PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 139, Number 4, April 2011, Pages 1469–1472 S 0002-9939(2010)10558-0 Article electronically published on August 27, 2010

NONPOSITIVELY CURVED HERMITIAN METRICS ON PRODUCT MANIFOLDS

CHENGJIE YU

(Communicated by Jianguo Cao)

ABSTRACT. In this article, we classify all the Hermitian metrics on a complex product manifold $M=X\times Y$ with nonpositive holomorphic bisectional curvature. It is a generalization of a result by Zheng.

In this article, using a trick as in Tam-Yu [1], we prove the following generalization of the result in Zheng [2].

Theorem 0.1. Let $M = X \times Y$ with X and Y both compact complex manifolds. Let $\phi_1, \phi_2, \dots, \phi_r$ be a basis of $H^{1,0}(X)$ and $\psi_1, \psi_2, \dots, \psi_s$ be a basis of $H^{1,0}(Y)$. Then, for any Hermitian metric h on M with nonpositive holomorphic bisectional curvature,

$$\omega_h = \pi_1^* \omega_{h_1} + \pi_2^* \omega_{h_2} + \rho + \bar{\rho},$$

where h_1 and h_2 are Hermitian metrics on X and Y with nonpositive holomorphic bisectional curvature respectively, π_1 and π_2 are natural projections from M to X and from M to Y respectively, and

$$\rho = \sqrt{-1} \sum_{k=1}^{r} \sum_{l=1}^{s} a_{kl} \phi_k \wedge \psi_l,$$

where the a_{kl} 's are complex numbers.

Before the proof of Theorem 0.1, we need the following lemma.

Lemma 0.2. Let X^m and Y^n be two compact complex manifolds. Let $\phi_1, \phi_2, \dots, \phi_r$ be a basis of $H^{1,0}(X)$ and $\psi_1, \psi_2, \dots, \psi_s$ be a basis of $H^{1,0}(Y)$. Let

$$\rho = \rho_{ij}(x, y)dx^i \wedge dy^j$$

be a global holomorphic two form on $X \times Y$, where (x^1, x^2, \dots, x^m) is a local holomorphic coordinate of X and (y^1, y^2, \dots, y^n) is a local holomorphic coordinate of Y.

Received by the editors February 28, 2010 and, in revised form, April 24, 2010.

²⁰⁰⁰ Mathematics Subject Classification. Primary 53B25; Secondary 53C40.

 $Key\ words\ and\ phrases.$ Complex products, Kähler manifolds, bisectional curvature, nonpositive curvature.

This research was partially supported by the National Natural Science Foundation of China (10901072) and GDNSF (9451503101004122).

Then

(0.1)
$$\rho = \sum_{k=1}^{r} \sum_{l=1}^{s} a_{kl} \phi_k \wedge \psi_l,$$

where the a_{kl} 's are complex numbers.

Proof. Fix a local holomorphic coordinate (y^1, y^2, \dots, y^n) of Y. It is clear that

$$\theta_j = \sum_{i=1}^m \rho_{ij}(x, y) dx^i$$

is a global homomorphic 1-form on $X \times \{y\}$. Then

(0.2)
$$\theta_j = \sum_{k=1}^r b_{kj}(y)\phi_k,$$

where the b_{kj} 's are local homomorphic functions on Y.

It is clear that

$$\sum_{j=1}^{n} b_{kj}(y) dy^{j}$$

is a global holomorphic 1-form on Y for each k. So,

(0.3)
$$\sum_{i=1}^{n} b_{kj}(y) dy^{j} = \sum_{l=1}^{s} a_{kl} \psi_{l},$$

where the a_{kl} 's are complex numbers. Therefore

(0.4)
$$\rho = \sum_{j=1}^{n} \theta_j \wedge dy^j = \sum_{k=1}^{r} \sum_{l=1}^{s} a_{kl} \phi_k \wedge \psi_l.$$

Proof of Theorem 0.1. Let $(z^{m+1}, \dots, z^{m+n})$ be a local holomorphic coordinate of Y at q. Then, it is clear that

$$(0.5) h_{\alpha\bar{\alpha}}(x,q)$$

is a positive function on $X \times \{q\}$, where $m+1 \le \alpha \le m+n$.

Let Δ be the complex Laplacian on $X \times \{q\}$ and let (z^1, z^2, \dots, z^m) be a holomorphic coordinate of X such that

$$h_{i\bar{j}}(x,q) = \delta_{i\bar{j}}$$

with $1 \leq i, j \leq m$. Then

$$(0.6) \qquad \Delta h_{\alpha\bar{\alpha}}(x,q) = \sum_{i=1}^{m} \partial_{i}\partial_{\bar{i}}h_{\alpha\bar{\alpha}} = -\sum_{i=1}^{m} R_{\alpha\bar{\alpha}i\bar{i}} + \sum_{i=1}^{m} h^{\bar{b}a}\partial_{i}h_{\alpha\bar{b}}\partial_{\bar{i}}h_{a\bar{\alpha}} \ge 0,$$

