the Palais-Smale sequences of
Iβ follow immediately from any available bounds on the energy functional. This is
not the case when λ � −λ1(Ω), and therefore the lack of compactness is an issue
here.

In order to bypass this difficulty we will work in Section 2 with a truncated prob-
lem. In the second part of our proof we recover the original system by establishing a
priori bounds on the solutions; since in our situation energy estimates are useless,
we rely instead on the information of their Morse indices. This will be presented
in Section 3.

It turns out that the estimates in Section 3 are uniform in β, regardless of its
magnitude and sign, and apply to not necessarily positive solutions of the system;
see Section 3 for the details. In particular, as a by-product of our argument we are
able to derive a bound which is independent of β as β → +∞.

Theorem 1.2. For a given k ∈ N (sufficiently large), as β → +∞ we can choose a
positive solution (uβ, vβ) of (1.2) in such a way that their Morse indices (with respect
to the functional Iβ) are bounded by k. Moreover, ||uβ ||H1

0 (Ω)+ ||vβ ||H1
0 (Ω) � Ck for

every β.

We postpone a comment on this result to Remark 2.7 below. We stress that the
solutions obtained in Theorem 1.2 are genuine positive solutions of the system, in
the sense that uβ > 0, vβ > 0 and uβ �= vβ . In particular, as already observed in
[8], since

∫
Ω
uβvβ(v

2
β −u2

β) = 0, this implies that the components uβ and vβ are not
ordered.

Now, by combining Theorem 1.2 with the Brezis-Kato estimates, one immedi-
ately deduces that the family ||uβ ||L∞(Ω) + ||vβ ||L∞(Ω) is bounded uniformly in β.
This allows us to conclude that the solutions we found undergo the phenomenon of
phase separation, which has, as we mentioned above, some physical relevance. The
phase separation has been studied starting from [4] and more recently in [15, 19];
see also the pioneering papers [5, 6] where similar problems are analyzed. Using the
results in [15] we deduce in particular that the family ||uβ ||C0,α(Ω) + ||vβ ||C0,α(Ω) is
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also bounded for any α ∈ (0, 1) and, up to a subsequence, we have strong conver-
gence in H1

0 (Ω) ∩ C0,α(Ω) to a couple of disjointly supported functions (u, v) with
u �= 0 and v �= 0. The main feature here is that the limiting domains are unknown;
recent results concerning the regularity of the limiting profile and its nodal set were
obtained in [3]. Still, in our case it remains unclear whether a limit configuration
(u, v) (or rather, its difference u − v) does satisfy a nonsingular differential equa-
tion. Nevertheless, we are able to provide the following information on the limit
configuration.

Theorem 1.3. Let (uβ , vβ) be given by Theorem 1.2 and let (u, v) be such that
uβ → u and vβ → v in H1

0 (Ω) as β → +∞. Then the number of connected
components of the set {u+ v > 0} is less than or equal to k.

As mentioned before, the proofs of Theorems 1.1–1.3 will be presented in Sec-
tions 2 and 3.

2. A minimax principle

Since Theorem 1.1 is covered by [8, Theorem 1.2 (a)] in case λ > −λ1(Ω) (see
also Remark 2.6 hereafter), we will henceforth assume λ � −λ1(Ω); say, in order to
simplify the notation, λ = −1. That is, we look for positive solutions of the system

−∆u = u+ u3 − βuv2, −∆v = v + v3 − βvu2, u, v ∈ H1
0 (Ω),

where Ω is such that λ1(Ω) � 1. We denote u± := max{±u, 0}. Since the map
u �→

∫
Ω
(u+)2 is not of class C2 in H1

0 (Ω) and also for later purposes of compactness
(see Lemma 2.3 below), we replace the identity map f(s) = s by a function which
is superlinear near 0 and sublinear at infinity. For any small ε > 0, let fε : R → R

be the odd symmetric function given by fε(s) := s1+ε if 0 � s � 1 and fε(s) :=
(1 + ε)s − ε if s � 1. Then fε ∈ C1(R;R) and the map u �→

∫
Ω
Fε(u

+) is C2 in

H1
0 (Ω), where Fε(s) :=

∫ s

0
fε(ξ) dξ. Now, for any large R > 0, let fε,R : R → R be

the odd symmetric function given by fε,R(s) := fε(s) if 0 � s � R and fε,R(s) :=

2
√
R
√
s−R if s � R. We observe that |f ′

ε,R(s)| � 2 ∀ε,R > 0.
We look for solutions of the truncated system

−∆u = fε,R(u
+)+(u+)3−βuv2, −∆v = fε,R(v

+)+(v+)3−βvu2, u, v ∈ H1
0 (Ω).

