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PROJECTIONS IN NONCOMMUTATIVE TORI

AND GABOR FRAMES

FRANZ LUEF

(Communicated by Marius Junge)

Abstract. We describe a connection between two seemingly different prob-
lems: (a) the construction of projections in noncommutative tori and (b) the
construction of tight Gabor frames for L2(R). The present investigation relies

on interpretation of projective modules over noncommutative tori in terms of
Gabor analysis. The main result demonstrates that Rieffel’s condition on the
existence of projections in noncommutative tori is equivalent to the Wexler-
Raz biorthogonality relations for tight Gabor frames. Therefore we are able to
invoke results on the existence of Gabor frames in the construction of projec-
tions in noncommutative tori. In particular, the projection associated with a
Gabor frame generated by a Gaussian turns out to be Boca’s projection. Our
approach to Boca’s projection allows us to characterize the range of existence
of Boca’s projection. The presentation of our main result provides a natu-
ral approach to the Wexler-Raz biorthogonality relations in terms of Hilbert
C∗-modules over noncommutative tori.

1. Introduction

Projections in C∗-algebras and von Neumann algebras are of great relevance for
the exploitation of its structures. Von Neumann algebras contain an abundance of
projections. The question of existence of projections in a C∗-algebra is a nontrivial
task and the answer to this question has many important consequences, e.g. for the
K-theory of C∗-algebras. Therefore many contributions to C∗-algebras deal with
the existence and construction of projections in various classes of C∗-algebras. In
the present investigation we focus on the construction of projections in noncom-
mutative tori Aθ for a real number θ. Recall that Aθ is the universal C∗-algebra
generated by two unitaries U1 and U2 which satisfy the commutation relation

(1) U2U1 = e2πiθU1U2.

In the seminal paper [30] Rieffel constructed projections for noncommutative tori
Aθ with θ irrational and drew some consequences for the K-theory of Aθ, e.g. that
the projections in Aθ generate K0(Aθ).

The main goal of this study is to show that Rieffel’s construction of projections
in noncommutative tori is intimately related to the existence of Gabor frames for
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L2(R). A Gabor system is a collection of functions G(g,Λ) = {π(λ)g : λ ∈ Λ} in
L2(R), where g is a function in L2(R), Λ is a lattice in R

2, and π(λ)g is the time-
frequency shift by λ ∈ Λ of g. For z = (x, ω) in R

2 we denote by π(z) = MωTx the
time-frequency shift, where Tx denotes the translation operator Txg(t) = g(t − x)
and Mω denotes the modulation operator Mωg(t) = e2πit·ωg(t). A Gabor system
G(g,Λ) is a Gabor frame for L2(R) if there exist A,B > 0 such that

(2) A‖f‖22 ≤
∑

λ∈Λ

|〈f, π(λ)g〉|2 ≤ B‖f‖22

holds for all f ∈ L2(R). The field of Gabor analysis is a branch of time-frequency
analysis that has its origins in the seminal paper [12] of the Nobel laureate D. Gabor.
We refer the interested reader to [13] for an excellent introduction to Gabor analysis.

Gabor frames G(g,Z × θZ) are intimately related to noncommutative tori Aθ.
Namely the two unitaries U1 = T1 and U2 = Mθ provide a faithful representation
of Aθ on �2(Z2), because T1 and Mθ satisfy the commutation relation from (1):

(3) MθT1 = e2πiθT1Mθ.

The construction of projections in [30] relies on the existence of a C∗-algebra B
that is Morita-Rieffel equivalent to Aθ through an equivalence bimodule Aθ

VB. In
[2] and [30] Connes and Rieffel determined the class of C∗-algebras that are Rieffel-
Morita equivalent to Aθ. Most notably the opposite algebra of A1/θ is Morita-
Rieffel equivalent to Aθ. In [21, 22] we were able to link this important result with
Gabor analysis, which allows us to interpret Rieffel’s condition on the existence
of projections in Aθ as the Wexler-Raz duality biorthogonality relations for tight
Gabor frames.

The Wexler-Raz duality biorthogonality relations were first discussed in the
finite-dimensional setting [34]. The extension of the results in [34] to the infinite-
dimensional setting was the main impetus of several groups of mathematicians in
time-frequency analysis and it led to the development of the duality theory of Ga-
bor analysis [5, 16, 32]. We follow the work of Janssen in [16], since it provides the
most natural link to Rieffel’s work on projective modules over noncommutative tori
[31].