with $1 \le a, b \le n+m$. By the maximum principle, $h_{\alpha\bar{\alpha}}(x,q)$ is a constant function. Hence

$$\partial_i h_{\alpha \bar{b}} = 0.$$

Interchanging the roles of X and Y in the above, we get

$$\partial_{\alpha} h_{i\bar{b}} = 0.$$

By (0.7), we know that

$$\partial_i h_{\alpha\bar{\beta}} = 0$$

for any $m+1 \leq \alpha, \beta \leq n+m$. So, $h_{\alpha\bar{\beta}}$ is independent of the z^i 's. Then, $h_{\alpha\bar{\beta}}$ is a Hermitian metric on Y. It is clear that $h_{\alpha\bar{\beta}}$ as a Hermitian metric on Y is of nonpositive holomorphic bisectional curvature since holomorphic bisectional curvature deceases on complex submanifolds. We denote this metric by h_2 .

Similarly, by (0.8), $h_{i\bar{j}}$ is a Hermitian metric on X with nonpositive holomorphic bisectional curvature. We denote it by h_1 .

By (0.8) and (0.7), we have

$$\partial_{\alpha} h_{i\bar{\beta}} = 0$$
 and $\partial_{\bar{i}} h_{i\bar{\alpha}} = 0$.

So, the form $h_{i\bar{\alpha}}dz^i \wedge dz^{\bar{\alpha}}$ is a holomorphic two form on $M_1 \times \overline{M_2}$, where $\overline{M_2}$ is the complex conjugate of M_2 . By the lemma above, we know that

$$(0.10) h_{i\bar{\alpha}}dz^i \wedge dz^{\bar{\alpha}} = \sum_{k=1}^{q_1} \sum_{l=1}^{q_2} a_{kl}\phi_k \wedge \bar{\psi}_l.$$

Hence, we get the conclusion.

As in Zheng [2], we have the following consequence of the theorem.

Corollary 0.1.

$$codim_{\mathbb{R}}(\mathcal{H}(M_1) \times \mathcal{H}(M_2), \mathcal{H}(M_1 \times M_2)) = 2h^{1,0}(M_1) \cdot h^{1,0}(M_2),$$

where M_1, M_2 are compact complex manifolds, and suppose that $\mathcal{H}(M_i) \neq \emptyset$ for i = 1, 2.

Proof. For any $h \in \mathcal{H}(M_1 \times M_2)$, by the theorem, it has a unique decomposition,

$$\omega_h = \pi_1^* \omega_{h_1} + \pi_2^* \omega_{h_2} + \rho + \bar{\rho},$$

where $\rho = \sqrt{-1} \sum_{i=1}^{q_1} \sum_{j=1}^{q_2} a_{ij} \phi_i \wedge \bar{\psi}_j$ with $a_{ij} \in \mathbb{C}$, $h_i \in \mathcal{H}(M_i)$. So, we get a map

(0.11)
$$\mathcal{H}(M_1 \times M_2) \to M(q_1 \times q_2; \mathbb{C}), \ h \mapsto (a_{ij})_{q_1 \times q_2}.$$

It is clear \mathbb{R}^+ -linearly. (Note that $\mathcal{H}(M_1 \times M_2)$ is a convex cone.) So, it induces a linear map of real vector spaces,

$$\Psi: \langle \mathcal{H}(M_1 \times M_2) \rangle_{\mathbb{R}} \to M(q_1 \times q_2; \mathbb{C}).$$

It is clear that

(0.12)
$$\ker \Psi = \langle \mathcal{H}(M_1) \times \mathcal{H}(M_2) \rangle_{\mathbb{R}}.$$

Moreover, let $E_{kl} = (a_{ij})$ be such that $a_{ij} = \delta_{ik}\delta_{jl}$. Note that

(0.13)

$$\begin{split} & \pi_1^* \omega_{h_1} + \pi_2^* \omega_{h_2} + \sqrt{-1} (\phi_k + \psi_l) \wedge \overline{(\phi_k + \psi_l)} \\ = & [\pi_1^* \omega_{h_1} + \sqrt{-1} \phi_k \wedge \bar{\phi}_k] + [\pi_1^* \omega_{h_2} + \sqrt{-1} \psi_l \wedge \bar{\psi}_l] + \sqrt{-1} \phi_k \wedge \bar{\psi}_l + \sqrt{-1} \psi_l \wedge \bar{\phi}_k. \end{split}$$

So, E_{kl} is in the image of Ψ . Similarly, $\sqrt{-1}E_{kl}$ is also in the image of Ψ . Therefore, Ψ is surjective. By the dimension theorem in linear algebra, we get the identity. \square

References

- [1] Tam, Luen-Fai; Yu, Chengjie. Complex Product Manifolds and Bounds of Curvature, to appear in Asian Journal of Mathematics.
- [2] Zheng, F., Non-positively curved Kähler metrics on product manifolds, Ann. of Math. 137 (1993), 671–673. MR1217351 (94k:53083)

Department of Mathematics, Shantou University, Shantou, Guangdong, 515063 People's Republic of China

 $E\text{-}mail\ address{:}\ \texttt{cjyu@stu.edu.cn}$