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CONSTANTIVE MAL’CEV CLONES ON FINITE SETS

ARE FINITELY RELATED

ERHARD AICHINGER

(Communicated by Julia Knight)

Abstract. We show that on a finite set there are at most countably many
constantive clones that contain a Mal’cev operation, and each such clone can be
described by a single finitary relation. Thus, modulo polynomial equivalence
and renaming of the elements, there are only countably many finite algebras
that contain a Mal’cev term.

1. Introduction

Following [8], an algebra A is a pair 〈A,F 〉, where A is a non-empty set and F ,
the set of fundamental operations of A, is a subset of O(A) :=

⋃
{AAn ||| n ∈ N0},

the set of finitary operations on A. It is clear that for a finite set A with |A| ≥ 2,
O(A) has 2ℵ0 subsets, and hence there are 2ℵ0 different algebras on A. However,
we will take the view that two algebras can be considered equivalent if the same
operations can be built from their fundamental operations. One concept to describe
such an equivalence is the notion of polynomial equivalence from universal algebra
[14]. In particular, two algebras A1 = 〈A,F 〉 and A2 = 〈A,G〉 defined on the same
base set are polynomially equivalent if they have the same clone of polynomial
operations. On a two-element set, there are exactly 7 polynomially inequivalent
algebras. However, by [1], if A is finite and |A| ≥ 3, then there are 2ℵ0 polynomially
inequivalent algebras on A. In this paper, we restrict our attention to algebras
with a Mal’cev term (Mal’cev algebras for short). By [6, Theorem 12.2] these
are exactly the algebras that generate congruence permutable varieties. Among
those algebras are all finite algebras that have a quasigroup operation among their
binary term functions, and all groups and rings. In [9], P. Idziak proved that on
a finite set A, the number of polynomially inequivalent Mal’cev algebras is finite
if and only if |A| ≤ 3, and he asks whether this number can be uncountable for
a finite A (cf. [5, Problem 8]). For certain algebras, it is known that they have
only finitely many polynomially inequivalent expansions. Among such algebras are
all groups of squarefree order [11] and, using results on polynomial completeness
[10], for example, all finite Mal’cev algebras omitting type 2 in the sense of Tame
Congruence Theory [8].

These questions have also often been stated using the language of clone theory
[16, 17, 14]. A clone on a set A is a set of finitary operations on A that contains
all projection operations p(x1, . . . , xn) := xi (n, i ∈ N, i ≤ n) and is closed under
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all compositions. It is called constantive if it contains all constant operations, and
it is called a Mal’cev clone if it contains a ternary operation satisfying d(a, a, b) =
d(b, a, a) = b for all a, b ∈ A. Constantive Mal’cev clones are exactly those sets
that arise as the sets of polynomial operations of some Mal’cev algebra; therefore,
often “polynomial clone” is used instead of “constantive clone”. Now, the exact
wording of Problem 8 in [5] is: Does there exist a finite set with uncountably many
polynomial Mal’cev clones? Such a set cannot exist if every constantive Mal’cev
clone on a finite set has some “finite representation”. It follows from [9] that
there are constantive Mal’cev clones that cannot be generated by finitely many
operations. However, [16] provides a representation of clones on finite sets through
their finitary invariant relations, and it has indeed been shown for many classes
of constantive Mal’cev clones that they can be described by finitely many of these
relations (they are, in short, finitely related). For example, the clone of polynomial
functions has been shown to be finitely related for the following algebras: all finite
groups, all of whose Sylow subgroups are abelian, and all finite commutative rings
with 1 [12]; all Mal’cev algebras with congruence lattice of height at most 2 and
all supernilpotent Mal’cev algebras [2]; and all expansions of groups of order p2 (p
a prime) [4]. Many of the results in these papers provide concrete bounds for the
arity of the relations that determine polynomials.

