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THE JOHNSON FILTRATION

OF THE MCCOOL STABILIZER SUBGROUP

OF THE AUTOMORPHISM GROUP

OF A FREE GROUP

TAKAO SATOH

(Communicated by Richard A. Wentworth)

Abstract. Let Fn be a free group of rank n with basis x1, x2, . . . , xn. We
denote by Sn the subgroup of the automorphism group of Fn consisting of
automorphisms which fix each of x2, . . . , xn and call it the McCool stabilizer
subgroup. Let ISn be a subgroup of Sn consisting of automorphisms which
induce the identity on the abelianization of Fn. In this paper, we determine
the group structure of the lower central series of ISn and its graded quotients.
Then we show that the Johnson filtration of Sn coincides with the lower central
series of ISn.

1. Introduction

For n ≥ 2, let Fn be a free group of rank n with basis x1, x2, . . . , xn and
Fn = Γn(1), Γn(2), . . . its lower central series. We denote by AutFn the group
of automorphisms of Fn. For each k ≥ 0, let An(k) be the group of automorphisms
of Fn which induce the identity on the nilpotent quotient group Fn/Γn(k + 1).
The group An(1) is called the IA-automorphism group and is also denoted by IAn.
Then we have a descending filtration

AutFn = An(0) ⊃ An(1) ⊃ An(2) ⊃ · · ·
of AutFn, called the Johnson filtration of AutFn. The Johnson filtration of AutFn

was originally introduced in 1963 through the remarkable pioneer work by An-
dreadakis [1], who showed that An(1), An(2), . . . is a descending central series of
An(1) and that for each k ≥ 1 the graded quotient grk(An) := An(k)/An(k+ 1) is
a free abelian group of finite rank. In general, determining the structure of grk(An)
plays an important role on the study of the algebraic structure of AutFn. For
1 ≤ k ≤ 3, the rank of grk(An) has been determined. Andreadakis [1] computed
the rank of gr1(An). Moreover, by independent works of Cohen-Pakianathan [4, 5],
Farb [6] and Kawazumi [10], it is known that gr1(An) is isomorphic to the abelian-
ization of IAn. For k = 2 and 3, the rank of grk(An) is determined by Pettet [19]
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and Satoh [21] respectively. For k ≥ 4, however, it seems that there are few results
for the structure of grk(An).

In the study of the Johnson filtration of AutFn, it would also be interesting
to determine whether An(1), An(2), . . . coincides with the lower central series
A′

n(1), A′
n(2), . . . of An(1) or not. Andreadakis [1] showed that A2(k) = A′

2(k)
and A3(3) = A′

3(3). From the results due to Cohen-Pakianathan [4, 5], Farb [6]
and Kawazumi [10], we have An(2) = A′

n(2) for n ≥ 3. Furthermore, Pettet [19]
obtained thatA′

n(3) has finite index inAn(3). Now it is conjectured by Andreadakis
that An(k) = A′

n(k) for any n ≥ 3 and k ≥ 3.
In this paper, we give an affirmative answer to the problem above for a certain

subgroup of AutFn. Let Sn be the subgroup of AutFn consisting of automor-
phisms which fix each of x2, . . . , xn. We call Sn the McCool stabilizer subgroup of
AutFn. Let ISn be the subgroup of Sn consisting of automorphisms which induce
the identity on the abelianization of Fn. The groups Sn and ISn were first studied
by McCool. He [14] gave a finite presentation of Sn and showed that ISn is not
finitely presentable. Furthermore, he [14] also gave an infinite presentation of ISn.
Set Sn(k) := An(k) ∩ Sn for each k ≥ 0. Then Sn(0) = Sn and Sn(1) = ISn. We
call a descending central filtration

Sn = Sn(0) ⊃ Sn(1) ⊃ Sn(2) ⊃ · · ·
the Johnson filtration of Sn. On the other hand, we also consider the lower central
series of ISn, denoted by S ′

n(1), S ′
n(2), . . .. Since the Johnson filtration is central,

we see S ′
n(k) ⊂ Sn(k) in general. The main theorem of the paper is

Theorem 1 (= Theorem 4.1). For each k ≥ 1, we have Sn(k) = S ′
n(k).