Solutions of this system correspond to critical points of the C2 functional I =
Iε,R,β : H1

0 (Ω)×H1
0 (Ω) → R,

I(u, v) = I0(u) + I0(v) +
β

2

∫
Ω

u2v2,

where I0(u) :=
1
2 ||u||2−

∫
Ω
Fε,R(u

+)− 1
4

∫
Ω
(u+)4 and ||u||2 := ||u||2

H1
0 (Ω)

=
∫
Ω
|∇u|2.

We denote by Ek the eigenspace associated to the first k eigenfunctions of (−∆,
H1

0 (Ω)). In the sequel we assume that β > 0 is sufficiently large (β � 26 is enough;
see the proof below).

Lemma 2.1. Given M > 0 we can find k0 ∈ N, independent of ε,R and β, such
that for any k � k0 there exists a large constant ρk > 0 such that

inf{I(u, v) : u− v ∈ E⊥
k−1, ||u− v|| = ρk} � M.
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Proof. We recall that 0 � Fε,R(s) � C0s
2 ∀s ∈ R, ∀ε,R > 0, for some C0 > 0. We

denote C1 = 4C2
0 |Ω|. Let u − v ∈ E⊥

k−1, ||u − v|| = ρk. It is clear that for every k
sufficiently large, ρk can be chosen in such a way that for such pairs (u, v),

1

4

∫
Ω

|∇(u− v)|2 − 1

2

∫
Ω

(u− v)4 � M + C1.

This implies that

I(u, v) � M + C1 + (
β

2
+ 3)

∫
Ω

u2v2 +
1

4

∫
Ω

(u4 + v4)− C0

∫
Ω

(u2 + v2)

−2

∫
Ω

uv(u2 + v2)

� M + C1 +
β − 26

2

∫
Ω

u2v2 +
1

8

∫
Ω

(u4 + v4)− C0

∫
Ω

(u2 + v2)

� M +
β − 26

2

∫
Ω

u2v2.

The conclusion follows, provided β � 26. �

We denote H := H1
0 (Ω)×H1

0 (Ω) and by σ the involution σ(u, v) = (v, u). Also,
for a large positive constant Rk > ρk, we let Qk := BRk

(0)∩Ek, ∂Qk := {u ∈ Qk :
||u|| = Rk}. Let
Γk := {γ ∈ C(Qk;H) : γ(−u) = σ(γ(u)) ∀u ∈ Qk and γ(u) = (u+, u−) ∀u ∈ ∂Qk}.
We observe that by denoting γ(u) = (γ1(u), γ2(u)), then γ1(−u) = γ2(u) and
γ2(−u) = γ1(u) ∀γ ∈ Γk. The associated map θ(u) := γ1(u) − γ2(u) is therefore
continuous and odd symmetric, and moreover θ(u) = u ∀u ∈ ∂Qk. Our next lemma
is then a direct consequence of the Borsuk-Ulam theorem.

Lemma 2.2. For every γ ∈ Γk,

γ(Qk) ∩ Sk �= ∅, with Sk := {(u, v) ∈ H : u− v ∈ E⊥
k−1, ||u− v|| = ρk}.

Now, let

ck = ck,ε,R,β := inf
γ∈Γk

sup
u∈Qk

I(γ(u)).

By the previous two lemmas, ck → +∞ as k → ∞, uniformly in ε, R and β. Also,
it is clear that

I(u+, u−) � 1

2
||u||2 − 1

4

∫
Ω

u4 < 0, ∀u ∈ ∂Qk,

provided Rk is chosen sufficiently large.