The projections in Aθ generated by Gaussians were studied by Boca in [1].
Manin showed that Boca’s projections are quantum theta functions [25, 27] and
a better understanding of these projections is of great relevance for Manin’s real
multiplication program [26]. Recently we presented a time-frequency approach to
quantum theta functions in [23].

The paper is organized as follows: In Section 2 we present our approach to
equivalence bimodules between noncommutative tori and its link to Gabor analysis.
We continue with a discussion of Rieffel’s projections in noncommutative tori and
prove our main results in Section 3. In the final section we extend the results of
Section 3 to the setting of higher-dimensional noncommutative tori.

2. Projective modules over noncommutative tori

In this section we present the construction of projective modules over noncom-
mutative tori [2, 31], its interpretation in terms of Gabor analysis and its extension
demonstrated in [22].
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2.1. Basics on noncommutative tori. We start with the observation that z �→
π(z) is a projective representation of R2 on L2(R); i.e. we have

(4) π(z)π(z′) = e2πix·ηπ(z + z′) for z = (x, ω), z′ = (y, η) in R
2.

We denote the 2-cocycle in the preceding equation by c(z, z′) = e2πix·η. The relation
in (4) relies on the canonical commutation relation for Mω and Tx:

(5) MωTx = e2πix·ωTxMω for z = (x, ω) ∈ R
2.

An application of (5) to the left-hand side of (4) gives a commutation relation for
time-frequency shifts:

(6) π(z)π(z′) = csymp(z, z
′)π(z′)π(z), z = (x, ω), z′ = (y, η) ∈ R

2,

where csymp(z, z
′) = c(z, z′)c(z′, z) = e2πi(y·ω−x·η) denotes the symplectic bichar-

acter. The term in the exponential of csymp is the standard symplectic form Ω of
z = (x, ω) and z′ = (y, η).

For our purpose it is useful to view the noncommutative torus Aθ as the twisted
group C∗-algebra C∗(Λ, c) of a lattice Λ in R

2. Recall that C∗(Λ, c) is the enveloping
C∗-algebra of the involutive twisted group algebra �1(Λ, c), which is �1(Λ) with
twisted convolution � as multiplication and ∗ as involution. More precisely, let
a = (a(λ))λ and b = (b(λ))λ be in �1(Λ). Then the twisted convolution of a and b
is defined by

(7) a�b(λ) =
∑

μ∈Λ

a(μ)b(λ− μ)c(μ, λ− μ) for λ, μ ∈ Λ,

and involution a∗ =
(
a∗(λ)

)
of a is given by

(8) a∗(λ) = c(λ, λ)a(−λ) for λ ∈ Λ.

Let Λ be a lattice in R
2. Then the restriction of the projective representation to Λ

in R
2 gives that λ �→ π(λ) is a projective representation of Λ on �2(Λ). Furthermore,

this projective representation of a lattice Λ in R
2 gives a nondegenerate involutive

representation of �1(Λ, c) on �2(Λ) by

πΛ(a) :=
∑

λ∈Λ

a(λ)π(λ) for a = (a(λ)) ∈ �1(Λ),

i.e. πΛ(a�b) = πΛ(a)πΛ(b) and πΛ(a
∗) = πΛ(a)

∗. Moreover, this involutive rep-
resentation of �1(Λ, c) is faithful: πΛ(a) = 0 implies a = 0 for a ∈ �1(Λ); see e.g.
[31].

In Rieffel’s classification of projective modules over noncommutative tori [31] a
key insight was the relevance of a lattice Λ◦ associated to Λ:

(9) Λ◦ = {(x, ω) ∈ R
2 : csymp

(
(x, ω), λ

)
= 1 for all λ ∈ Λ}

or equivalently by

(10) Λ◦ = {z ∈ R
2 : π(λ)π(z) = π(z)π(λ) for all λ ∈ Λ}.

Following Feichtinger and Kozek we call Λ◦ the adjoint lattice [10]. The lattices
Λ and Λ◦ are the key players in the duality theory of Gabor analysis, i.e. the
Janssen representation of Gabor frames, Wexler-Raz biorthogonality relations and
the Ron-Shen duality principle [5, 10, 16, 32].
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In the following we want to study weighted analogues of the twisted group
algebra. For s ≥ 0 let �1s(Λ) be the space of all sequences a with ‖a‖�1s =∑

|a(λ)|(1 + |λ|2)s/2 < ∞. We consider (�1s(Λ), �, ∗). More explicitly,

A1
s(Λ, c) = {A ∈ B(L2(R)) : A =

∑

λ

a(λ)π(λ), ‖a‖�1s < ∞}

is an involutive Banach algebra with respect to the norm

‖A‖A1
s(Λ) =

∑

λ

|a(λ)|(1 + |λ|2)s/2.