In order to show this, we study the group structure of the lower central series
S ′
n(k). Let F be a subgroup of Fn generated by x2, . . . , xn. The group F is a

free group of rank n− 1. Let ΓF (1),ΓF (2), . . . be the lower central series of F . In
Section 3, we show that S ′

n(k) is isomorphic to the semidirect product

(1) S ′
n(k)

∼= ΓF (k + 1) � ΓF (k)

of ΓF (k+1) and ΓF (k) for each k ≥ 1. (See Lemma 3.1.) We remark that McCool
[14] showed this in the case where k = 1. Set grk(Sn) := Sn(k)/Sn(k + 1) and
grk(S ′

n) := S ′
n(k)/S ′

n(k + 1) for each k ≥ 1. Then, using the fact above, we obtain

Corollary 1 (= Corollary 4.1). For each k ≥ 1,

rankZ(gr
k(Sn)) = rankZ(gr

k(S ′
n)) = rn−1(k + 1) + rn−1(k),

where

rn(k) := rankZ(Γn(k)/Γn(k + 1)).

Here we remark that each of rn(k) has been determined by Witt [22]. (See
Subsection 2.3 for details.)

In general, it is also not determined whether each subgroup An(k) of the Johnson
filtration of AutFn is finitely genrated or not. It is still a difficult open problem.
It is, however, easily seen that for any n ≥ 3 and k ≥ 2, the group Sn(k) is not
finitely generated. More precisely, from (1) and Corollary 1, we have

H1(Sn(k),Z) ∼=
(
ΓF (k + 1)

/
[ΓF (k + 1),ΓF (k)]

)
⊕H1(ΓF (k),Z).

(See Corollary 3.2.)
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This paper consists of five sections. In Section 2, we recall the IA-automorphism
group and the Johnson filtration of the automorphism group of a free group. In
Section 3, we study the McCool stabilizer subgroup. In Section 4, we show that
the Johnson filtration of Sn coincides with its lower central series of ISn.

2. Preliminaries

In this section, we recall the definition and some properties of the IA-
automorphism group and of the Johnson homomorphisms of the automorphism
group of a free group.

2.1. Notation. Throughout the paper, we use the following notation and conven-
tions. Let G be a group and N a normal subgroup of G.

• The abelianization of G is denoted by Gab.
• The group automorphism group AutG of G acts on G from the right. For
any σ ∈ AutG and x ∈ G, the action of σ on x is denoted by xσ.

• For an element g ∈ G, we also denote the coset class of g by g ∈ G/N
without any confusion.

• For elements x and y of G, the commutator bracket [x, y] of x and y is
defined to be [x, y] := xyx−1y−1.

2.2. IA-automorphism group. For n ≥ 2, let Fn be a free group of rank n with
basis x1, . . . , xn. We denote the abelianization of Fn by H and its dual group
by H∗ := HomZ(H,Z). Let ρ : AutFn → AutH be the natural homomorphism
induced from the abelianization of Fn. In this paper we identify AutH with the
general linear group GL(n,Z) by fixing the basis of H as a free abelian group
induced from the basis x1, . . . , xn of Fn. The kernel IAn of ρ is called the IA-
automorphism group of Fn. It is known due to Nielsen [18] that IA2 coincides with
the inner automorphism group InnF2 of F2. Namely, IA2 is a free group of rank
2. However, IAn for n ≥ 3 is much larger than the inner automorphism group
InnFn. Indeed, Magnus [12] showed that for any n ≥ 3, IAn is finitely generated
by automorphisms

Kij :

{
xi �→ xj

−1xixj ,

xt �→ xt, (t �= i)

for distinct i, j ∈ {1, 2, . . . , n} and

Kijk :

{
xi �→ xixjxkxj

−1xk
−1,

xt �→ xt, (t �= i)

for distinct i, j, k ∈ {1, 2, . . . , n} such that j > k.
For any n ≥ 3, although a generating set of IAn is obtained as mentioned above,

any presentation of IAn is still not known. For n = 3, Krstić and McCool [11]
showed that IA3 is not finitely presentable. For n ≥ 4, it is not known whether
IAn is finitely presentable or not. Recently, Cohen-Pakianathan [4, 5], Farb [6] and
Kawazumi [10] independently showed