In 2006, P. Idziak expressed the conjecture that every constantive Mal’cev clone
is finitely related. In the present paper, we prove this conjecture by showing that
there is no infinite descending chain of constantive Mal’cev clones on a finite set.
Hence, every constantive Mal’cev clone is finitely related, and therefore, on a finite
set, there exist at most ℵ0 constantive Mal’cev clones. This also provides a partial
answer to Problem 5.6 in [13], which asks whether there exists a Mal’cev operation
on a finite set that is contained in uncountably many clones.

2. Preliminaries from order theory

Let A = 〈A,≤〉 be a partially ordered set. We say that A satisfies the descending
chain condition (DCC) if there is no infinite descending chain a1 > a2 > a3 > . . .;
A satisfies the ascending chain condition (ACC) if there is no infinite ascending
chain a1 < a2 < a3 < . . .. A subset I of A is an upward closed subset if for all a ∈ I
and b ∈ A with a ≤ b, we have b ∈ I. The set of all upward closed subsets of A is
denoted by U(A).

For a set B, let B+ :=
⋃
{Bn ||| n ∈ N} be the set of all words over the alphabet

B. For x = (x1, . . . , xm) and y = (y1, . . . , yn) in B+, we say that x can be embedded
into y, denoted by x ≤e y, if there are i1 < i2 < . . . < im ∈ {1, . . . , n} such that

(y1, . . . , yn) = (y1, . . . , yi1−1, x1, yi1+1, . . . , yi2−1, x2, yi2+1, . . . , xm, yim+1, . . . , yn).

We will use the following fact (Higman’s Theorem) about this ordering.

Proposition 2.1. Let B be a finite set. Then 〈B+,≤e〉 has no infinite antichain,
and 〈U(〈B+,≤e〉),⊆〉 satisfies the (ACC).

The fact that 〈B+,≤e〉 has no infinite antichain is Theorem 4.4 of [7]. The
partially ordered set 〈B+,≤e〉 obviously satisfies the (DCC), and so the second
part follows from the theory of well-quasi-orderings ([15, Theorem 1.2]; cf. [3,
Proposition 3.1]).

For a partially ordered set A and m ∈ N, we define a partially ordered set
Am = 〈Am,≤〉, where (a1, . . . , am) ≤ (b1, . . . , bm) if for all i ∈ {1, . . . ,m}, we
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have ai ≤ bi. From Proposition 2.1, it follows immediately that for every m ∈ N,
〈U(〈B+,≤e〉),⊆〉m satisfies the (ACC).

3. Mal’cev algebras

For the notions of algebra and clone, we refer to the introductory Chapter 0 of
[8]. A ternary operation d on a set A is called a Mal’cev operation if d(a, a, b) =
d(b, a, a) = b for all a, b ∈ A. We call an algebra a Mal’cev algebra if it has a Mal’cev
operation among its ternary term functions. A clone is called a Mal’cev clone if
it has a Mal’cev operation among its ternary operations. A clone on the set A is
called constantive if it contains all unary constant operations on A. For a clone C
and n ∈ N, we denote the set of its n-ary operations by C[n].

Let A be a Mal’cev algebra, let m ∈ N, and let F be a subuniverse of Am. For
i ∈ {1, . . . ,m}, we define the relation ϕi(F ) on A by

ϕi(F ) :={(ai, bi)|||(a1, . . . , am) ∈ F, (b1, . . . , bm) ∈ F, (a1, . . . , ai−1) = (b1, . . . , bi−1)}.

Lemma 3.1. Let A be a Mal’cev algebra with Mal’cev term d, and let m ∈ N. Let
F,G be subuniverses of Am with F ⊆ G. We assume that for all i ∈ {1, . . . ,m},
we have ϕi(G) ⊆ ϕi(F ). Then F = G.

Proof. For each k ∈ {1, . . . ,m}, let

Fk := {(f1, . . . , fk) ||| (f1, . . . , fm) ∈ F},
Gk := {(g1, . . . , gk) ||| (g1, . . . , gm) ∈ G}.

We will now prove by induction on k that for all k ∈ {1, . . . ,m}, we have Gk ⊆
Fk. For k = 1, let (g1) ∈ G1. Then we have (g1, g1) ∈ ϕ1(G), and thus, by
assumption, (g1, g1) ∈ ϕ1(F ). This implies that there is (f1, . . . , fm) ∈ F with
f1 = g1. Therefore (g1) ∈ F1.