Lemma 2.3. For every fixed ε, R and β, the functional I satisfies the Palais-Smale
condition in H.

Proof. Suppose I(un, vn) � C ∀n and I ′(un, vn) → 0 as n → ∞. Then

||un||2 + ||vn||2 +

∫
Ω

(fε,R(u
+
n )u

+
n − 4Fε,R(u

+
n )) +

∫
Ω

(fε,R(v
+
n )v

+
n − 4Fε,R(v

+
n ))

= 4I(un, vn)− I ′(un, vn)(un, vn) � C + C(||un||+ ||vn||).
Since fε,R is sublinear at infinity, the sequence ||un||2 + ||vn||2 is bounded. It is
easy to conclude the proof. �
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Proposition 2.4. For every fixed ε, R, β and k, with β and k sufficiently large,
there exists a critical point (uk, vk) of I such that I(uk, vk) = ck. Moreover, (uk, vk)
can be chosen in such a way that its Morse index m(uk, vk) is less than or equal to
k.

Proof. Since I(σ(u, v)) = I(u, v) ∀(u, v) ∈ H, the gradient flow η associated to
∇I is σ-equi-invariant (that is, η(σ(u, v)) = σ(η(u, v)) ∀(u, v) ∈ H); in particular
(η ◦ γ)(−u) = σ((η ◦ γ)(u)) ∀γ ∈ Γk, u ∈ Qk. Therefore, in view of the previous
lemmas (just take M = 1 in Lemma 2.1) and by using a standard argument, ck is a
critical value of the functional I. Since Ek is a k-dimensional space, the statement
concerning the Morse index is also classical; see e.g. [9]. �

Proof of Theorem 1.1. For the sake of clarity we split the proof into several steps.

Step 1. For a givenM > 0, let us fix k so large that ck � M uniformly in ε,R, β (this
is possible by virtue of Lemma 2.1 and Lemma 2.2) and let (uε,R,β , vε,R,β) be given
by the above proposition; we simplify the notation by dropping the subscripts, and
write (u, v) in the following computations. By using the fact that I ′(u, v)(u−, 0) = 0
and I ′(u, v)(0, v−) = 0 we see that u � 0 and v � 0. In this way we solve the
problem

−∆u = fε,R(u)+u3−βuv2, −∆v = fε,R(v)+v3−βvu2, u, v ∈ H1
0 (Ω), u, v � 0.

Step 2. Since m(u, v) � k there exists Ck > 0, independent of ε,R and β, such that
||u|| + ||v|| + ||u||L∞(Ω) + ||v||L∞(Ω) � Ck. We postpone to Section 3 the proof of
this fact. In particular, by choosing R large enough we conclude that (u, v) solves
the problem

−∆u = fε(u)+u3−βuv2, −∆v = fε(v)+v3−βvu2, u, v ∈ H1
0 (Ω), u, v � 0.

Step 3. Since the above bound is uniform in ε, we can pass to the limit in the
truncated system, as ε → 0. This yields a limit solution, still denoted by (u, v),
satisfying

−∆u = u+ u3 − βuv2, −∆v = v + v3 − βvu2, u, v ∈ H1
0 (Ω), u, v � 0.

We stress that we have strong convergence inH1
0 (Ω)×H1

0 (Ω) as ε → 0; in particular,
the energy levels pass to the limit. Of course, the bound Ck also holds in the limit,
uniformly in β.

Step 4. Arguing by contradiction, suppose v ≡ 0. Then u solves −∆u = u + u3,
u ∈ H1

0 (Ω), u � 0. Since u �= 0 (this is because I(u, v) > 0), the strong maximum
principle implies u > 0 in Ω. We multiply the equation by the first positive eigen-
function ϕ1 of (−∆, H1

0 (Ω)) and conclude that λ1(Ω)
∫
Ω
uϕ1 =

∫
Ω
uϕ1 +

∫
Ω
u3ϕ1 >∫

Ω
uϕ1; hence λ1(Ω) > 1. This contradicts our assumption that λ1(Ω) � 1. In

conclusion, we have that u, v � 0 and u, v �≡ 0. It follows again from the strong
maximum principle that u, v > 0 in Ω.