(2) IAab
n

∼= H∗ ⊗Z Λ2H

as a GL(n,Z)-module.
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2.3. Free Lie algebras. In this subsection we recall the free Lie algebra. Let
Γn(1) ⊃ Γn(2) ⊃ · · · be the lower central series of a free group Fn defined by the
rule

Γn(1) := Fn, Γn(k) := [Γn(k − 1), Fn], k ≥ 2.

We denote by Ln(k) := Γn(k)/Γn(k + 1) the graded quotient of the lower central
series of Fn and by Ln :=

⊕
k≥1Ln(k) the associated graded sum. Since the group

AutFn naturally acts on Ln(k) for each k ≥ 1 and since IAn acts on it trivially, the
action of GL(n,Z) on each Ln(k) is well-defined. Furthermore, the graded sum Ln

naturally has a graded Lie algebra structure induced from the commutator bracket
on Fn and is called the free Lie algebra generated by H. (See [20] for basic material
concerning free Lie algebras.) It is classically well known due to Witt [22] that each
Ln(k) is a GL(n,Z)-equivariant free abelian group of rank

(3) rn(k) :=
1

k

∑

d|k
μ(d)n

k
d ,

where μ is the Möbius function. For example, the GL(n,Z)-module structure of
Ln(k) for 1 ≤ k ≤ 3 is given by

Ln(1) = H, Ln(2) = Λ2H,

Ln(3) = (H ⊗Z Λ2H)
/
〈x⊗ y ∧ z + y ⊗ z ∧ x+ z ⊗ x ∧ y | x, y, z ∈ H〉.

Next, we consider an embedding of the free Lie algebra into the tensor algebra.
Let T (H) be the tensor algebra of H over Z. Then T (H) is the universal enveloping
algebra of the free Lie algebra Ln, and the natural map ι : Ln → T (H) defined by

[X,Y ] �→ X ⊗ Y − Y ⊗X

for X, Y ∈ Ln is an injective graded Lie algebra homomorphism. We denote by ιk
the homomorphism of degree k part of ι and consider Ln(k) as a submodule H⊗k

through ιk.
Now, we consider a Lie subalgebra of Ln generated by x2, . . . , xn. Let F be a

subgroup of Fn generated by x2, x3, . . . , xn. The group F is a free group of rank
n−1. We denote the lower central series of F by ΓF (1),ΓF (2), · · · and write LF (k)
for its graded quotient ΓF (k)/ΓF (k+ 1) for each k ≥ 1. Clearly, LF (k) ∼= Ln−1(k)
as an abelian group. The associated graded sum LF :=

⊕
k≥1LF (k)/LF (k+1) also

has a graded Lie algebra structure. By the elimination theorem of free Lie algebras,
we see that LF is a direct summand of Ln. (See Proposition 10 in [3].) Hence, in
particular, LF (k) is a direct summand of Ln(k) for each k ≥ 1.

2.4. Johnson filtration. In this subsection, we recall the Johnson filtration of
AutFn. For k ≥ 0, the action of AutFn on each nilpotent quotient Fn/Γn(k + 1)
induces a homomorphism

AutFn → Aut(Fn/Γn(k + 1)).

We denote the kernel of the homomorphism above by An(k). Then the groups
An(k) define a descending central filtration

AutFn = An(0) ⊃ An(1) ⊃ An(2) ⊃ · · ·
of AutFn, with An(1) = IAn. We call it the Johnson filtration of AutFn. For
each k ≥ 1, the group AutFn acts on An(k) by conjugation, and it naturally
induces an action of GL(n,Z) on grk(An) := An(k)/An(k + 1). The graded sum
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gr(An) :=
⊕

k≥1 gr
k(An) has a graded Lie algebra structure induced from the

commutator bracket on IAn.
In order to study the graded quotients grk(An), the Johnson homomorphisms

are used. For each k ≥ 1, define a homomorphism An(k) → HomZ(H,Ln(k + 1))
by

σ �→ (x �→ x−1xσ), x ∈ H.