Note that A1
s(Λ, c) is a dense subalgebra of C∗(Λ, c). The smooth noncommutative

torus A∞(Λ, c) =
⋂

s≥0A1
s(Λ, c) and A∞(Λ, c) is an involutive Frechet algebra with

respect to � and ∗ whose topology is defined by a family of submultiplicative norms
{‖.‖A1

s
|s ≥ 0}:

‖A‖A1
s
=

∑

λ∈Λ

|a(Λ)|(1 + |λ|2)s/2 for A ∈ A∞
s (Λ, c).

In other words A∞(Λ, c) is the image of a �→ πΛ(a) for a ∈ S (Λ), where S (Λ) de-
notes the space of rapidly decreasing sequences on Λ. The smooth noncommutative
torus A∞(Λ, c) is the prototype example of a noncommutative manifold [2, 4].

Recall that a unital subalgebra A of a unital C∗-algebra B with common unit
is called spectrally invariant if for A ∈ A with A−1 ∈ B one actually has that
A−1 ∈ A.

Proposition 2.1. Let Λ be a lattice in R
2. Then A1

s(Λ, c) and A∞(Λ, c) are spec-
trally invariant subalgebras of C∗(Λ, c). Consequently, A1

s(Λ, c) and A∞(Λ, c) are
invariant under holomorphic function calculus.

The spectral invariance of A∞(Λ, c) in C∗(Λ, c) was demonstrated by Connes
in [2], and the case of Λ = αZ × βZ for rational lattice constants α and β was
rediscovered by Janssen in the content of Gabor analysis [16]. The connection
between the work of Connes and Janssen was pointed out in [20]. The extension of
Janssen’s result to lattices with irrational lattice constants was the motivation of
Gröchenig and Leinert to prove the spectral invariance of A1

s(Λ, c) in C∗(Λ, c) in
[14]; see also [15].

2.2. Modulation spaces and Hilbert C∗(Λ, c)-modules. The construction of
Hilbert C∗(Λ, c)-modules is based on a class of function spaces introduced by Fe-
ichtinger in [8], the so-called modulation spaces. In the last two decades modulation
spaces have found many applications in harmonic analysis and time-frequency anal-
ysis; see the interesting survey article [9] for an extensive bibliography. We briefly
recall the definition and basic properties of a special class of modulation spaces,
M1

s (R), since these provide the correct framework for our investigation.
If g is a window function in L2(R), then the short-time Fourier transform (STFT)

of a function or distribution f is defined by

(11) Vgf(x, ω) = 〈f, π(x, ω)g〉 =
∫

R

f(t)g(t− x)e−2πix·ωdt.

The STFT Vgf of f with respect to the window g measures the time-frequency
content of a function f . Modulation spaces are classes of function spaces, where
the norms are given in terms of integrability or decay conditions of the STFT.



PROJECTIONS IN NONCOMMUTATIVE TORI AND GABOR FRAMES 575

If the window function is the Gaussian ϕ(t) = e−πt2 , then the modulation space
M1

s (R) is the space

M1
s (R) = {f ∈ L2(R) : ‖f‖M1

s
:=

∫

R

|Vϕf(x, ω)|(1 + |x|2 + |ω|2)s/2dxdω < ∞}.

The space M1
0 (R) is the well-known Feichtinger algebra, which was introduced in

[7] as the minimal strongly character invariant Segal algebra and is often denoted
by S0(R). In time-frequency analysis the modulation space M1

s (R) has turned out
to be a good class of windows for Gabor frames, pseudo-differential operators and
time-varying channels. In [21, 22] we emphasized that these function spaces provide
a convenient class of pre-equivalence C∗(Λ, c)-modules. To link our approach to
Rieffel’s work we rely on a description of Schwartz’s class of test functions S (R)
in terms of the STFT:

S (R) =
⋂

s≥0

M1
s (R)

with seminorms ‖f‖M1
s
= ‖Vgf‖L1

s
for s ≥ 0 and a fixed g ∈ M1

s (R).
The basic fact in Rieffel’s construction of projective modules over noncommu-

tative tori and in Gabor analysis is the so-called Fundamental Identity of Gabor
Analysis (FIGA). In [11] we have discussed the validity of FIGA for various classes
of function spaces. In the present setting we need FIGA for functions in M1

s (R) or
in S (R).