Step 5. Suppose now that v = u. Then u solves in H1
0 (Ω) the equation −∆u+(β−

1)u3 = u and I(u, u) =
∫
Ω
|∇u|2 −

∫
Ω
u2 + 1

2 (β − 1)
∫
Ω
u4 = −β−1

2

∫
Ω
u4 < 0. This

contradicts the fact that I(u, v) > 0. In conclusion, v �= u. Since the lower bound
M on the energy level can be chosen arbitrarily large, we have finished the proof
of Theorem 1.1. �
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Remark 2.5. From the previous proof we also deduce that for fixed k, the bound on
the Morse index is preserved in the limit, that is, m(u, v) � k for every β. Indeed,
for the moment we denote by (uε, vε) the solution of the approximated problem
found in Step 1 above; we stress that, as shown in Step 2, the solution does not
depend on R and that the bound on the Morse index does not depend on β. We
denote by (u, v) the limit of (uε, vε) as ε → 0. Since u and v are positive in Ω,
the Lebesgue convergence theorem yields

∫
Ω
f ′
ε(uε)ϕ

2 →
∫
Ω
ϕ2 and the same for vε,

and so

I ′′ε (uε, vε)(ϕ, ψ)(ϕ, ψ) → I ′′(u, v)(ϕ, ψ)(ϕ, ψ) as ε → 0,

for every ϕ, ψ ∈ D(Ω), which immediately implies the claim.

Remark 2.6. As we mentioned above, the case when λ > −λ1(Ω) is covered by
the results in [8]. In this case one can use constrained minimization on the Nehari
manifold associated to the system, since the functional turns out to be coercive
over this manifold. Our method provides an alternate proof of [8, Theorem 1.2
(a)], with the additional information on the Morse index of the solutions. We point
out that in the case when λ > −λ1(Ω) the Palais-Smale condition holds for the
original functional I, and so there is no need for arguing by means of a truncated
problem, as we did above. As for the argument in the previous Step 4 (nonvanishing
of the components of the solution pair), we can replace it by the observation that,
according to a celebrated result in [10], the positive solutions of the elliptic equation
−∆u + λu = u3 in H1

0 (Ω) are a priori bounded in H1
0 (Ω), whereas our solutions

have arbitrarily large energy levels.

We will close the section by establishing Theorem 1.3.

Proof of Theorem 1.3. For a fixed and sufficiently large k ∈ N and for some se-
quence β → +∞, let (uβ, vβ) be given by Theorem 1.2, so that m(uβ, vβ) � k
for every β. We will show in Section 3 that both (uβ) and (vβ) are bounded in
H1

0 (Ω) ∩ L∞(Ω) and so, as explained in the Introduction, up to a subsequence we
may assume that uβ → u and vβ → v in H1

0 (Ω) as β → +∞. As proved in [15], it
holds that uv = 0; moreover, u satisfies the equation −∆u = u + u3 in the open
set {u > 0}, and similarly for v. Let ω be a connected component of {u + v > 0}
and denote u := u|ω, v := v|ω. Then u, v ∈ H1

0 (ω); see e.g. [2, Theorem IX.17 and
Remark 20]. In order to prove the theorem it would be enough to show that if β
is sufficiently large, then I ′′(uβ, vβ)(u, v)(u, v) < 0. We prove a slightly different
version of this property which is sufficient to our purposes.

Without loss of generality, suppose u > 0 and v = 0. Since u ∈ H1
0 (ω), we can

fix ϕ ∈ D(ω) in such a way that∫
ω

|∇ϕ|2 −
∫
ω

ϕ2 − 3

∫
ω

u2ϕ2 �
∫
ω

|∇u|2 −
∫
ω

u2 − 2

∫
ω

u4.

By testing the equation −∆u = u+ u3 in ω with u we see that
∫
ω
|∇u|2 =

∫
ω
u2 +∫

ω
u4, and so ∫

ω

|∇ϕ|2 −
∫
ω

ϕ2 − 3

∫
ω

u2ϕ2 � −
∫
ω

u4 < 0.