Now let k ≥ 2. We fix (g1, . . . , gk) ∈ Gk. Then there is (gk+1, . . . , gm) ∈
Am−k such that (g1, . . . , gm) ∈ G. Thus, (g1, . . . , gk−1) ∈ Gk−1. By the induction
hypothesis, we obtain (g1, . . . , gk−1) ∈ Fk−1. Thus there is (f1, . . . , fm) ∈ F such
that f1 = g1, f2 = g2, . . . , fk−1 = gk−1. Since F ⊆ G, we have (f1, . . . , fm) ∈ G.
Therefore, we have (fk, gk) ∈ ϕk(G). By the assumptions, we have (fk, gk) ∈
ϕk(F ). Hence there are a1, . . . , ak−1 ∈ A such that (a1, . . . , ak−1, fk) ∈ Fk and
(a1, . . . , ak−1, gk) ∈ Fk. Thus, we have

d((f1, . . . , fk−1, fk), (a1, . . . , ak−1, fk), (a1, . . . , ak−1, gk)) ∈ Fk.

Hence (f1, . . . , fk−1, gk) ∈ Fk, and thus (g1, . . . , gk−1, gk) ∈ Fk. This completes the
induction step.

Therefore, we have Gm ⊆ Fm, which means G ⊆ F . �

Let b ∈ N, and let A := {1, . . . , b}. For n ∈ N, we use the lexicographic ordering
≤lex on An that is defined by

(x1, . . . , xn) ≤lex (y1, . . . , yn) :⇔
(∃i ∈ {1, . . . , n} : x1 = y1 ∧ . . . ∧ xi−1 = yi−1 ∧ xi < yi) or

(x1, . . . , xn) = (y1, . . . , yn).
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4. Constantive clones

Let C be a clone on A = {1, . . . , b}. For n ∈ N and x ∈ An, we define a binary
relation ϕ(C,x) on A by

ϕ(C,x) := {(f(x), g(x)) ||| f, g ∈ C[n],

∀z ∈ An : (z ≤lex x and z = x) ⇒ f(z) = g(z)}.

Lemma 4.1. Let b,m, n ∈ N, let C be a constantive clone on A = {1, . . . , b}, and
let x ∈ Am, y ∈ An such that x ≤e y. Then ϕ(C,y) ⊆ ϕ(C,x).

Proof. Let (a, b) ∈ ϕ(C,y). Then there are f, g ∈ C[n] such that a = f(y),
b = g(y), and f(z) = g(z) for all z ∈ An with z ≤lex y, z = y. Since x ≤e y, there
are i1 < i2 < . . . < im ∈ {1, . . . , n} such that

(y1, . . . , yn) = (y1, . . . , yi1−1, x1, yi1+1, . . . , yi2−1, x2, yi2+1, . . . , xm, yim+1, . . . , yn).

Now we define functions f1 and g1 from Am to A by

f1(ξ1, . . . , ξm) :=

f(y1, . . . , yi1−1, ξ1, yi1+1, . . . , yi2−1, ξ2, yi2+1, . . . , ξm, yim+1, . . . , yn),

g1(ξ1, . . . , ξm) :=

g(y1, . . . , yi1−1, ξ1, yi1+1, . . . , yi2−1, ξ2, yi2+1, . . . , ξm, yim+1, . . . , yn)

for ξ1, . . . , ξm ∈ A. Since C is constantive, both f1 and g1 are elements of C.
We will now show that (f1(x), g1(x)) is an element of ϕ(C,x). To this end, let

z ∈ Am be such that z ≤lex x, z = x. Then we have

f1(z) = f(y1, . . . , yi1−1, z1, yi1+1, . . . , yi2−1, z2, yi2+1, . . . , zm, yim+1, . . . , yn).

