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ON THE RESTRICTION OF THE HERMITIAN EISENSTEIN

SERIES AND ITS APPLICATIONS

SHOYU NAGAOKA AND YOSHITUGU NAKAMURA

(Communicated by Wen-Ching Winnie Li)

Abstract. We introduce a simple construction of a Siegel cusp form obtained
by taking the difference between the Siegel Eisenstein series and the restricted
Hermitian Eisenstein series. In addition, we present applications of the Siegel
cusp form.

1. Introduction

In the present paper, we introduce a simple construction of a Siegel cusp form
of degree 2. The Siegel cusp form is realized as the difference between the Siegel
Eisenstein series and the restriction of the Hermitian Eisenstein series to the Siegel
half-space.

The proposed construction has an advantage because the Fourier coefficient is
explicitly computable and has a number of applications. As the first application,
we introduce a new description of Cohen’s function (Theorem 5.2). Second, explicit
formulas for the Fourier coefficients of Igusa’s cusp form of weights 10 and 12 are
presented (Corollary 5.5). Finally, we refer to the p-adic Siegel cusp forms.

2. Hermitian and Siegel modular forms

We start by recalling the definition and basic characteristics of Hermitian and
Siegel modular forms.

The Hermitian half-space of degree 2 is defined as

H2 :=
{
Z ∈ M2(C)

∣
∣ 1

2i (Z − tZ) > 0
}

and contains the Siegel half-space of degree 2,

S2 := {Z ∈ H2 | Z = tZ },
as a submanifold. Let K be an imaginary quadratic number field with discriminant
dK and ring of integers O = OK. Then, the Hermitian modular group of degree 2
over K is defined as

Γ2(O) := {M ∈ M4(O) | tMJ2M = J2}, J2 =

(
0 −12
12 0

)
.
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The group Γ2(O) acts on H2 by fractional linear transformation Z �→ M〈Z〉 :=

(AZ + B)(CZ +D)−1, M =
(
AB
C D

)
∈ Γ2(O). If ν is an abelian character of Γ2(O),

then the space Mk(Γ2(O), ν) of Hermitian modular forms of weight k and charac-
ter ν with respect to Γ2(O) consists of all holomorphic functions F : H2 −→ C

satisfying

F (M〈Z〉) = ν(M)det(CZ +D)kF (Z)

for all M =
(
AB
C D

)
∈ Γ2(O). We denote by Mk(Γ2(O), ν)sym the subspace consisting

of symmetric Hermitian modular forms characterized by

F (tZ) = F (Z).

A typical example of a symmetric Hermitian modular form is given by the Hermitian
Eisenstein series

Ek,K(Z) :=
∑

M=( ∗ ∗
CD):{(

∗∗
0 ∗)}\Γ2(O)

(detM)k/2det(CZ +D)−k ∈ Mk(Γ2(O), det−k/2)sym

for even k > 4. Moreover, E4,K ∈ M4(Γ2(O), det−2)sym is constructed as the Maass
lift (cf. Krieg [9]).

Each F ∈ Mk(Γ2(O), detl) possesses a Fourier expansion of the form

F (Z) =
∑

0≤H∈Λ2(K)

A(H;F ) exp[2πitr(HZ)],

where Λ2(K) is a lattice in Her2(C) defined by

Λ2(K) :=

{(
a t
t̄ b

)
∈ M2(K) | a, b ∈ Z,

√
dK t ∈ O

}
.

The Siegel modular group Γ2 := Sp2(Z) also acts on S2 by fractional linear trans-
formation. Let Γ be a subgroup of Γ2 of finite index. We denote by Mk(Γ)(resp.
Sk(Γ)) the space of Siegel modular forms (resp. Siegel cusp forms) of weight k

with respect to Γ. For any F ∈ Mk(Γ2(O), det−k/2)(k: even), the restriction F |S2
becomes a Siegel modular form in Mk(Γ2) (cf. Dern-Krieg [3], Corollary 1).

Each F ∈ Mk(Γ2) admits a Fourier expansion of the form

F (Z) =
∑

0≤T∈Λ2

A(T ;F )exp[2πitr(TZ)],

where

Λ2 =

{(
a c

2
c
2 b

)
∈ M2(Q)

∣∣a, b, c ∈ Z

}
.