Then the kernel of this homomorphism is just An(k + 1). Hence it induces an
injective homomorphism

τk : grk(An) ↪→ HomZ(H,Ln(k + 1)).

The homomorphism τk is called the k-th Johnson homomorphism of AutFn.
Historically, the study of the Johnson homomorphisms was begun in 1980 by D.

Johnson [8]. He studied the Johnson homomorphism of a mapping class group of a
closed oriented surface and determined the abelianization of the Torelli group. (See
[9].) There is a broad range of remarkable results for the Johnson homomorphisms
of a mapping class group. (For example, see [7] and [15], [16], [17].)

In general, since τk is injective, to determine the image (or equivalently, the
cokernel) of τk is an important problem in the study of the structure of grk(An). In
this paper, we use the Johnson homomorphism only in the proof of Theorem 4.1.

3. McCool stabilizer subgroup

Here we consider the McCool stabilizer subgroup. In the following, we assume
n ≥ 3. Let Sn be the subgroup of AutFn consisting of automorphisms which
fix each of x2, . . . , xn. We call Sn the McCool stabilizer subgroup. We denote
the intersection of Sn with IAn by ISn. McCool [14] showed that ISn is finitely
generated but not finitely presentable. He [14] also gave an infinite presentation of
ISn.

For any i ∈ {2, . . . , n}, let vi be the automorphism of Fn which sends x1 to x1xi

and fix the other generators xt. The subgroup V of AutFn generated by all vi is a
free group of rank n−1. The subgroup W of IAn generated by all K1i is also a free
group of rank n− 1. Then McCool [14] showed that ISn is a semidirect product of
[V, V ] by W . Namely, we have a split group extension

(4) 1 → [V, V ] → ISn → W → 1.

Furthermore, in [14] he showed that [V, V ] is the normal closure of {K1ij | i > j}
in ISn, and ISn is generated by K1i and K1ij . Thus, considering a homomorphism

ISn ↪→ IAn → IAab ∼= H∗ ⊗Z Λ2H, we see that H1(ISn,Z) is a free abelian group
of rank n(n− 1)/2 with basis {K1i,K1jk | 2 ≤ i, j, k ≤ n, j > k}.

In this paper, we consider the Johnson filtration of AutFn restricted to Sn.
Namely, set Sn(k) := An(k)∩Sn for each k ≥ 0. Then Sn(0) = Sn and Sn(1) = ISn.
We call a descending central filtration

Sn = Sn(0) ⊃ Sn(1) ⊃ Sn(2) ⊃ · · ·
the Johnson filtration of Sn. Set gr

k(Sn) := Sn(k)/Sn(k+1). We denote by τSk the
restriction of the Johnson homomorphism τk to grk(Sn) ⊂ grk(An) and call it the
Johnson homomorphism of Sn.

Let S ′
n(1) ⊃ S ′

n(2) ⊃ · · · be the lower central series of ISn = Sn(1). Clearly,
we have S ′

n(k) ⊂ Sn(k) for each k ≥ 1. Here we determine the group structure
of S ′

n(k). To do this, we prepare some notation. For any x ∈ F , let vx be an
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automorphism of Fn which maps x1 to x1x and fixes the other generators xt. Then
a map ψV : F → V defined by ψV (x) := vx is an isomorphism. Similarly, for any
y ∈ F , let wy be an automorphism of Fn which maps x1 to y−1x1y and fixes the
other generators xt. Then a map ψW : F → W defined by ψW (y) := wy is also an
isomorphism. We denote the lower central series of V and W by ΓV (k) and ΓW (k)
respectively. Then we have

Lemma 3.1. For each k ≥ 1, S ′
n(k) is a semidirect product of ΓV (k + 1) and

ΓW (k):

S ′
n(k) = ΓV (k + 1) � ΓW (k).