Now,

I ′′(uβ , vβ)(ϕ, 0)(ϕ, 0) =

∫
ω

|∇ϕ|2 −
∫
ω

ϕ2 − 3

∫
ω

u2
βϕ

2 + β

∫
ω

v2βϕ
2,
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and so, in order to prove that I ′′(uβ , vβ)(ϕ, 0)(ϕ, 0) < 0 (from which the theorem
follows), it is enough to show that β

∫
ω
v2βϕ

2 → 0 as β → +∞.
In order to prove this, we first observe that by using a compactness argument, it is

sufficient to prove that β
∫
BR

v2βϕ
2 → 0 for any ball BR = BR(x0) ⊂ B3R(x0) ⊂ ω,

x0 ∈ suppϕ. Next we observe that over the ball B2R, it follows that

−∆vβ = vβ (1 + v2β − βu2
β) � vβ (C − β inf

B2R

u2
β).

Since lim infβ→+∞ infB2R
u2
β > 0, we deduce that

−∆vβ � −C ′βvβ in B2R, vβ � ||vβ ||L∞(ω) on ∂B2R.

It follows then from [7, Lemma 4.4] that
∫
BR

v2β � 4||vβ ||2L∞(ω)e
−R

√
C′β and this

yields our claim. �

Remark 2.7. The minimax class Γk can be replaced by a similar one in such a way
that we have the additional information m∗(uβ, vβ) � k, where the latter denotes
the augmented Morse index of the critical point (uβ, vβ) of the energy functional
(see e.g. [9]). This fact somehow suggests that the number of connected components
of the set {u + v > 0} of the limit configurations can be chosen to be arbitrarily
large. This, however, remains an open problem.

3. A priori bounds via Morse index

In this section we prove some estimates that were used in the proof of The-
orem 1.1. This is the content of our next proposition (see also the subsequent
remark), which, together with Remarks 2.5 and 2.6, also implies Theorem 1.2.

In the sequel we consider a system of the form

(3.1) −∆u+ λu = u3 − βuv2, −∆v + µv = v3 − βvu2, u, v ∈ H1
0 (Ω),

where Ω is a smooth bounded domain in R
3 and λ, µ, β are real parameters. So-

lutions of the system (not necessarily positive) are critical points of the functional
I : H1

0 (Ω)×H1
0 (Ω) → R,

I(u, v) = Iλ(u) + Iµ(v) +
β

2

∫
Ω

u2v2,

where Iλ(u) :=
1
2 ||u||2 +

λ
2

∫
Ω
u2 − 1

4

∫
Ω
u4. We observe that for every u, v, ϕ, ψ ∈

H1
0 (Ω),

I ′(u, v)(ϕ, ψ) = I ′λ(u)ϕ+ I ′µ(v)ψ + β

∫
Ω

(uv2ϕ+ vu2ψ)

and

I ′′(u, v)(ϕ, ψ)(ϕ, ψ) = I ′′λ(u)ϕϕ+ I ′′µ(v)ψψ + β

∫
Ω

(u2ψ2 + v2ϕ2 + 4uvϕψ),

with I ′′λ(u)ϕϕ = ||ϕ||2 + λ
∫
Ω
ϕ2 − 3

∫
Ω
u2ϕ2.

Proposition 3.1. Let (uβ, vβ) be a family of solutions of the system (3.1). If the
family of Morse indices m(uβ, vβ) is bounded, as well as the coefficients λ and µ,
so is the family ||uβ ||+ ||vβ ||.
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Remark 3.2. It will be clear that the subsequent proof also applies for a more
general system

−∆u+ fλ(u) = u3 − βuv2, −∆v + fµ(v) = v3 − βvu2, u, v ∈ H1
0 (Ω),

where fλ, fµ are C1 functions in R such that |f ′
λ(s)| + |f ′

µ(s)| � C0 ∀s, uniformly
for bounded λ, µ. Suppose now that β → +∞. By combining Proposition 3.1
with the Brezis-Kato estimates we deduce that the family ||uβ ||L∞(Ω) + ||vβ ||L∞(Ω)

is bounded. These facts were used in the proof of Theorem 1.1 as presented in
Section 2.