The Maass space M(Γ2) consists of Siegel modular forms F characterized by

A(T ;F ) = A

((
a c

2
c
2 b

)
;F

)
=

∑

0<d|ε(T )

dk−1A

((
1 c

2d
c
2d

ab
d2

)
;F

)
,

where

ε(T ) = ε

((
a c

2
c
2 b

))
:= max{l ∈ N | l−1T ∈ Λ2} = gcd(a, b, c).
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An example of Siegel modular form in the Maass space is the Siegel Eisenstein
series

Ek(Z) :=
∑

( ∗ ∗
C D):{(

∗ ∗
0 ∗)}\Γ2

det(CZ +D)−k.

If k ≥ 4 is even, then Ek ∈ Mk(Γ2).

Proposition 2.1. (Dern-Krieg, [3], Theorem 1, Corollary 2). Assume that K is an
imaginary quadratic field of class number 1. For an even integer k with k ≥ 4 and
the Hermitian Eisenstein series Ek,K, we have

Ek,K|S2 ∈ Mk(Γ2).

3. Fourier coefficient of Eisenstein series

In this section, we present explicit formulas for the Fourier coefficient of Eisen-
stein series for the Hermitian modular group and the Siegel modular group of
degree 2.

3.1. The Hermitian modular case. In [9], Krieg presented an explicit formula
for the Fourier coefficient A(H;Ek,K) for the case in which the class number of K
is 1. To describe this, we introduce Krieg’s function GK(s,N) : N×Z −→ Q, which
is defined as

GK(s,N) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

1− χK(N)
(σs,χK

(N)− σ∗
s,χK

(N)) if N > 0, χK(N) �= 1,

−Bs+1,χK

2(s+ 1)
if N = 0,

0 otherwise,

where χK is the Kronecker character of K, χK = (dK

∗ ) = χdK
,

σs,χK
(N) :=

∑

0<d|N
χK(d)d

s, σ∗
s,χK

(N) :=
∑

0<d|N
χK(N/d)ds,

and Bm,χ is the generalized Bernoulli number.

Theorem 3.1. (Krieg [9], Dern-Krieg [3]). Assume that the class number of K is
1. Then, the Fourier coefficient A(H;Ek,K)(k ≥ 4) is as follows:
(1) If H > 0, then

A(H;Ek,K) =
4k(k − 1)

Bk ·Bk−1,χK

∑

0<d|ε(H)

dk−1GK

(
k − 2,

|dK|det(H)

d2

)

where ε(H) := max{l ∈ N | l−1H ∈ Λ2(K)}.
(2) If rank(H) = 1, then

A(H;Ek,K) = − 2k

Bk
σk−1(ε(H)).

(3) A(02;Ek,K) = 1.
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3.2. The Siegel modular case. An explicit formula for the Fourier coefficient
A(T ;Ek) (Ek: Siegel Eisenstein series) was first obtained by Kaufhold [7] and
Maass [10]. Second, Eichler and Zagier presented an explicit formula obtained by
means of Cohen’s function H(r,N) (cf. [4]).

Cohen [1] introduced a function H : N× Z −→ Q given by

H(r,N) = L(1− r, χD)
∑

0<d|f
μ(d)χD(d)dr−1σ2r−1(f/d)

in the case that r and N satisfy (−1)rN = Df2, where D is a fundamental dis-
criminant and f ∈ N. Here, L(s, χ) is the L-function with character χ, and μ is the
Möbius function. Refer to [1] for the precise definition of H(r,N).

Theorem 3.2. (Eichler and Zagier [4]). The Fourier coefficient A(T ;Ek) is given
as follows:
(1) If T > 0, then

A(T ;Ek) =
4k(k − 1)

Bk ·B2k−2

∑

0<d|ε(T )

dk−1H
(
k − 1,

4det(T )

d2

)
.

(2) If rank(T ) = 1, then

A(T ;Ek) = − 2k

Bk
σk−1(ε(T )).

(3) A(02;Ek) = 1.

