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THEOREMS OF W. W. STOTHERS AND THE JACOBIAN

CONJECTURE IN TWO VARIABLES

EDWARD FORMANEK

(Communicated by Ted Chinburg)

Abstract. Differential equations of the form rp(z)q′(z)− sp′(z)q(z) = γp(z)
or rp(z)q′(z) − sp′(z)q(z) = γ, where γ is a nonzero complex number and
r, s are positive integers, have arisen in attempts to solve the two-variable
Jacobian Conjecture. Solutions of such equations, in which p(z) and q(z) are
monic complex polynomials of positive degrees r and s, give rise to extra-special
pairs of polynomials in the sense of W. W. Stothers. Stothers showed that,
modulo automorphisms of C[z], there are only finitely many extra-special pairs
of a given degree n. This implies that, modulo automorphisms of C[z], there
are only finitely many solutions of the above differential equations in which
p(z) and q(z) are monic polynomials of given degrees r and s.

1. Introduction and review of Stothers’ work

The purpose of this paper is to point out a connection between certain differential
equations which have arisen in attempts to establish the two-variable Jacobian
Conjecture and the work of W. W. Stothers on the polynomial abc-conjecture.

In this first section, we review Stothers’ work. In the next section, we prove our
main result, Theorem 4. It follows from Stothers’ theorems and says that, modulo a
natural equivalence relation, certain differential equations have only finitely many
solutions which are polynomials of given fixed degrees. The final section of the
paper explains how polynomial solutions of such differential equations have arisen
in attempts to prove the two-variable Jacobian Conjecture.

For a polynomial f(z) ∈ C[z] in one variable, let d(f) be the degree of f and let
c(f) be the number of distinct roots of f . Then d(f) ≥ c(f), with equality if and
only if f has no multiple roots. The polynomial abc-theorem is the following.

Theorem 1 (W. W. Stothers [4, Theorem 1.1]). Let p(z), q(z) ∈ C[z] be relatively
prime monic polynomials of positive degree n. Then

c(p) + c(q) + c(p− q) ≥ n+ 1.

There have been many generalizations of this theorem, and there is a related
abc-conjecture in number theory which would have many consequences (see [2]).
Stothers investigated when the inequality in Theorem 1 becomes an equality, which
led him to make the following definitions.
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Definition. A pair (p, q) of polynomials in C[z] is special of degree n if p and q are
relatively prime monic polynomials of degree n and c(p) + c(q) + c(p− q) = n+ 1.
The pair (p, q) is extra-special of degree n if it is special and p− q has no multiple
roots.

Definition. Let (p, q), (p1, q1) be pairs of monic polynomials in C[z]. Then (p, q)
and (p1, q1) are ∞-equivalent if there are α ∈ C

∗, β ∈ C such that p1(z) =
α−d(p)p(αz + β), q1(z) = α−d(q)q(αz + β).

In other words, (p1, q1) is obtained from (p, q) by applying an automorphism of
C[z] and then multiplying by the right constants to obtain monic polynomials. If
(p, q) is special (resp., extra-special) of degree n, so is an ∞-equivalent pair (p1, q1).

His main theorem is that there is a one-to-one correspondence between certain
subgroups of index n in a free group of rank 2 and ∞-equivalence classes of special
pairs of degree n. The fact that a free group of finite rank has only finitely many
subgroups of index n then yields the following theorem.

Theorem 2 (W. W. Stothers [4, Corollary 2.3]). For each positive integer n, there
are only finitely many ∞-equivalence classes of special pairs of degree n.

Stothers’ proofs of Theorems 1 and 2 depend on the theory of automorphic
functions. There are elementary proofs of Theorem 1 (e.g., [2, p. 1225]), but not
of Theorem 2.

2. Polynomial solutions of some differential equations

We now apply Theorems 1 and 2 to polynomial solutions of certain differential
equations.

Theorem 3. Let p and q be monic complex polynomials of positive degrees r and
s.

(a) Suppose that rpq′ − sp′q = γp for some γ ∈ C∗, and let u be the monic
greatest common divisor of ps and qr. Then (ps/u, qr/u) is an extra-special pair.

(b) Suppose that rpq′ − sp′q = γ for some γ ∈ C∗. Then (ps, qr) is an extra-
special pair.

Proof. (a) Since u is the monic greatest common divisor of ps and qr, ps/u and qr/u
are relatively prime monic polynomials of the same positive degree. (The degree is
positive, since if d(ps/u) = d(qr/u) = 0, then ps = qr and rpq′ − sp′q = 0.)

Set h = ps − qr, so that d(h)<rs, and let α ∈ C
∗ be the coefficient of zd(h) in h.

A computation shows that

(1) rhq′ − h′q = γps.