Proposition 2.2 (FIGA). Let Λ be a lattice in R
2. Then for f, g, h, k ∈ M1

s (R)
or in S (R) the following identity holds:

(12)
∑

λ∈Λ

〈f, π(λ)g〉〈π(λ)h, k〉 = vol(Λ)
−1

∑

λ◦∈Λ◦

〈f, π(λ◦)k〉〈π(λ◦)h, g〉,

where vol(Λ) denotes the volume of a fundamental domain of Λ.

Note that λ �→ π(λ) and λ◦ �→ π(λ◦) are reducible projective representations of
Λ and Λ◦, respectively. Therefore FIGA expresses a relation between the matrix
coefficients of these reducible projective representations:

(13) 〈Vgf(λ), Vhk(λ)〉�2(Λ) = vol(Λ)
−1〈Vkf, Vhg〉�2(Λ◦).

Therefore one has to impose some extra conditions to get Schur-type orthogonality
relations. This fact underlies the Wexler-Raz biorthogonality relations, which we
discuss in the following section.

To motivate the left and right actions of the noncommutative torus on M1
s (R)

or S (R) we write FIGA in the following form:

(14)
〈∑

λ∈Λ

〈f, π(λ)g〉π(λ)h, k
〉
=

〈
vol(Λ)−1

∑

λ◦

π(λ◦)∗f〈π(λ◦)∗g, h〉, k
〉
.

The preceding equation indicates a left action of A1
s(Λ, c) and a right action of

A1
s(Λ

◦, c) on functions g ∈ M1
s (R) by

π
Λ
(a) · g =

∑

λ∈Λ

a(λ)π(λ)g for a ∈ �1(Λ),(15)

πΛ◦(b) · g = vol(Λ)−1
∑

λ◦∈Λ◦

π(λ◦)∗g b(λ◦) for b ∈ �1(Λ◦),(16)
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and additionally theA1
s(Λ, c)-valued inner product Λ〈., .〉 andA1

s(Λ
◦, c)-valued inner

product 〈., .〉Λ◦ by

Λ〈f, g〉 =
∑

λ∈Λ

〈f, π(λ)g〉π(λ),(17)

〈f, g〉Λ◦ = vol(Λ)−1
∑

λ◦∈Λ◦

π(λ◦)∗〈π(λ∗f, g)〉,(18)

for f, g ∈ M1(R). Consequently, we have that Λ〈f, g〉 and 〈f, g〉Λ◦ are elements of
A1

s(Λ, c) and of A1
s(Λ

◦, c). The crucial observation is that Λ〈f, g〉 is an A1
s(Λ, c)-

valued inner product. In [22] we have demonstrated that M1
s (R) becomes a full

left Hilbert C∗(Λ, c)-module ΛV when completed with respect to the norm Λ‖f‖ =
‖Λ〈f, f〉‖1/2 for f ∈ M1

s (R).
In addition we have an analogous result for the opposite C∗-algebra of C∗(Λ, c),

i.e. C∗(Λ◦, c). Here M1
s (R) becomes a full right Hilbert C∗(Λ◦, c)-module VΛ◦ for

the right action of A1
s(Λ

◦, c) on M1
s (R) when completed with respect to the norm

‖f‖Λ◦ = ‖〈f, f〉Λ◦‖1/2op .
Most notably the C∗-valued inner products Λ〈., .〉 and 〈., .〉Λ◦ satisfy Rieffel’s

associativity condition:

(19) Λ〈f, g〉 · h = f · 〈g, h〉Λ◦ , f, g, h ∈ M1
s (R).

The identity (19) is equivalent to

〈
Λ〈f, g〉 · h, k

〉
=

〈
f · 〈g, h〉Λ◦ , k

〉

for all k ∈ M1
s (R). More explicitly, the associativity condition reads as follows:

∑

λ∈Λ

〈f, π(λ)g〉〈π(λ)h, k〉 = vol(Λ)−1
∑

λ◦∈Λ◦

〈f, π(λ◦)k〉〈π(λ◦)h, g〉.

In other words, the associativity condition is the fundamental identity of Gabor
Analysis.

Furthermore, we have that M1
s (R) is a right pre-inner product module over

A1
s(Λ

◦, c) for the adjoint lattice Λ◦ of Λ. Consequently, we get that ΛVΛ◦ is an
equivalence bimodule between C∗(Λ, c) and C∗((Λ◦, c)). By a result of Connes we
have that M1

s (R) is an equivalence bimodule between A1
s(Λ, c) and A1

s(Λ
◦, c). We

summarize these observations and result in the following theorem, which is a special
case of the main result in [22] and which provides the setting for our investigation.

