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THE ANDREWS-STANLEY PARTITION FUNCTION AND p(n):

CONGRUENCES

HOLLY SWISHER

(Communicated by Kathrin Bringmann)

Abstract. R. Stanley formulated a partition function t(n) which counts the
number of partitions π for which the number of odd parts of π is congruent
to the number of odd parts in the conjugate partition π′ (mod 4). In light
of G. E. Andrews’ work on this subject, it is natural to ask for relationships
between t(n) and the usual partition function p(n). In particular, Andrews
showed that the (mod 5) Ramanujan congruence for p(n) also holds for t(n).
In this paper we extend his observation by showing that there are infinitely
many arithmetic progressions An+B such that for all n ≥ 0,

t(An+B) ≡ p(An+B) ≡ 0 (mod lj)

whenever l ≥ 5 is prime and j ≥ 1.

1. Introduction and statement of results

Let n be a nonnegative integer. Recall that p(n) counts the number of partitions
π of n, and p(0) is defined to be 1. For a partition π, let O(π) be the number
of odd parts in π. Let π′ denote the conjugate partition, which is obtained by
reading the columns (instead of the rows) of the Ferrers diagram for π [And98].
Stanley’s partition function t(n) counts the number of partitions π of n for which
O(π) ≡ O(π′) (mod 4).

The generating function for p(n) is known to equal the following infinite product

(throughout let q := e2πiz and qh := e
2πiz
h )

(1.1) F (q) :=
∞∑

n=0

p(n)qn =
∞∏

n=1

1

(1− qn)
.

Notice that F (q) converges absolutely for all z ∈ H, the upper half of the complex
plane. In [And04], Andrews proves that the generating function for t(n) can also
be written as an infinite product

(1.2) G(q) :=
∞∑

n=0

t(n)qn =
F (q)F (q4)5F (q32)2

F (q2)2F (q16)5
.

Andrews proved in [And04] that for all n ≥ 0,

(1.3) t(5n+ 4) ≡ 0 (mod 5),
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showing that the classical (mod 5) Ramanujan congruence for p(n) also holds for
t(n). He did this by proving a certain partition identity using q-series, which he said
“cries out for a combinatorial proof.” Yee, Sills, and Boulet have all proven this
identity combinatorially; see [Yee04], [Sil04], and [Bou06]. In addition, Berkovich
and Garvan [BG06] have proven the congruence (1.3) combinatorially by deriving
statistics related to the Andrews-Garvan crank and the 5-core crank which divide
t(5n + 4) into 5 equinumerous classes. This extends the famous work of Garvan,
Kim, and Stanton [GKS90].

It is natural to ask whether the congruence modulo 5 is just one of many congru-
ences shared by t(n) and p(n). In celebrated work of Ono and Ahlgren it has been
shown that there are vastly many congruences for p(n) beyond the Ramanujan ones
(see [Ono00], [Ahl00], and [AO01]). Here we show that the (mod 5) congruence t(n)
and p(n) share is not an isolated example.

Theorem 1.1. Let l ≥ 5, l �= 13, be prime and let j be a positive integer. There
are infinitely many (non-nested) arithmetic progressions An + B such that for all
n ≥ 0 we have

t(An+B) ≡ p(An+B) ≡ 0 (mod lj).

Remark. In fact, Theorem 1.1 follows from a more precise statement (see Theo-
rem 3.4).

In Section 2, we will recall some basic facts about integral and half-integral
weight modular forms, the Shimura correspondence, and a theorem of Serre used
in the proof of Theorem 1.1. In Section 3, we will give the proof of Theorem 1.1.

2. Preliminaries for proof of Theorem 1.1

First we fix some notation. Suppose w ∈ 1
2Z, N is a positive integer (which is

divisible by 4 if w �∈ Z), and χ is a Dirichlet character (mod N). Let Mw(Γ0(N), χ)
(resp. Sw(Γ0(N), χ)) be the usual space of holomorphic modular forms (resp. cusp
forms) on the congruence subgroup Γ0(N), with Nebentypus character χ. There are
several operators which act on spaces of modular forms. The first we will discuss
are Hecke operators. The results in this section and more information on modular
forms can be found in [Ono04].