Proof. It is easily seen that

• ΓW (k) is a subgroup of S ′
n(k),

• ΓV (k + 1) is a normal subgroup of S ′
n(k) and

• ΓV (k + 1) ∩ ΓW (k) = 1

for each k ≥ 1. We leave proofs of them to the reader as exercises. Hence it suffices
to show that S ′

n(k) = ΓV (k + 1)ΓW (k). We prove this by induction on k. It is
clear for k = 1 by (4). Suppose k ≥ 2. By the inductive hypothesis, we have
S ′
n(k − 1) = ΓV (k)ΓW (k − 1). It suffices to show that for any σ ∈ S ′

n(k − 1) and
σ′ ∈ S ′

n(1), the commutator [σ, σ′] is in ΓV (k + 1)ΓW (k) since S ′
n(k) is generated

by all elements of type [σ, σ′].
Let σ = vw and σ′ = v′w′ for v ∈ ΓV (k), v

′ ∈ ΓV (2), w ∈ ΓW (k − 1) and
w′ ∈ ΓW (1). Then we see that

[σ, σ′] = [vw, v′w′]

= v (wv′w−1) (ww′w−1v−1ww′−1
w−1) ([w,w′]v′

−1
[w′, w]) [w,w′].

Since [w,w′] ∈ ΓW (k), we show that

σ′′ := v (wv′w−1) (ww′w−1v−1ww′−1
w−1) ([w,w′]v′

−1
[w′, w]) ∈ ΓV (k + 1).

Now, set

v = vx, v′ = vx′ , w = wy, w′ = wy′

for x ∈ ΓF (k), x
′ ∈ ΓF (2), y ∈ ΓF (k − 1) and y′ ∈ ΓF (1). Then we have

xσ′′

1 = x1 ([y, y
′]x′−1

[y′, y]) (yy′y−1x−1yy′
−1

y−1) (yx′y−1)x.

Therefore it suffices to show that

z := ([y, y′]x′−1
[y′, y]) (yy′y−1x−1yy′

−1
y−1) (yx′y−1)x ∈ ΓF (k + 1).

Since x±1, [y, y′] ∈ ΓF (k) commutes with x′, y and y′ modulo ΓF (k + 1),

z ≡ ([y, y′]x′−1
[y′, y]) (yx′y−1) ≡ x′−1

(yx′y−1) = [x′−1
, y] ≡ 0

modulo ΓF (k + 1). Hence we obtain

σ′′ = ψV (z) ∈ ΓV (k + 1).

This completes the proof of Lemma 3.1. �

From Lemma 3.1, we see that σ ∈ S ′
n(k) if and only if

xσ
1 = y−1x1yx
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for some x ∈ ΓF (k + 1) and y ∈ ΓF (k). Furthermore, for any vx ∈ ΓV (k + 1) and
wy ∈ ΓW (k) for x ∈ ΓF (k + 1) and y ∈ ΓF (k), we have

(5) w−1
y vxwy = vy−1xy ∈ ΓV (k+1) and [wy, vx] = v[x−1,y−1] ∈ [ΓV (k+1),ΓV (k)].

In particular,

(6) w−1
y vxwy ≡ vx (mod ΓV (k + 2)).

Using Lemma 3.1, we can determine the group structure of the graded quotients
of the lower central series S ′

n(k). Set gr
k(S ′

n) := S ′
n(k)/S ′

n(k + 1) for each k.

Proposition 3.1. For each k ≥ 1, grk(S ′
n)

∼= LF (k + 1)⊕ LF (k) as a Z-module.

Proof. Consider a surjective map ΓV (k+1)�ΓW (k) → LF (k+1)⊕LF (k) defined
by

vw �→ (ψ−1
V (v), ψ−1

W (w)).

Since ΓW (k) acts trivially on LF (k+1) from (6), this map is a homomorphism whose
kernel is exactly ΓV (k + 2) � ΓW (k + 1). Hence we obtain Proposition 3.1. �

As a corollary, we have

Corollary 3.1. For each k ≥ 1, rankZ(gr
k(S ′

n)) = rn−1(k + 1) + rn−1(k).

Finally, we remark that the abelianization of Sn(k)
′ is not finitely generated.