Proof. We adapt an argument in [17]. For simplicity of notation, we omit the
subscript β in (uβ, vβ). We split the proof into three steps.

Step 1. For any given vector field V = (V1, V2, V3), let W be the Pohoz̆aev-type
vector field

W = 〈∇u, V 〉∇u− 1

2
|∇u|2V + 〈∇v, V 〉∇v − 1

2
|∇v|2V +

1

4
Q(u, v)V,

where

Q(u, v) := u4 + v4 − 2βu2v2 − 2λu2 − 2µv2.

A straightforward computation, also using the system, shows that

divW =
3∑

i,k=1

∂u

∂xi

∂u

∂xk

∂Vi

∂xk
+

3∑
i,k=1

∂v

∂xi

∂v

∂xk

∂Vi

∂xk

− 1

2
(|∇u|2 + |∇v|2)divV +

1

4
Q(u, v)divV.

For a given point x0 ∈ Ω and a smooth function ϕ ∈ D(Br(x0)), with Br(x0) ⊂ Ω,
we let V (x) = x. Since 0 =

∫
Ω
div(Wϕ2) and divV = 3, we deduce that

3

2

∫
Ω

Q(u, v)ϕ2 =

∫
Ω

(|∇u|2 + |∇v|2)ϕ2 + γ(u, v),

with

|γ(u, v)| � C

∫
Ω

(|∇u|2 + |∇v|2 + |Q(u, v)|)|∇ϕ2|.

A similar conclusion can be derived in case x0 ∈ ∂Ω, provided r is sufficiently
small. In this case, we can choose a suitable vector field V such that ||DV −
Id||L∞(Br(x0)) = o(1) as r → 0 and 〈V (x), νx〉 = 0 for every x ∈ Br(x0) ∩ ∂Ω; here
νx denotes the unit outward normal of Ω at the point x. Moreover, this vector
field has the remarkable property that its divergence is constant (see Remark 3.3
hereafter); namely, divV = 3. It follows then as above that

3

2

∫
Ω

Q(u, v)ϕ2 � (1 + o(1))

∫
Ω

(|∇u|2 + |∇v|2)ϕ2 + γ(u, v),

with o(1) → 0 as r → 0. On the other hand, using the system we see that∫
Ω

(|∇u|2+|∇v|2)ϕ2 =

∫
Ω

Q(u, v)ϕ2+λ

∫
Ω

u2ϕ2+µ

∫
Ω

v2ϕ2−
∫
Ω

〈∇(
u2 + v2

2
),∇ϕ2〉.

Combining this with the previous inequality and by using a compactness argument,
we conclude that it is possible to fix a small number r > 0 and a finite number
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of points x1, . . . , x� ∈ Ω in such a way that Ω ⊂
⋃�

i=1 Br(xi) and, for any smooth
function ϕ ∈ D(B2r(xi)),∫

Ω

(|∇u|2 + |∇v|2)ϕ2 � Cλ,µ

∫
Ω

(u2 + v2)ϕ2 + γ(u, v).

We apply the Poincaré inequality to the functions uϕ and vϕ. By taking a smaller
r if necessary so that the L2-norms are absorbed into the left-hand member, this
leads to the final estimate∫

Ω

(|∇u|2 + |∇v|2)ϕ2 � γ(u, v),

with

|γ(u, v)| � C

∫
Ω

(|∇u|2 + |∇v|2 + |Q(u, v)|)|∇ϕ2|+ (u2 + v2)|∇ϕ|2).

Step 2. Suppose first that β � 0. Since the solutions have bounded Morse indices,
in each set B2r(xi) \ Br(xi) we can find an annulus Ai = {x : a < |x− xi| < b} in
such a way that

I ′′(u, v)(uψ, 0)(uψ, 0) � 0 and I ′′(u, v)(0, vψ)(0, vψ) � 0,

where ψ ∈ D(B2r(xi)) is such that 0 � ψ � 1 and ψ|Ai
= 1. We point out that

||∇ψ||L∞(R3) is bounded uniformly in β; to be precise, ||∇ψ||L∞(R3) � Cm(uβ, vβ)/r
for some universal constant C > 0.