4. Construction of the Siegel cusp form and its application

In the remainder of the present paper, we assume that

K = Q(i) : the Gaussian field.

In this case,

O = Z[i] = {a+ bi | a, b ∈ Z }, χK = χ−4 = (−4
∗ ).

Moreover, the lattice Λ2(K) appearing in the Fourier expansion of Hermitian mod-
ular forms is given as

Λ2(Q(i)) =

{(
a c+di

2
c−di
2 b

)
∈ Her2(Q(i))

∣∣ a, b, c, d ∈ Z

}
.

4.1. Restriction of the Hermitian Eisenstein series. As mentioned in Sec-
tion 2, the restriction of F ∈ Mk(Γ2(Z[i]), det

k/2) to the Siegel half-space S2

becomes a Siegel modular form, namely,

F |S2 ∈ Mk(Γ2).

Moreover, the relation between A(T ;F |S2) and A(H;F ) is

A(T ;F |S2) = A

((
a c

2
c
2 b

)
;F |S2

)
=

∑

s∈Z

s2≤4ab−c2=4det(T )

A

((
a c+si

2
c−si
2 b

)
;F

)
.

For even k ≥ 4, we consider the difference between Siegel Eisenstein series Ek and
the restriction of Hermitian Eisenstein series Ek,Q(i):

(∗) fk := Ek − Ek,Q(i)|S2
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Lemma 4.1. The Siegel modular form fk defined above is a cusp form in the Maass
space Mk(Γ2):

fk ∈ Mk(Γ2) ∩ Sk(Γ2).

Proof. By Proposition 2.1, we have fk ∈ Mk(Γ2). (Note that the class number
of Q(i) is 1.) It is known that the Maass space Mk(Γ2) contains only Eisenstein
series and cusp forms (cf. [4]). Therefore, it is enough to consider the zero Fourier
coefficient A(02; fk). Since A(02;Ek) = A(02;Ek,Q(i)|S2) = 1, we have A(02, fk) =
0. This shows that fk ∈ Sk(Γ2). �

Theorem 4.2. Let k be an even integer such that k ≥ 4. Then there exists a
Siegel cusp form Fk contained in the Maass space Mk(Γ2) such that the Fourier
coefficient A(T ;Fk) is given as

A(T ;Fk) =
∑

0<d|ε(T )

dk−1αk(4det(T )/d
2),

αk(N) = H(k − 1, N)− B2k−2

Bk−1,χ−4

∑

s∈Z

s2≤N

GQ(i)(k − 2, N − s2).

Proof. If we normalize fk as

Fk :=
Bk ·B2k−2

4k(k − 1)
fk,

then Fk ∈ Mk(Γ2) ∩ Sk(Γ2) satisfies the required properties. �

Remark 4.3. As described later, the Siegel cusp form Fk vanishes identically for
small k (see the proof of Theorem 5.2). We shall refer to the non-vanishing prop-

erty of Fk here. We fix T =

(
1 1/2
1/2 1

)
∈ Λ2. Then, by Theorem 4.2, the

corresponding Fourier coefficient is given by

A(T ;Fk) = −
Bk−1,χ−3

k − 1
+

B2k−2

Bk−1,χ−4

{
(3k−2 − 1) + 2(2k−2 − 1)

}
.

We consider the asymptotic approximation of the right side as k → ∞. In general,
we have

|B2m| ∼ 4
√
πm

(m

πe

)2m

(m → ∞)

and

|B2m−1,χ| ∼ 2√
f

(
f

2π

)2m−1

(2m− 1)! (m → ∞),

where f = fχ is the conductor of χ (cf. [12], Exercises 4.3(b)). From these approxi-
mations, we see that the Fourier coefficient A(T ;Fk) does not vanish for sufficiently
large k.
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5. Applications

5.1. Cohen’s function and Krieg’s function. As an application of Theorem 4.2,
we present a new description of Cohen’s function.

Proposition 5.1. (Cohen [1], Proposition 4.2). Set

s2(n) :=
∑

d|n
((n/d)2 − 2d2)(−4

d ) for n > 0,

s2(0) = 1/2,

s4(n) =
∑

d|n
((n/d)4 − 2d4)(−4

d ) + (3/2)
∑

n=x2+y2

(x4 − 6x2y2 + y4) for n > 0,

s4(0) = −5/2.