2.1. Hecke operators. We will define Hecke operators for both integer and half-
integer weight modular forms. We begin with the integer weight case.

Definition 2.1. With the notation above, we let f(z) :=
∑∞

n=0 a(n)q
n ∈

Mk(Γ0(N), χ), where k is an integer and p � N is prime. The action of the Hecke
operator Tp is defined by

f(z)|Tp :=

∞∑

n=0

(
a(pn) + χ(p)pk−1a(n/p)

)
qn,

where a(n/p) = 0 when p � n.

We note that the half-integer weight case is somewhat different.

Definition 2.2. Let f(z) :=
∑∞

n=0 a(n)q
n ∈ Mλ+ 1

2
(Γ0(4N), χ) where λ is an

integer and p � 4N is prime. The action of the half-integral Hecke operator T (p2)
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is defined by

f(z)|T (p2) :=
∞∑

n=0

(
a(p2n) + χ(p)

(
(−1)λ

p

)(
n

p

)
pλ−1a(n)

+ χ(p2)

(
(−1)λ

p2

)
p2λ−1a(n/p2)

)
qn,

where a(n/p2) = 0 when p2 � n.

These operators are useful due to the following.

Proposition 2.3. If f(z) ∈ Mk(Γ0(N), χ), where k ∈ Z, then

f(z)|Tp ∈ Mk(Γ0(N), χ).

Similarly, if f(z) ∈ Mλ+ 1
2
(Γ0(4N), χ), where λ ∈ Z, then

f(z)|T (p2) ∈ Mλ+ 1
2
(Γ0(4N), χ).

Furthermore, both Tp and T (p2) take cusp forms to cusp forms.

2.2. Other operators. We define two other operators U and V which act on
formal power series. If d is a positive integer, then we define the U -operator U(d)
by

(2.1)

( ∞∑

n=−∞
c(n)qn

)∣∣∣∣∣U(d) :=
∞∑

n=−∞
c(dn)qn

and the V -operator V (d) by

(2.2)

( ∞∑

n=−∞
c(n)qn

)∣∣∣∣∣V (d) :=
∞∑

n=−∞
c(n)qdn.

These two operators also act on spaces of modular forms. First we consider the
integer weight case.

Proposition 2.4. Suppose f(z) ∈ Mk(Γ0(N), χ) where k ∈ Z.

(1) If d is a positive integer and d|N , then

f(z)|U(d) ∈ Mk(Γ0(N), χ).

(2) If d is any positive integer, then

f(z)|V (d) ∈ Mk(Γ0(Nd), χ).

Moreover, both U(d) and V (d) take cusp forms to cusp forms.

The half-integer weight case is slightly more complicated.

Proposition 2.5. Suppose f(z) ∈ Mλ+ 1
2
(Γ0(4N), χ) where λ ∈ Z.

(1) If d is a positive integer and d|N , then

f(z)|U(d) ∈ Mλ+ 1
2

(
(Γ0(4N),

(
4d

•

)
χ

)
.

(2) If d is any positive integer, then

f(z)|V (d) ∈ Mλ+ 1
2

(
(Γ0(4Nd),

(
4d

•

)
χ

)
.
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Furthermore, again for the half-integral case both U(d) and V (d) take cusp forms
to cusp forms.

2.3. Shimura correspondence. Here we recall the famous “Shimura correspon-
dences” [Shi73] which give a means of mapping half-integer weight cusp forms to
even integer weight modular forms.

Definition 2.6. Let f(z) =
∑∞

n=1 c(n)q
n ∈ Sλ+ 1

2
(Γ0(4N), χ), with λ ≥ 1, and let t

be a square-free integer. Define the Dirichlet character ψt by ψt(n)=χ(n)
(−1

n

)λ ( t
n

)
.

