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NONPOSITIVELY CURVED HERMITIAN METRICS

ON PRODUCT MANIFOLDS
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(Communicated by Jianguo Cao)

Abstract. In this article, we classify all the Hermitian metrics on a com-
plex product manifold M = X × Y with nonpositive holomorphic bisectional
curvature. It is a generalization of a result by Zheng.

In this article, using a trick as in Tam-Yu [1], we prove the following generaliza-
tion of the result in Zheng [2].

Theorem 0.1. Let M = X × Y with X and Y both compact complex manifolds.
Let φ1, φ2, · · · , φr be a basis of H1,0(X) and ψ1, ψ2, · · · , ψs be a basis of H1,0(Y ).
Then, for any Hermitian metric h on M with nonpositive holomorphic bisectional
curvature,

ωh = π∗
1ωh1

+ π∗
2ωh2

+ ρ+ ρ̄,

where h1 and h2 are Hermitian metrics on X and Y with nonpositive holomorphic
bisectional curvature respectively, π1 and π2 are natural projections from M to X
and from M to Y respectively, and

ρ =
√
−1

r∑

k=1

s∑

l=1

aklφk ∧ ψl,

where the akl’s are complex numbers.

Before the proof of Theorem 0.1, we need the following lemma.

Lemma 0.2. Let Xm and Y n be two compact complex manifolds. Let φ1, φ2, · · · , φr

be a basis of H1,0(X) and ψ1, ψ2, · · · , ψs be a basis of H1,0(Y ). Let

ρ = ρij(x, y)dx
i ∧ dyj

be a global holomorphic two form on X × Y , where (x1, x2, · · · , xm) is a local holo-
morphic coordinate of X and (y1, y2, · · ·, yn) is a local holomorphic coordinate of Y .
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Then

(0.1) ρ =

r∑

k=1

s∑

l=1

aklφk ∧ ψl,

where the akl’s are complex numbers.

Proof. Fix a local holomorphic coordinate (y1, y2, · · · , yn) of Y . It is clear that

θj =
m∑

i=1

ρij(x, y)dx
i

is a global homomorphic 1-form on X × {y}. Then

(0.2) θj =
r∑

k=1

bkj(y)φk,

where the bkj ’s are local homomorphic functions on Y .
It is clear that

n∑

j=1

bkj(y)dy
j

is a global holomorphic 1-form on Y for each k. So,

(0.3)

n∑

j=1

bkj(y)dy
j =

s∑

l=1

aklψl,

where the akl’s are complex numbers. Therefore

�(0.4) ρ =

n∑

j=1

θj ∧ dyj =

r∑

k

s∑

l=1

aklφk ∧ ψl.

Proof of Theorem 0.1. Let (zm+1, · · · , zm+n) be a local holomorphic coordinate of
Y at q. Then, it is clear that

(0.5) hαᾱ(x, q)

is a positive function on X × {q}, where m+ 1 ≤ α ≤ m+ n.
Let Δ be the complex Laplacian on X × {q} and let (z1, z2, · · · , zm) be a holo-

morphic coordinate of X such that

hij̄(x, q) = δij̄

with 1 ≤ i, j ≤ m. Then

(0.6) Δhαᾱ(x, q) =
m∑

i=1

∂i∂īhαᾱ = −
m∑

i=1

Rαᾱīi +
m∑

i=1

hb̄a∂ihαb̄∂īhaᾱ ≥ 0,

with 1 ≤ a, b ≤ n+m. By the maximum principle, hαᾱ(x, q) is a constant function.
Hence

(0.7) ∂ihαb̄ = 0.

Interchanging the roles of X and Y in the above, we get

(0.8) ∂αhib̄ = 0.

By (0.7), we know that

(0.9) ∂ihαβ̄ = 0
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for any m + 1 ≤ α, β ≤ n + m. So, hαβ̄ is independent of the zi’s. Then, hαβ̄

is a Hermitian metric on Y . It is clear that hαβ̄ as a Hermitian metric on Y
is of nonpositive holomorphic bisectional curvature since holomorphic bisectional
curvature deceases on complex submanifolds. We denote this metric by h2.

Similarly, by (0.8), hij̄ is a Hermitian metric on X with nonpositive holomorphic
bisectional curvature. We denote it by h1.

By (0.8) and (0.7), we have

∂αhiβ̄ = 0 and ∂īhjᾱ = 0.

So, the form hiᾱdz
i ∧ dzᾱ is a holomorphic two form on M1 ×M2, where M2 is the

complex conjugate of M2. By the lemma above, we know that

(0.10) hiᾱdz
i ∧ dzᾱ =

q1∑

k=1

q2∑

l=1

aklφk ∧ ψ̄l.

Hence, we get the conclusion. �

As in Zheng [2], we have the following consequence of the theorem.

Corollary 0.1.

codimR(H(M1)×H(M2),H(M1 ×M2)) = 2h1,0(M1) · h1,0(M2),

where M1,M2 are compact complex manifolds, and suppose that H(Mi) �= ∅ for
i = 1, 2.

Proof. For any h ∈ H(M1 ×M2), by the theorem, it has a unique decomposition,

ωh = π∗
1ωh1

+ π∗
2ωh2

+ ρ+ ρ̄,

where ρ =
√
−1

∑q1
i=1

∑q2
j=1 aijφi ∧ ψ̄j with aij ∈ C, hi ∈ H(Mi). So, we get a map

(0.11) H(M1 ×M2) → M(q1 × q2;C), h 
→ (aij)q1×q2 .

It is clear R+-linearly. (Note that H(M1 ×M2) is a convex cone.) So, it induces a
linear map of real vector spaces,

Ψ : 〈H(M1 ×M2)〉R → M(q1 × q2;C).

It is clear that

(0.12) kerΨ = 〈H(M1)×H(M2)〉R.

Moreover, let Ekl = (aij) be such that aij = δikδjl. Note that

π∗
1ωh1

+ π∗
2ωh2

+
√
−1(φk + ψl) ∧ (φk + ψl)

=[π∗
1ωh1

+
√
−1φk ∧ φ̄k] + [π∗

1ωh2
+
√
−1ψl ∧ ψ̄l] +

√
−1φk ∧ ψ̄l +

√
−1ψl ∧ φ̄k.

(0.13)

So, Ekl is in the image of Ψ. Similarly,
√
−1Ekl is also in the image of Ψ. Therefore,

Ψ is surjective. By the dimension theorem in linear algebra, we get the identity. �
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