Since z ≤lex x, we see that

(y1, . . . , yi1−1, z1, yi1+1, . . . , yi2−1, z2, yi2+1, . . . , zm, yim+1, . . . , yn) ≤lex (y1, . . . , yn).

Hence, since z = x, we have

f(y1, . . . , yi1−1, z1, yi1+1, . . . , yi2−1, z2, yi2+1, . . . , zm, yim+1, . . . , yn)

= g(y1, . . . , yi1−1, z1, yi1+1, . . . , yi2−1, z2, yi2+1, . . . , zm, yim+1, . . . , yn) = g1(z).

From this, we obtain (f1(x), g1(x)) ∈ ϕ(C,x). Since (f1(x), g1(x)) = (f(y), g(y)) =
(a, b), we obtain (a, b) ∈ ϕ(C,x). �

Definition 4.2. Let b ∈ N, let C be a clone on A = {1, . . . , b}, and let α ⊆ A×A.
We define a subset Ψ(C, α) of A+ by Ψ(C, α) := {x ∈ A+ ||| ϕ(C,x) ⊆ α}.

Lemma 4.3. Let b ∈ N, let C be a constantive clone on A = {1, . . . , b}, and let
α ⊆ A×A. Then Ψ(C, α) is an upward closed subset of 〈A+,≤e〉.

Proof. Let x ∈ Ψ(C, α), and let y ∈ A+ such that x ≤e y. Since x ∈ Ψ(C, α),
we have ϕ(C,x) ⊆ α. By Lemma 4.1, we have ϕ(C,y) ⊆ ϕ(C,x). Therefore,
ϕ(C,y) ⊆ α, and thus y ∈ Ψ(C, α). �
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5. Chains of constantive Mal’cev clones

Lemma 5.1. Let b ∈ N, and let A := {1, . . . , b}. Let (C,⊆) be a linearly ordered
set of constantive clones on A such that all contain the same Mal’cev operation d.
Let C,D ∈ C. Then the following are equivalent:

(1) C ⊆ D.
(2) For all α ⊆ A×A, we have Ψ(D, α) ⊆ Ψ(C, α).

Proof. (1)⇒(2): Let α ⊆ A × A, and let x ∈ Ψ(D, α). Then ϕ(D,x) ⊆ α. Since
C ⊆ D, we therefore have ϕ(C,x) ⊆ α, and thus x ∈ Ψ(C, α). (2)⇒(1): Since C is
a linearly ordered set of clones, we either have C ⊆ D or D ⊆ C. In the first case,
there is nothing to prove, so we assume D ⊆ C.

We will now prove that in this case, we have C[n] ⊆ D[n] for all n ∈ N. To this
end, we let n ∈ N and show that for all x ∈ An,

(5.1) ϕ(C,x) ⊆ ϕ(D,x).

In order to prove (5.1), we fix x ∈ An. We obviously have x ∈ Ψ(D,ϕ(D,x)).
By the assumption (2), we therefore have x ∈ Ψ(C,ϕ(D,x)). Hence ϕ(C,x) ⊆
ϕ(D,x), which concludes the proof of (5.1).

Now F := D[n] and G := C[n] are subuniverses of 〈A, d〉An

. Hence from (5.1)
and Lemma 3.1 (with m := |A|n), we obtain C[n] = D[n]. �

Let 2A×A denote the power set of A × A. On the set U := U(〈A+,≤e〉)2
A×A

,
we define an order as follows: for S = 〈S(α) ||| α ⊆ A × A〉 and T = 〈T (α) ||| α ⊆
A×A〉 ∈ U, we define S≤≤≤ T to mean that S(α) ⊆ T (α) for all α ⊆ A×A. Under this

ordering, 〈U,≤≤≤〉 is isomorphic to the 2|A|2 -fold direct product of 〈U(〈A+,≤e〉),⊆〉.
Therefore, it follows from Proposition 2.1 that 〈U,≤≤≤〉 satisfies the (ACC).