If we define complex numbers At(n) by

∞∑

n=1

At(n)

ns
:= L(s− λ+ 1, ψt) ·

∞∑

n=1

c(tn2)

ns
,

then

St(f(z)) :=

∞∑

n=1

At(n)q
n

is a modular form in M2λ(Γ0(2N), χ2). Furthermore, if λ ≥ 2, then St(f(z)) is
a cusp form. When λ = 1 there are conditions (here omitted) which guarantee
St(f(z)) is a cusp form.

From the definition above, it is not hard to show that the Shimura correspon-
dences commute with the Hecke operators in the following way.

Proposition 2.7. Let f(z) ∈ Sλ+ 1
2
(Γ0(4N), χ) with λ ≥ 1. If t is a square-free

integer and p � 4Nt is prime, then

St(f(z)|T (p2)) = St(f(z))|Tp.

2.4. A theorem of Serre. First we recall that the following subgroup of Γ0(N)

Γ1(N) :=

{(
a b
c d

)
∈ SL2(Z) : a ≡ d ≡ 1 (mod N) and c ≡ 0 (mod N)

}

has the properties

Mk (Γ1(N)) =
⊕

χ

Mk(Γ0(N), χ),(2.3)

Sk (Γ1(N)) =
⊕

χ

Sk(Γ0(N), χ).(2.4)

The following theorem due to Serre (see [Ono00] and [Ser76]) is a crucial com-
ponent to the proof of Theorem 1.1. The theorem arises from the existence of
certain Galois representations with special properties. More details can be found
in [Ono04] and [Ser76].

Theorem 2.8. Let l ≥ 5 be prime and k ∈ Z. A positive proportion of the primes
p ≡ −1 (mod N) have the property that

f(z)|Tp ≡ 0 (mod l)

for every f(z) that is the reduction modulo l of a cusp form in Sk(Γ1(N)) ∩ Z[[q]].
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3. Proof of Theorem 1.1

We will see that using the works of Serre and Shimura, the proof of Theorem 1.1
boils down to the existence of a half-integral weight cusp form satisfying certain key
properties. This is given in the following theorem. We make the following notation
for ease of exposition:

Gl(z) :=
∑

n≥0
ln≡−1 (mod 24)

t

(
ln+ 1

24

)
qn.

Theorem 3.1. Let j ≥ 1 be a positive integer and l ≥ 5 prime, l �= 13. For an
appropriately chosen positive integer K, there is a cusp form

gl,j(z) ∈ SKlj+1−Klj−1−1
2

(
Γ1(2304l

2)
)

having integer coefficients such that

Gl(z) ≡ gl,j(z) (mod lj).

3.1. Deduction of Theorem 1.1 from Theorem 3.1. Before we prove Theo-
rem 3.1, we will show how Theorem 1.1 is proved from it. We use techniques of
Ono and Ahlgren previously used on p(n) (see [Ono00] and [Ahl00]) and extend
them to work on t(n) and p(n) simultaneously.

Consider the Shimura lift of gl,j(z) to an integer weight cusp form with integer
coefficients. We have that

(3.1) St(gl,j) ∈ SKlj+1−Klj−1−2(Γ1(2304l
2)) ∩ Z[[q]].

By Theorem 2.8, there are infinitely many primes p ≡ −1 (mod 2304l2) such that
every reduction (mod lj) of every form in the space SKlj+1−Klj−1−2(Γ1(2304l

2)) ∩
Z[[q]] gets annihilated (mod lj) by the (integer weight) Hecke operator Tp. In
particular, by equation (3.1) and Proposition 2.7, it follows that there are infinitely
many primes p ≡ −1 (mod 2304l2) such that for any square-free integer t,

St(gl,j(z)|T (p2)) = St(gl,j(z))|Tp ≡ 0 (mod lj).