Now, the inequality I ′′(u, v)(uψ, 0)(uψ, 0) � 0 can be written as∫
Ω

|∇u|2ψ2+λ

∫
Ω

u2ψ2+2

∫
Ω

uψ〈∇u,∇ψ〉+β

∫
Ω

u2v2ψ2 � 3

∫
Ω

u4ψ2−
∫
Ω

u2|∇ψ|2,

while it follows from the equation −∆u+λu = u3−βuv2 that the left-hand member
above equals

∫
Ω
u4ψ2. As a consequence,∫

Ω

u4ψ2 � 1

2

∫
Ω

u2|∇ψ|2.

By replacing ψ with ψ2 and using Hölder’s inequality we deduce that∫
Ω

u4ψ4 � C,

for some constant C independent of β. It follows once more from the equation that∫
Ω

(|∇u|2 + u4 + βu2v2)ψ4 � C ′.

We perform a similar computation using the inequality I ′′(u, v)(0, vψ)(0, vψ) � 0.
This yields the final conclusion that∫

Ai

(|∇u|2 + |∇v|2 + u4 + v4 + βu2v2) � C ′′,

for some constant C ′′ independent of β. We combine this estimate with the one
obtained in Step 1, by choosing ϕ ∈ D(B2r(xi)), 0 � ϕ � 1, such that ϕ = 1 in
Br(xi) and supp|∇ϕ| ⊂ Ai. This leads to the conclusion that∫

Br(xi)

(|∇u|2 + |∇v|2) � C ′′′,

for some constant C ′′′ independent of β, and the proposition follows.
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Step 3. Suppose now that β � 0. We replace the two first inequalities in Step 2 by
the single one, I ′′(u, v)(uψ, vψ)(uψ, vψ) � 0. This can be written as∫
Ω

(|∇u|2 + |∇v|2)ψ2 +

∫
Ω

(λu2 + µv2)ψ2 +
1

2

∫
Ω

〈∇(u2 + v2),∇ψ2〉+ 2β

∫
Ω

u2v2ψ2

� 3

∫
Ω

(u4 + v4)ψ2 − 4β

∫
Ω

u2v2ψ2 −
∫
Ω

(u2 + v2)|∇ψ|2,

while it follows from the system that the left-hand member above equals
∫
Ω
(u4 +

v4)ψ2. As a consequence,∫
Ω

(u4 + v4)ψ2 + |β|
∫
Ω

u2v2ψ2 � C

∫
Ω

(u2 + v2)|∇ψ|2.

By replacing ψ with ψ2 and once more using the system, we conclude that∫
Ai

(|∇u|2 + |∇v|2 + u4 + v4 + |β|u2v2) � C ′′,

for some constant C ′′ independent of β. We can finish the argument as before.

�
Remark 3.3. The construction and properties of the vector field V used in the first
step of the above proof are presented in [17, Lemma 2.1], except for the claim that
V has constant divergence. We recall here this construction. The statements are
not affected by an orthogonal change of coordinates, and therefore we can assume
that x0 = 0, ν0 = (0, 0, 1) and, for a sufficiently small r > 0, ∂Ω∩Br(0) = {(x′, x3) :
x3 = θ(x′)} ∩ Br(0), where x′ = (x1, x2) ∈ R

2 and θ : R2 → R is a smooth map
such that θ(0) = 0 and ∇θ(0) = 0. In this case the vector field V is explicitly given
by

V (x′, x3) = (x′, x3 + α(x′)), where α(x′) = 〈∇θ(x′), x′〉 − θ(x′).

We observe that indeed divV = 3.

Remark 3.4. By using again the Pohoz̆aev-type vector field (see Step 1 of the
preceding proof) with V (x) = ν(x), the unit outward normal of Ω extended in a
smooth way to the whole set Ω, we deduce that also

∫
∂Ω

(|∇uβ |2 + |∇vβ |2) � C.
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