Theorem 2.3. Let Λ be a lattice in R
2. For any s ≥ 0 we have that M1

s (R) is an
equivalence bimodule between A1

s(Λ, c) and A1
v(Λ

◦, c) and S (R) is an equivalence
bimodule between A∞(Λ, c) and A∞(Λ◦, c). Consequently, M1

s (R) is a finitely gen-
erated projective left A1

s(Λ
◦, c)-module and S (R) is a finitely generated projective

left A1
sΛ

◦, c)-module.

The statement about S (R) was proved by Connes in [2]. Another way of ex-
pressing the content of the preceding theorem is to say that A1

s(Λ, c) and A1
s(Λ

◦, c)
are Morita-Rieffel equivalent and also A∞(Λ, c) and A∞(Λ◦, c) are Morita-Rieffel
equivalent.
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3. Projections in noncommutative tori

In this section we revisit the construction of projections in C∗(Λ, c) presented
in [30] in terms of Gabor analysis. We start with some observations on C∗(Λ, c)-
module rank-one operators on ΛV , i.e. operators of the form

ΘΛ
g,hf = Λ〈f, h〉 · h =

∑

λ∈Λ

〈f, π(λ)g〉π(λ)h for f, g, h ∈ ΛV.

The operators ΘΛ
g,h are adjointable operators on ΛV , i.e. Λ〈ΘΛ

g,hf, k〉 = Λ〈f,ΘΛ
h,gk〉.

Since ΛV is a finitely generated projective C∗(Λ, c)-module, every adjointable op-
erator on ΛV is a finite sum of rank-one operators ΘΛ

g,h, i.e. a finite rank C∗(Λ, c)-
module operator.

We collect some elementary observations on projections in C∗(Λ, c), i.e. opera-
tors P such that P = P ∗ = P 2.

Lemma 3.1. Let g, h be in ΛV with ‖g‖Λ = 1. Then the following hold:

(a) ΘΛ
g,g and ΘΛ

h,h are self-adjoint projections and ΘΛ
g,h is a partial isometry.

(b) If ‖g−h‖Λ < 1/2, then there exists a unitary adjointable ΛV module opera-
tor U such that Ug = h and therefore ΘΛ

g,g and ΘΛ
h,h are unitarily equivalent.

Proof. Assertion (a) can be deduced from a series of elementary computations. As-
sertion (b) may be derived from the fact that ΘΛ

g,g and ΘΛ
h,h are unitarily equivalent

if ‖ΘΛ
g,g −ΘΛ

h,h‖Λ < 1 and the following inequalities:

‖ΘΛ
g,g −ΘΛ

h,h‖Λ ≤ ‖ΘΛ
g,g −ΘΛ

g,h‖Λ + ‖ΘΛ
g,h −ΘΛ

h,h‖Λ ≤ 2‖g − h‖Λ.
Finally we want to describe the unitary module operators for ΛV , i.e. those U such
that Λ〈Uf, g〉 = Λ〈f, Ug〉. More explicitly, this means that U is a unitary operator
on L2(R) such that π(λ)U = Uπ(λ) for all λ ∈ Λ. In [10] operators such as U are
called Λ-invariant. �

Note that we have for f, g that ‖f − g‖2Λ ≤ ‖Vf−g(f − g)‖�1s by

‖f‖2Λ ≤
∑

λ∈Λ

|Vff(λ)|(1 + |λ|2)s/2.

In our setting we actually have an equivalence bimodule ΛVΛ◦ between C∗(Λ, c)
and C∗(Λ◦, c) that provides an additional form to express under which conditions
g ∈ ΛVΛ◦ yields a projection Λ〈g, g〉 in C∗(Λ, c) as pointed out in [30].

Lemma 3.2. Let g be in ΛVΛ◦ . Then Pg := Λ〈g, g〉 is a projection in C∗(Λ, c) if
and only if g〈g, g〉Λ◦ = g. If g ∈ M1

s (R) or S (R), then Pg gives a projection in
A1

s(Λ, c) or A∞(Λ, c), respectively.

Proof. First we assume that g〈g, g〉Λ◦ = g for some g in ΛVΛ◦ . Then we have that

P 2
g = Λ〈g, g〉Λ〈g, g〉 = Λ

〈
Λ〈g, g〉g, g

〉
= Λ〈g〈g, g〉Λ◦ , g〉 = Λ〈g, g〉 = Pg

and P ∗
g = Pg.