More precisely, we have

Corollary 3.2. For each n ≥ 3 and k ≥ 2,

H1(S ′
n(k),Z)

∼=
(
ΓF (k + 1)

/
[ΓF (k + 1),ΓF (k)]

)
⊕H1(ΓF (k),Z).

Proof. This equation immediately follows from Lemma 3.1 and (5). �

4. The Johnson filtration of ISn

In this section, we show that the Johnson filtaration Sn(1) ⊃ Sn(2) ⊃ · · · coin-
cides with the lower central series of ISn.

For each k ≥ 1, let Ek be a Z-submodule of H∗ ⊗Z Ln(k + 1) consisting of all
elements of type x∗

1 ⊗ [B, x1] where B ∈ LF (k).

Lemma 4.1. For any k ≥ 1, Ek ∼= LF (k) as an abelian group.

Proof. Let fk : LF (k) → Ek be a homomorphism defined by fk(B) := x∗
1 ⊗ [B, x1]

for any B ∈ LF (k). We construct the inverse of fk as follows. First, using a
contraction, we define homomorphisms μk : H∗⊗ZH

⊗(k+1) → H⊗k by

x∗
i ⊗ xj1 ⊗ · · · ⊗ xjk+1

�→ −x∗
i (xj1) · xj2 ⊗ · · · ⊗ xjk+1

and

Φk := μk ◦ (idH∗ ⊗ ιk+1
n ) : H∗⊗ZLn(k + 1) → H⊗k.

We denote the restriction of Φk to Ek by gk. Then identifying LF (k) with the image
of a natural injective homomorphism ιk : LF (k) → H⊗k, we obtain a homomor-
phism

(7) gk : Ek → LF (k).

It is easily seen that gk is the inverse of fk. Hence, we obtain the lemma. �
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Next, let Tk be a Z-submudule of H∗ ⊗Z Ln(k + 1) consisting of all elements
of type x∗

1 ⊗ A where A ∈ LF (k + 1). Clearly, we have Tk ∼= LF (k + 1) for any
k ≥ 1. Furthermore, from the elimination theorem of free Lie algebras, we see that
the sum Ek + Tk in H∗ ⊗Z Ln(k+1) as a Z-module is a direct sum Ek ⊕Tk for any
k ≥ 1. (See Proposition 10 in [3].) Then we show our main theorem.

Theorem 4.1. For each k ≥ 1, we have Sn(k) = S ′
n(k).

Proof. It suffices to show Sn(k) ⊂ S ′
n(k) for each k ≥ 1. For any σ ∈ Sn(k), by the

split extension (4), there are some v ∈ [V, V ] and w ∈ W such that σ = vw. Set
xv
1 := x1x and xw

1 := y−1x1y for x, y ∈ F . Then x−1
1 xσ

1 = [x−1
1 , y−1]x ∈ Γn(k + 1).

First, we show y ∈ ΓF (k) and x ∈ ΓF (k + 1). If y /∈ ΓF (k), there is some
l ∈ {1, . . . , k− 1} such that y ∈ ΓF (l) and y /∈ ΓF (l+1). Since both [x−1

1 , y−1] and
[x−1

1 , y−1]x belong to Γn(l + 1), so does x. Hence we have

τSl (σ) = x∗
1 ⊗ x−1

1 xσ
1 = x∗

1 ⊗ ([x−1
1 , y−1]x) = x∗

1 ⊗ [x1, y] + x∗
1 ⊗ x

inH∗⊗ZLn(l+1). On the other hand, by [x−1
1 , y−1]x ∈ Γn(k+1) ⊂ Γn(l+2), we see

τSl (σ) = 0. Since x∗
1⊗ [x1, y] ∈ El and x∗

1⊗x ∈ Tl and since El∩Tl = 0 as mentioned
above, we have x∗

1 ⊗ [x1, y] = x∗
1 ⊗ x = 0 in H∗ ⊗Z Ln(l + 1). Then, considering

the isomorphism gl : El → LF (l) defined in (7), we obtain y = 0 ∈ LF (l). Hence
y ∈ ΓF (l + 1). This is a contradiction. Therefore we obtain y ∈ ΓF (k) and
x ∈ ΓF (k + 1). This shows that σ ∈ S ′

n(k) by the remark after Lemma 3.1. This
completes the proof of Theorem 4.1. �

From Theorem 4.1 and Corollary 3.1, we have

Corollary 4.1. For each k ≥ 1, rankZ(gr
k(Sn)) = rn−1(k + 1) + rn−1(k).
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[12] W. Magnus; Über n-dimensinale Gittertransformationen, Acta Math. 64 (1935), 353-367.
MR1555401