Thus, in particular,

(3.2) gl,j(z)|T (p2) ≡ 0 (mod lj).

If we write gl,j(z) =
∑∞

n=1 c(n)q
n and let λl,j = (Klj+1 − Klj−1 − 2)/2, then

Definition 2.2 and (3.2) say that

∞∑

n=1

(
c(p2n) +

(
(−1)λl,j

p

)(
n

p

)
pλl,j−1c(n)

+

(
(−1)λl,j

p2

)
p2λl,j−1c

(
n

p2

))
qn ≡ 0 (mod lj).

Thus for each of the infinitely many primes p for which equation (3.2) holds, we
have

c(p2n) +

(
(−1)λl,j

p

)(
n

p

)
pλl,j−1c(n) +

(
(−1)λl,j

p2

)
p2λl,j−1c

(
n

p2

)
≡ 0 (mod lj)
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for all positive integers n. Replacing n by np, the middle term vanishes to give us
that

(3.3) c(p3n) +

(
(−1)λl,j

p2

)
p2λl,j−1c

(
n

p

)
≡ 0 (mod lj).

We restrict our attention further by only considering n which are not divisible by
p. For these n, c(n/p) is defined to be 0, so equation (3.3) becomes

c(p3n) ≡ 0 (mod lj).

Combining this with Theorem 3.1 we obtain the following proposition.

Proposition 3.2. A positive proportion of the primes p ≡ −1 (mod 2304l2) have
the property that

t

(
p3ln+ 1

24

)
≡ 0 (mod lj)

for all n, where ln ≡ −1 (mod 24) and (n, p) = 1.

The work of Ono and Ahlgren intersects nicely with this analysis of t(n). Define
Fl(z) by

Fl(z) :=
∑

n≥0
ln≡−1 (mod 24)

p

(
ln+ 1

24

)
qn.

In [Ahl00] (see Theorem 1), Ahlgren proves the following theorem.

Theorem 3.3. Let l ≥ 5 be prime and j ≥ 1 be a positive integer. There exists a
cusp form

fl,j(z) ∈ S lj−lj−1−1
2

(
Γ0(576l),

(
12

•

))

such that
fl,j(z) ≡ Fl(z) (mod lj).

Notice that both η(z)l
2

/η(l2z) ≡ 1 (mod l) and η(z)l/η(lz) ≡ 1 (mod l). By
induction we can argue that for any j ≥ 1,

(3.4)
η(z)l

j+1

η(l2z)lj−1 ≡ 1 (mod lj) and
η(z)l

j

η(lz)lj−1 ≡ 1 (mod lj).

Define

(3.5) f̃l,j(z) := fl,j(z) ·
(

η(z)l
j+1

η(l2z)lj−1

)K

·
(

η(z)l
j

η(lz)lj−1

)−1

.

Then
f̃l,j(z) ≡ fl,j(z) (mod lj).

Since the second and third factors in (3.5) are holomorphic modular forms on Γ0(l
2),

we see that
f̃l,j(z) ∈ SKlj+1−Klj−1−1

2

(
Γ1(576l

2)
)
.

We can realize f̃l,j(z) as a cusp form on the group Γ1(2304l
2). Serre’s Theorem

gives a statement about every reduction (mod lj) of a cusp form in

SKlj+1−Klj−1−2(Γ1(2304l
2)) ∩ Z[[q]];

thus we can apply Theorem 2.8 to St(fl,j(z)) and St(gl,j(z)) simultaneously. We
conclude the following:
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Theorem 3.4. Let l ≥ 5, l �= 13, be prime. A positive proportion of the primes
p ≡ −1 (mod 2304l2) have the property that

t

(
p3ln+ 1

24

)
≡ p

(
p3ln+ 1

24

)
≡ 0 (mod lj)

for all positive integers n, where (p, n) = 1.