Now we suppose that Λ〈g, g〉 is a projection in C∗(Λ, c). Then the following
elementary computation yields the assertion:

Λ

〈
g〈g, g〉Λ◦ − g, g〈g, g〉Λ◦ − g

〉
= Λ

〈
Λ〈g, g〉g − g, Λ〈g, g〉g − g

〉

= Λ

〈
Λ〈g, g〉g, Λ〈g, g〉g

〉
− Λ

〈
g, Λ〈g, g〉g

〉

− Λ

〈
Λ〈g, g〉g, g

〉
+ Λ〈g, g〉 = 0.
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In the case where g ∈ M1
s (R) or S (R), the condition g〈g, g〉Λ◦ = g holds in g ∈

M1
s (R) or S (R). Consequently the preceding computations remain valid inA1

s(Λ, c)
or A∞(Λ, c). �

There is a class of g in VΛ◦ where the condition g〈g, g〉Λ◦ = g is fulfilled, namely
those g ∈ V Λ◦ such that 〈g, g〉Λ◦ = 1�2(Λ◦). We call the set of all these g’s the unit
sphere S(VΛ◦) of V Λ◦ . The unit sphere S(VΛ◦) has an intrinsic description in terms
of Gabor frames and goes by the name of Wexler-Raz biorthogonality relations.

The link between the rank-one module operators ΘΛ
g,h and Gabor analysis is the

observation that these are the so-called Gabor frame-type operators ΘΛ
g,h and that

ΘΛ
g,g is the Gabor frame operator of the Gabor systems G(g,Λ). If ΘΛ

g,g is invertible

on L2(R), then G(g,Λ) is a Gabor frame for L2(R); i.e. there exist A,B > 0 such
that

A‖f‖22 ≤ 〈ΘΛ
g,gf, f〉L2(R) =

∑

λ∈Λ

|〈f, π(λ)g〉|2 ≤ B‖f‖22

for all L2(R). An important consequence of the invertibility of the Gabor frame
operator is the existence of discrete expansions for f ∈ L2(R):

(20) f = ΘΛ
g,hf =

∑

λ∈Λ

〈f, π(λ)g〉π(λ)h

for some h ∈ L2(R), a so-called dual Gabor atom. Among the various dual Gabor

atoms there exists a canonical dual Gabor atom h̃ that is determined by the equation
(ΘΛ

g,g)h0 = g, i.e. h0 = S−1
g,Λg. In the case where Cg = h0 for some constant C,

the (dual) Gabor frame G(g,Λ) is a tight Gabor frame for L2(R) and h0 is often
referred to as tight Gabor atom.

Theorem 3.3. Let G(g,Λ) be a Gabor system on L2(R) with g in M1
s (R) or S (R).

Then Pg = Λ〈g, g〉 is a projection in A1
s(Λ, c) or A∞(Λ, c) if and only if one of the

following conditions holds:

(i) G(g,Λ) is a tight Gabor frame for L2(R).
(ii) G(g,Λ◦) is an orthogonal system.
(iii) g ∈ S(VΛ◦).
(iv) 〈g, π(λ◦)g〉 = vol(Λ)δλ◦,0 for all λ◦ ∈ Λ◦.

Proof. Recall that there are traces trΛ and trΛ◦ on C∗(Λ, c) and C∗(Λ◦, c), where
trΛ(A) = a0 and trΛ◦(B) = vol(Λ)−1b0 for A =

∑
a(λ)π(λ) and B =

∑
b(λ◦)π(λ◦).

(i)⇔(ii) The assumption that g, h are in M1
s (R) implies the boundedness of the

Gabor frame operators ΘΛ
g,g on L2(R). Furthermore ΘΛ

g,g has a Janssen represen-
tation

(21) ΘΛ
g,gf = Λ〈f, g〉 · g = f · 〈g, g〉Λ◦ = ΘΛ◦

f,gg.

In other words, the Janssen representation of Gabor frame-type operators is the
associativity condition for Λ〈., .〉 and 〈., .〉Λ◦ . Here G(g,Λ) is a tight Gabor frame
if and only if ΘΛ

g,g is a multiple of the identity operator on L2(R) if and only if
G(g,Λ) is an orthogonal system.

(ii)⇔(iii) This is just a reformulation of (i) in terms of the Λ〈., .〉 inner product.
(iii)⇔(iv) By taking the trace of the assertion (iii) we get that

trΛ(Λ〈g, g〉) = 〈g, g〉 = vol(Λ)−1δλ◦,0. �
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The equivalence between (i) and (iv) goes by the name of Wexler-Raz biorthog-
onality relations. In the case of finite-dimensional Gabor frames this result was
formulated by the engineers Raz and Wexler in [34]. The extension to the infinite-
dimensional case was undertaken by several researchers [5, 16, 32] and led to the
duality theory of Gabor frames. We followed the approach of Janssen to duality
theory. The Wexler-Raz biorthogonality condition may be considered as a Schur-
type orthogonalization relation for the reducible representation πΛ of Λ since it
forces the representation πΛ◦ of Λ◦ to be a multiple of the trivial representation.