The highest degree term on the left side of (1) is α(rs − d(h))zd(h)+s−1, so
d(h) + s− 1 = d(ps) = rs and

d(h) = rs− s+ 1.
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The equation rpq′−sp′q = γp implies that every root of p is a root of q and that
q has no multiple roots. Hence we can write

p = (z − α1)
a1 · · · (z − αk)

ak(z − β1)
b1 · · · (z − β�)

b� ,

r = d(p) =
∑

ai +
∑

bj ,

q = (z − α1) · · · (z − αk)(z − β1) · · · (z − β�)(z − γ1) · · · (z − γm),

s = d(q) = k + �+m,

where the notation is chosen so that sa1, . . . , sak ≥ r and sb1, . . . , sb� < r. By
hypothesis, p and q have positive degrees, but the notation is not meant to imply
that all of k, �,m are nonzero.

Dividing rpq′ − sp′q = γp by pq gives

(2)
∑

(r − sai)/(z − αi) +
∑

(r − sbj)/(z − βj) +
∑

(r/(z − γe)) = γ/q,

which implies that r �= sai for all i, since otherwise αi would be a pole of the right
hand side of (2), but not of the left hand side.

The monic greatest common divisor of p(z)s and q(z)r is

u = (z − α1)
r · · · (z − αk)

r(z − β1)
sb1 · · · (z − β�)

sb� , so

s
∑

ai − rk = d(ps/u) = d(qr/u) = r(�+m)− s
∑

bj , and

d((ps − qr)/u) = d(h/u) = d(ps/u)− s+ 1.

Furthermore, c(ps/u) = k, c(qr/u) = �+m, s = k + �+m, so

c(ps/u) + c(qr/u) + d(ps − qr)/u)

= k + �+m+ d(ps/u)− s+ 1 = d(ps/u) + 1.
(3)

By Theorem 1,

(4) c(ps/u) + c(qr/u) + c((ps − qr)/u) ≥ d(ps/u) + 1.

Combining formulas (3) and (4) gives

d(ps/u) + 1 = c(ps/u) + c(qr/u) + d((ps − qr)/u)

≥ c(ps/u) + c(qr/u) + c((ps − qr)/u ≥ d(ps/u) + 1,
(5)

so all inequalities become equalities and d((ps − qr)/u) = c((ps − qr)/u). Thus
(ps − qr)/u has no multiple roots and (ps/u, qr/u) is an extra-special pair.

(b) Note that the equation rpq′ − sp′q = γ implies that p and q are relatively
prime, and set t = pq. Then

rpt′ − (r + s)p′t = γp,

and the greatest common divisor u of pr+s and tr is equal to pr. By (a), we have
that (pr+s/u, tr/u) is an extra-special pair. But pr+s/u = ps and tr/u = qr. �
Theorem 4. Let r, s be positive integers. Then there are only finitely many ∞-
equivalence classes of pairs of monic polynomials p, q ∈ C[z] such that p has degree
r, q has degree s, and rpq′−sp′q is equal to either γp or γ for some nonzero complex
number γ.

Proof. The degree of ps/u is bounded above by rs. The map (p, q) → (ps/u, qr/u)
preserves ∞-equivalence classes and induces a one-to-one map from ∞-equivalence
classes of pairs (p, q) satisfying the hypotheses of Theorem 4 to ∞-equivalence
classes of extra-special pairs of degree ≤ rs. By Theorem 2 this last set is finite. �
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A pair of monic polynomials of degrees r, s is defined by r+ s parameters (their
coefficients), the differential equations of Theorem 4 impose r + s − 2 conditions
on these parameters, and an ∞-equivalence class of solutions is two-dimensional as
an affine variety. Hence general principles suggest that the set of ∞-equivalence
classes ought to be a zero-dimensional variety - i.e. finite - for given r and s. Of
course this is not a proof.

3. Connection with the two-variable Jacobian Conjecture

The Jacobian matrix of polynomials f = f(x, y), g = g(x, y) ∈ C[x, y] is the
2× 2 matrix

J(f, g) =

[
∂f/∂x ∂f/∂y
∂g/∂x ∂g/∂y

]
.

If C[f, g] = C[x, y], the chain rule implies that J(f, g) is an invertible matrix. The
Jacobian Conjecture in two variables is that the converse is true.

Jacobian Conjecture. If J(f, g) is invertible, then C[f, g] = C[x, y].

There is also an n-variable Jacobian Conjecture. There is strong evidence for
the two-variable Jacobian Conjecture, but not for the n-variable conjecture. The
one-variable Jacobian Conjecture is true and trivial.

The differential equations of Theorems 3 and 4 stem from the works of S. S.
Abhyankar and T.-T. Moh on the two-variable Jacobian Conjecture, especially
[1, 3]. They appear explicitly in [3, Prop. A3, p. 205] and [3, Prop. A5, p. 207].

The way they appear is the following. After lengthy maneuvers which include
changing variables and introducing fractional and negative fractional powers of x,
one is led to equations which include

γxra+sa−1 = det(J(xrap(y), xsaq(y))) = det

[
raxra−1p(y) xrap′(y)
saxsa−1q(y) xraq′(y)

]
,

where a is a rational number, γ ∈ C∗, and p(y), q(y) are polynomials in y of positive
degrees r and s. Expanding the determinant and simplifying gives a differential
equation rp(y)q′(y)− sp′(y)q(y) = γ/a of the kind we studied.
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