Theorem 1.1 follows easily from Theorem 3.4.

3.2. Preliminaries for the proof of Theorem 3.1. Now it only remains to
prove Theorem 3.1. Recall Dedekind’s eta-function:

(3.6) η(z) := q
1
24

∞∏

n=1

(1− qn).

From equations (1.1) and (1.2) we deduce that

g(z) =
∞∑

n=0

t(n)qn−
1
24 =

η(2z)2η(16z)5

η(z)η(4z)5η(32z)2
.

For ease of notation, we make the following abbreviations. Let δl be the positive
integer

δl :=
l2 − 1

24
,

and define 1 ≤ βl ≤ l − 1 such that

24βl ≡ 1 (mod l).

Thus we have that

η(lz)l · g(z) =
∞∏

n=1

(1− qln)l
∞∑

n=0

t(n)qn+δl .

Using the definitions of the U - and V -operators, we obtain

(3.7)

[
η(lz)l · g(z)|U(l)

η(z)l

]∣∣∣∣V (24) =

∞∑

n=0

t(ln+ βl)q
24n+

24βl−1

l .

Letting k = 24n+ (24βl − 1)/l, we see that

ln+ βl =
lk + 1

24
.

Thus we can show that in fact

(3.8)

[
η(lz)l · g(z)|U(l)

η(z)l

]∣∣∣∣V (24) = Gl(z).

Write Ej(z) =
η(z)l

2

η(l2z) . It is clear from the definitions of the U - and V -operators

that they preserve congruences. Thus in light of (3.4), we have that for any K ∈ N

gl,j(z) :=

[
(η(lz)l · g(z))|U(l) · Ej(z)

K

η(z)l

]∣∣∣∣V (24) ≡ Gl(z) (mod lj).

By properties of eta-quotients and the U -, V -operators, we see that gl,j(z) has
integer coefficients and that gl,j(z) is modular over the group Γ0(2304l

2) with weight
Klj+1−Klj−1−1

2 . We wish to show that gl,j(z) vanishes at all the cusps of Γ0(2304l
2).
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3.3. Proof of Theorem 3.1. A complete set of representatives for the cusps of
Γ0(N), where N is a positive integer, is given by [Mar96]:
(3.9){

ac
c

∈ Q : c |N , 1 ≤ ac ≤ N , gcd(ac, N) = 1 , ac distinct modulo gcd

(
c,
N

c

)}
.

We recall the definition of the slash operator [Kob93]. If f(z) is a function on

the upper half-plane, λ ∈ 1
2Z, and

(
a b
c d

)
∈ GL+

2 (R), then

(3.10) f(z) |λ
(

a b
c d

)
:= (ad− bc)

λ
2 · (cz + d)−λ · f

(
az + b

cz + d

)
.

Moreover, let γ a
c
be the matrix in SL2(Z) that takes ∞ to a

c . We know from
[Mar96] that the expansion of a modular form f(z) of weight λ ∈ R at the cusp a

c
is of the form

f(z)|λ γ a
c
= k · qα + · · ·

for some nonzero constant k and α ∈ Q. Thus α is the order of vanishing of f(z)
at the cusp a

c . We are interested in the expansion of gl,j(z) at the cusps of Γ0(32l).
However, V (24) cannot introduce poles so it suffices to consider the Laurent series
of [

(η(lz)l · g(z))|U(l) · Ej(z)
K

η(z)l

]
.

It is a fact [Mar96] that for all γ ∈ SL2(Z),

η(z)l| l
2
γ = k · q l

24 + · · · .

Since (η(lz)l · g(z))|U(l) · Ej(z)
K is modular on Γ0(32l

2), all that remains to be
shown is that (η(lz)l · g(z))|U(l) ·Ej(z)

K has order of vanishing > l/24 at all cusps
of Γ0(32l

2).
It is easy to compute ([Mar96]) that

ord a
c
Ej(z)

K =

⎧
⎪⎨

⎪⎩

0 if l2 | c,
Klj−1δl if l ‖ c,

Klj−3(l2 + 1)δl if l � c.