Then

H(3, N) = − 1

126

∑

s∈Z

s2≤N

s2(N − s2),

H(5, N) =
1

330

∑

s∈Z

s2≤N

s4(N − s2).

Using Theorem 4.2, we present a new description of H(r,N).

Theorem 5.2. Let GQ(i)(s,N) be Krieg’s function for K = Q(i). Then,

H(3, N) =
1

63

∑

s∈Z

s2≤N

GQ(i)(2, N − s2),

H(5, N) = − 1

165

∑

s∈Z

s2≤N

GQ(i)(4, N − s2),

H(7, N) =
1

183

∑

s∈Z

s2≤N

GQ(i)(6, N − s2).

Proof. The fact that Sk(Γ2) = {0} for k = 4, 6, 8 implies that Fk ≡ 0 if k = 4, 6, 8,
where Fk is the Siegel cusp form given in Theorem 4.2. Therefore, we obtain

H(k − 1, N) =
B2k−2

Bk−1,χ−4

∑

s∈Z

s2≤N

GQ(i)(k − 2, N − s2)

for k = 4, 6, 8. Thus, we obtain the required formulas. �
5.2. Igusa’s cusp forms. In [5], Igusa studied the structure of the graded ring of
Siegel modular forms of degree 2.

Theorem 5.3 (Igusa [5]). There exist two Siegel cusp forms X10 and X12 of weights
10 and 12, respectively, and the graded ring

⊕
k∈2Z Mk(Γ2) is generated by four

Siegel modular forms E4, E6, X10, and X12, where Ek is the Siegel Eisenstein
series: ⊕

k∈2Z

Mk(Γ2) = C[E4, E6, X10, X12] (polynomial ring).
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If k = 10, 12, then the Siegel cusp form of weight k is uniquely determined up to
constant. Then, X10 and X12 are normalized as

A

((
1 1

2
1
2 1

)
;X10

)
= A

((
1 1

2
1
2 1

)
;X12

)
= 1.

Then, all of the Fourier coefficients of Xk (k = 10, 12) are rational integers (cf.
Igusa [6]).

Theorem 5.4. Let fk be the Siegel cusp form defined in (∗). Then,

fk = Ek − Ek,Q(i)|S2 = ck ·Xk (k = 10, 12),

where

c10 = −214 · 34 · 52 · 7 · 11
277 · 43867 , c12 = − 214 · 36 · 56 · 72 · 13

19 · 131 · 593 · 691 · 2659 .

Proof. Since Sk(Γ2) = C ·Xk for k = 10, 12 (Theorem 5.3), fk = ck ·Xk for some
constant ck. The explicit values of ck are obtained by direct calculation of the
Fourier coefficients of both sides. �

Corollary 5.5. For a primitive T ∈ Λ2 (i.e., ε(T ) = 1), we have

A(T ;X10) = − 5263

12800
H(9, 4det(T ))− 43867

12096000

∑

s∈Z

s2≤4det(T )

GQ(i)(8, 4det(T )− s2)

A(T ;X12)=
1161983

151200000
H(11, 4det(T ))− 77683

453600000

∑

s∈Z

s2≤4det(T )

GQ(i)(10, 4det(T )− s2).

Proof. By Theorems 4.2, 5.4, we have

A(T ;Xk) = c−1
k · 4k(k − 1)

Bk ·B2k−2
αk(4det(T ))

=
4k(k − 1)

ck ·Bk ·B2k−2

{
H(k − 1, 4det(T ))− B2k−2

Bk−1,χ−4

∑

s∈Z

s2≤4det(T )

GQ(i)(k − 2, 4det(T )− s2)
}
.

�

Remark 5.6. p-adic Siegel cusp forms: Combining the results from [8] and [11]
we immediately see that for a prime p ≡ 3 (mod 4) and km := 2 + (p − 1)pm the

sequence fkm
converges p-adically to a true modular form f̃ for Γ0(p). Based on

some numerical evidence we conjecture that f̃ is a cusp form.
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