[13] W. Magnus, A. Karras, D. Solitar; Combinatorial group theory, Interscience Publ., New York
(1966). MR2109550 (2005h:20052)

[14] J. McCool; Some remarks on IA automorpshims of free groups, Can. J. Math., Vol. XL, no.
5 (1998), 1144-1155. MR973513 (90d:20057)

[15] S. Morita; Abelian quotients of subgroups of the mapping class group of surfaces, Duke
Mathematical Journal 70 (1993), 699-726. MR1224104 (94d:57003)

[16] S. Morita; Structure of the mapping class groups of surfaces: a survey and a prospect,
Geometry and Topology Monographs, Vol. 2, Geom. Topol. Publ., Coventry (1999), 349-406.
MR1734418 (2000j:57039)

[17] S. Morita; Cohomological structure of the mapping class group and beyond, Proc. of Sym-
posia in Pure Math., 74, Amer. Math. Soc., Providence, RI (2006), 329-354. MR2264550
(2007j:20079)

[18] J. Nielsen; Die Isomorphismen der allgemeinen unendlichen Gruppe mit zwei Erzeugenden,
Math. Ann. 78 (1964), 385-397. MR1511907

[19] A. Pettet; The Johnson homomorphism and the second cohomology of IAn, Algebraic and
Geometric Topology 5 (2005) 725-740. MR2153110 (2006j:20050)

[20] C. Reutenauer; Free Lie Algebras, London Mathematical Society Monographs, New Series,
7, Oxford University Press, New York (1993). MR1231799 (94j:17002)

[21] T. Satoh; New obstructions for the surjectivity of the Johnson homomorphism of the auto-
morphism group of a free group, Journal of the London Mathematical Society (2) 74 (2006),
341-360. MR2269583 (2007i:20060)

[22] E. Witt; Treue Darstellung Liescher Ringe, Journal für die Reine und Angewandte Mathe-
matik, 177 (1937), 152-160.

Department of Mathematics, Graduate School of Science, Kyoto University,

Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto City, 606-8502, Japan

E-mail address: takao@math.kyoto-u.ac.jp

http://www.ams.org/mathscinet-getitem?mr=1465336
http://www.ams.org/mathscinet-getitem?mr=1465336
http://www.ams.org/mathscinet-getitem?mr=1555401
http://www.ams.org/mathscinet-getitem?mr=2109550
http://www.ams.org/mathscinet-getitem?mr=2109550
http://www.ams.org/mathscinet-getitem?mr=973513
http://www.ams.org/mathscinet-getitem?mr=973513
http://www.ams.org/mathscinet-getitem?mr=1224104
http://www.ams.org/mathscinet-getitem?mr=1224104
http://www.ams.org/mathscinet-getitem?mr=1734418
http://www.ams.org/mathscinet-getitem?mr=1734418
http://www.ams.org/mathscinet-getitem?mr=2264550
http://www.ams.org/mathscinet-getitem?mr=2264550
http://www.ams.org/mathscinet-getitem?mr=1511907
http://www.ams.org/mathscinet-getitem?mr=2153110
http://www.ams.org/mathscinet-getitem?mr=2153110
http://www.ams.org/mathscinet-getitem?mr=1231799
http://www.ams.org/mathscinet-getitem?mr=1231799
http://www.ams.org/mathscinet-getitem?mr=2269583
http://www.ams.org/mathscinet-getitem?mr=2269583

	1. Introduction
	2. Preliminaries
	2.1. Notation
	2.2. IA-automorphism group
	2.3. Free Lie algebras
	2.4. Johnson filtration

	3. McCool stabilizer subgroup
	4. The Johnson filtration of ISn
	Acknowledgments
	References