So we choose K large enough such that it kills all poles of (η(lz)l · g(z))|U(l) at
cusps a

c with l2 � | c.
For convenience, let h(z) := η(lz)l · g(z). Also, let

A :=

(
a b
cl2 d

)
∈ SL2(Z)

correspond to the cusp a/cl2 of Γ0(2304l
2).

We will use the following proposition which can be obtained easily from the
definition of the U -operator.

Proposition 3.5. If l is a prime positive integer and P (z) =
∑

n≥1 c(n)q
n, then

P (z)|U(l) =
1

l

l−1∑

j=0

P

(
z + j

l

)
.
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By Proposition 3.5,

h(z)|U(l)| l−1
2
A = l

l−5
4

l−1∑

v=0

h(z)| l−1
2

(
1 v
0 l

)
A.

Define for each v, an integer wv such that 2304|wv and

wv ≡ (a+ vcl2)−1 · (b+ vd) (mod l).

Also, define

γv :=

(
a+ vcl2 b+vd−awv−wvvcl

2

l
cl3 d− wvcl

2

)
.

A calculation shows that γv ∈ SL2(Z) and that

(3.11)

(
1 v
0 l

)
·A = γv ·

(
1 wv

0 l

)
.

Using (3.11), we can obtain

(3.12) h(z)|U(l)| l−1
2
A = l

l−5
4

l−1∑

v=0

h(z)| l−1
2
γ0 ·

(
1 wv

0 l

)
.

We note that this type of argument can be found in greater generality in [Tre06].
We can calculate h(z)| l−1

2
γ0 directly (see [Mar96]) to obtain

h(z)| l−1
2
γ0 =

∑

n≥nc

ac(n)q
n
hc
,

where

nc =

⎧
⎪⎨

⎪⎩

δl · hc for c = 1, 2, 8, 32,

δl · hc − 1 for c = 4,

δl · hc + 2 for c = 16,

and

hc =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

32 if c = 1

8 if c = 2

2 if c = 4

1 if c = 8, 16, 32.

Plugging back into (3.12) we get that

h(z)|U(l)| l−1
2
A = l−1

∑

n≥nc

ac(n)e
2πizn
hcl ·

(
l−1∑

v=0

e
2πiwvn

hcl

)
.

One can show that wv runs through the residue classes (mod l) as v does. Since
2304|wv we have hc|wv for all c. Since (hc, l) = 1, wv/hc runs through the residue
classes (mod l) as v does. Hence,

(3.13) h(z)|U(l)| l−1
2
A = l−1

∑

n≥nc

ac(n)q
n
l

hc
·
(

l−1∑

v=0

e
2πivn

l

)
=

∑

n≥nc
l

a(ln)qnhc
.

We must work through each case to show that if h(z)|U(l)| l−1
2
A = �qα + · · · ,

then α > l
24 . Since the calculations for the cases are very similar, we will only show

the details of the trickiest case here, when c = 4.
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When c = 4, (3.13) yields

h(z)|U(l)| l−1
2
A =

∑

n≥ 2δl−1

l

ac(ln)q
n
2 = �qα + · · · .

Thus α = m
2 , where m is an integer satisfying m ≥ (2δl − 1)/l. Then choose the

least integer x ≥ 0 such that

lm = 2δl − 1 + x =
2l2 − 26 + 24x

24
≡ 0 (mod l).

Note that if we do not allow l = 13, then we must have x ≥ 2 in order for the
congruence to hold. In this case,

α =
1

2

(
l2 − 13 + 12x

24l

)
>

l

24
.

The other cases are similar, but do not require the exclusion of any primes.

Remark. In [Tre06], Treneer proves general results such as equation (3.12) by re-
lating eta-quotients and their images under the U -operator to cusp forms.
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