In the preceding theorem we demonstrated that g ∈ S(VΛ◦) is equivalent to the
tightness of the Gabor frame G(g,Λ). As noted before there is a canonical tight
Gabor frame G(h0,Λ) for g̃ = (ΘΛ

g,g)
−1/2g. Janssen and Strohmer have shown in

[17] that the canonical tight Gabor atom has the following characterization: Let
G(g,Λ) be a Gabor frame for L2(R). Then the canonical tight Gabor atom g̃
minimizes ‖g̃ − h‖2 among all h generating a normalized tight Gabor frame. Note
that trΛ(Λ〈f, g〉) = 〈f, g〉, i.e. ‖g̃ − h‖22 = trΛ(Λ〈g̃ − h, g̃ − h〉).

Theorem 3.4. Let G(g,Λ) be a Gabor frame for L2(R). If g is in M1
s (R) or in

S (R), then Λ〈g, g̃〉 is a projection in A1
s(Λ, c) or in A∞(Λ, c), respectively. Fur-

thermore, h0 minimizes ‖g̃−h‖22 = trΛ(Λ〈g̃−h, g̃−h〉) among all tight Gabor atoms
h.

Proof. By the spectral invariance of A1(Λ◦, c) and A∞(Λ◦, c) in C∗(Λ◦, c) and by
the Janssen representation of the Gabor frame operator ΘΛ

g,g we get (ΘΛ
g,g)

−1/2 in

A1(Λ◦, c) and A∞(Λ◦, c), respectively. Consequently (ΘΛ
g,g)

−1/2g is in M1
s (R) and

S (R), respectively. Observe that g̃ ∈ S(VΛ◦) and an application of the preceding
theorem yields the desired assertion. �

Before we are able to draw some conclusions on projections in noncommutative
tori, we have to recall some well-known results about Gabor systems for the Gabor

atoms g1, g2, g3, where g1(t) = 21/4e−πt2 is the Gaussian, g2(t) = (π2 )
1/2 1

cosh(πt) is

the hyperbolic secant and g3(t) = e−|t| is the two-sided exponential.

Proposition 3.5. The Gabor systems G(g1,Z×θZ), G(g2,Z×θZ) and G(g3,Z×θZ)
are Gabor frames for L2(R) if and only if θ < 1.

Lyubarskij and Seip proved the result for the Gaussian g1 in [24, 33]. The
statement for g2 was obtained by Janssen and Strohmer in [18]. Later Janssen was
able to settle the case of g3 in [19].

The main result allows us to link the existence of Gabor frames to the con-
struction of projections in noncommutative tori, which is based on the seminal
contribution of Janssen in [16]. Namely the Janssen representation of Gabor op-
erators, i.e. the associativity condition for the noncommutative tori-valued inner
products, turns the problem of the construction of Gabor frames into a problem
about the invertibility of operators in C∗(Λ◦, c). Following Janssen’s work [16],
Gröchenig and Leinert interpreted Janssen’s result in terms of spectral invariant
subalgebras of C∗(Λ◦, c) [14]. In the following theorem we show that results in
Gabor analysis provide a way to smooth projections in noncommutative tori and
we give an example of a function, g3, that does not give a projection in the smooth
noncommutative torus. Namely g3 is in Feichtinger’s algebra M1(R) but not in
S (R).
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For the sake of simplicity we denote A1(Z× θZ, c) and A∞(Z× θZ, c) by A1
θ and

A∞
θ . In an analogous manner we denote A1( 1θZ×Z, c) and A∞( 1θZ×Z, c) by A1

1/θ

and A∞
1/θ. Furthermore we abbreviate the C∗(Z × θZ, c)-valued inner product by

θ〈., .〉.
Theorem 3.6. Let g1 be the Gaussian, g2 the hyperbolic secant and g3 the one-
sided exponential. Then θ〈g̃1, g̃1〉 and θ〈g̃2, g̃2〉 are projections in A∞

θ if and only if
θ < 1. Furthermore the θ〈g̃1, g̃1〉 are projections in A1

θ if and only if θ < 1

Proof. Note that g1, g2 are elements of S (R). Therefore 〈gi, π(λ)gi〉 is a sequence
of rapid decay for i = 1, 2. By the Janssen representation Sgi,Z×θZ is a Gabor frame
if and only if 〈gi, gi〉Λ◦ is invertible in A1/θ for i = 1, 2. By the spectral invariance
of A∞

1/θ in A1/θ we actually have that 〈gi, gi〉Λ◦ is an element of A∞
1/θ for i = 1, 2.