Now, as a corollary of Lemma 5.1, we obtain:

Lemma 5.2. Let b ∈ N, and let A := {1, . . . , b}. Let (C,⊆) be a linearly ordered
set of constantive clones on A such that all contain the same Mal’cev operation d,

and let U := U(〈A+,≤e〉)2
A×A

. Let R : C → U be defined by

R(C) := 〈Ψ(C, α) ||| α ⊆ A×A〉
for C ∈ C. Then R is injective, and for all C,D ∈ C with C ⊆ D, we have
R(D) ≤≤≤ R(C).

For a finite set A and a set R of finitary relations on A, we will write Pol (A,R)
for the set of those functions on A that preserve all relations in R (cf. [16]).

Theorem 5.3. Let A be a finite set, and let M be the set of all constantive Mal’cev
clones on A. Then we have:

(1) There is no infinite descending chain in (M,⊆).
(2) For every constantive Mal’cev clone C on A, there is a finitary relation ρ

on A such that C = Pol (A, {ρ}).
(3) The set M is finite or countably infinite.

Proof. (1) Let C be an infinite descending chain of constantive Mal’cev clones on
the finite set A. Since there are only finitely many Mal’cev operations on a finite
set, infinitely many clones in C have the same Mal’cev operation d. From these

clones, Lemma 5.2 produces an infinite ascending chain in 〈U(〈A+,≤e〉),⊆〉2A×A

,
which contradicts Proposition 2.1.
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(2) Let C be a constantive Mal’cev clone on the finite set A. Using the implica-
tion (ii)′ ⇒(i)′ in [16, Charakterisierungssatz 4.1.3], it follows from (1) that there
is a finite set R of finitary relations on A such that C = Pol (A,R). By [16, p. 50],
there is a single finitary relation ρ on A with Pol (A,R) = Pol (A, {ρ}).

(3) Every finitary relation on the finite set A is a finite subset of the countable
set A+. Hence the claim follows from (2). �

Using [9], we obtain that the number of constantive Mal’cev clones on a finite
set A is finite if |A| ≤ 3, and ℵ0 for |A| ≥ 4.
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course in tame congruence theory”, Paul Erdős Summer Research Center, Budapest, in July
2001.

14. R. N. McKenzie, G. F. McNulty, and W. F. Taylor, Algebras, lattices, varieties, vol-
ume I, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, California, 1987.
MR883644 (88e:08001)

15. E. C. Milner, Basic wqo- and bqo-theory, Graphs and order (Banff, Alta., 1984), NATO Adv.
Sci. Inst. Ser. C Math. Phys. Sci., vol. 147, Reidel, Dordrecht, 1985, pp. 487–502. MR818505
(87h:04004)

http://www.ams.org/mathscinet-getitem?mr=2324416
http://www.ams.org/mathscinet-getitem?mr=2324416
http://www.ams.org/mathscinet-getitem?mr=1957653
http://www.ams.org/mathscinet-getitem?mr=1957653
http://www.ams.org/mathscinet-getitem?mr=1982389
http://www.ams.org/mathscinet-getitem?mr=1982389
http://www.ams.org/mathscinet-getitem?mr=648287
http://www.ams.org/mathscinet-getitem?mr=648287
http://www.ams.org/mathscinet-getitem?mr=0049867
http://www.ams.org/mathscinet-getitem?mr=0049867
http://www.ams.org/mathscinet-getitem?mr=958685
http://www.ams.org/mathscinet-getitem?mr=958685
http://www.ams.org/mathscinet-getitem?mr=1703074
http://www.ams.org/mathscinet-getitem?mr=1703074
http://www.ams.org/mathscinet-getitem?mr=1888967
http://www.ams.org/mathscinet-getitem?mr=1888967
http://www.ams.org/mathscinet-getitem?mr=2428154
http://www.ams.org/mathscinet-getitem?mr=2428154
http://www.ams.org/mathscinet-getitem?mr=883644
http://www.ams.org/mathscinet-getitem?mr=883644
http://www.ams.org/mathscinet-getitem?mr=818505
http://www.ams.org/mathscinet-getitem?mr=818505


CONSTANTIVE MAL’CEV CLONES 3507
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