Consequently, θ〈g̃1, g̃1〉 and θ〈g̃2, g̃2〉 are projections in A∞
1/θ.

The final assertion is that θ〈g̃3, g̃3〉 is a projection in A1
θ if and only if θ < 1. We

have to check that g3 is not a Schwartz function, but it is an element of Feichtinger’s
algebra M1(R). An elementary calculation yields that g3 is not in S (R). The fact
that g3 is in M1(R) can be established in various ways. We want to refer to a result
of Okoudjou. In [29] he proved that g, g′, g′′ ∈ L1(R) implies that g ∈ M1(R).
Now straightforward calculations yield that g3, g

′
3, g

′′
3 are in L1(R) and therefore g3

is in M1(R). Consequently θ〈g3, g3〉 is a projection in A1
θ but not in the smooth

noncommutative torus A∞
θ . �

Since g1 and g2 are invariant with respect to the Fourier transform, i.e. Fg1 =
g1,Fg2 = g2, the associated projections fit into the framework of Boca in [1]. Our
approach to projections in noncommutative tori C∗(Λ, c) provides that θ〈g1, g1〉
is invertible for θ < 1, which improves the result in [1] where the invertibility
is established for θ < 0.948, and on the other hand it shows that this actually
characterizes the invertibility of θ〈g1, g1〉. Boca’s proof relies on a series of results
on theta functions that does not allow one to conclude if the result in [1] holds if
and only if θ < 1.

4. Final remarks

In the preceding section we constructed projections in Aθ, because in this case we
can apply results of Janssen, Lyubarskij and Seip on Gabor frames for L2(R). The
link between tight Gabor frames and projections in noncommutative tori remains
valid in the higher-dimensional case. Recall that the higher-dimensional torus AΘ is
defined via a d×d skew-symmetric matrix Θ instead of the real number θ. Note that
AΘ may be considered as twisted group C∗-algebra C∗(Λ, c) for a lattice Λ in R

2d.
The higher-dimensional variants of A1

s(Λ, c) and A∞(Λ, c) for Λ in R
2d are defined

as in the two-dimensional case. The higher-dimensional variant of Theorem 3.3
holds:

Theorem 4.1. Let G(g,Λ) be a Gabor system on L2(Rd) for g ∈ M1
s (R

d) or
S (Rd). Then Pg = Λ〈g, g〉 is a projection in A1

s(Λ, c) or A∞(Λ, c) if and only if
one of the following condition holds:

(i) G(g,Λ) is a tight Gabor frame for L2(Rd).
(ii) G(g,Λ◦) is an orthogonal system.
(iii) g ∈ S(V Λ◦).
(iv) 〈g, π(λ◦)g〉 = vol(Λ)δλ◦,0 for all λ◦ ∈ Λ◦.



PROJECTIONS IN NONCOMMUTATIVE TORI AND GABOR FRAMES 581

Furthermore we have that Theorem 3.4 holds in the higher-dimensional case.

Theorem 4.2. Let G(g,Λ) be a Gabor frame for L2(Rd). If g is in M1
s (R

d) or in
S (Rd), then Λ〈g̃, g̃〉 is a projection in A1

s(Λ, c) or in A∞(Λ, c).

A tensor product type argument allows one to extend Lyubarskij-Seip’s result
to lattices of the form α1Z× · · · × αnZ× β1Z× · · · × βnZ.

Theorem 4.3. Let g1(t) = 2d/4e−πt2 and Λ = α1Z× · · · ×αnZ× β1Z× · · · × βnZ.
Then Λ〈g1, g1〉 is invertible if and only if αiβi < 1 for all i = 1, ..., n. Consequently

Λ〈g1, g1〉 is a projection in A∞(Λ, c).

The preceding theorem characterizes the existence of quantum theta functions
for C∗(α1Z×· · ·×αnZ×β1Z×· · ·×βnZ, c). We refer the reader to Manin’s papers
[25, 26, 27], Marcolli’s book [28], and [23] for the definition and basic properties of
quantum theta functions, as well as a look at their relevance to problems in number
theory and their interpretation in terms of Gabor analysis.

All results, with the exception of those involving the functions g1, g2, g3, hold in

much greater generality (see [22]), namely, in the case where Λ is a lattice in G× Ĝ

for G a locally compact abelian group and Ĝ its Pontryagin dual of G.
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