
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 139, Number 4, April 2011, Pages 1299–1307
S 0002-9939(2010)10563-4
Article electronically published on October 4, 2010

HOLONOMIES AND THE SLOPE INEQUALITY

OF LEFSCHETZ FIBRATIONS

HIDEKI MIYACHI AND HIROSHIGE SHIGA

(Communicated by Daniel Ruberman)

Abstract. In this paper, we consider two necessary conditions: the irre-
ducibility of the holonomy group and the slope inequality for which a Lefschetz
fibration over a closed orientable surface is a holomorphic fibration. We show
that these two conditions are independent in the sense that neither one implies
the other.

1. Introduction

In this paper, we will consider relations between two necessary conditions for
which a Lefschetz fibration f : X → Ŝ over a closed orientable surface Ŝ whose
general fiber is a surface of genus g ≥ 2 is a holomorphic fibration.

One of the conditions is the slope inequality, which comes from a complex ge-
ometrical point of view. This says that the slope of the fibration of a relatively
minimal holomorphic fibration of genus g on a non-singular algebraic surface is at
least 4− 4/g. (Cf. [11]. See also §2.2.)

The other condition is irreducibility of the holonomy group, which comes from a
topological point of view. It is known that the image of the holonomy of a surface
bundle f : X0 → S is irreducible if the bundle is non-trivial and holomorphic, where
X0 = f−1(S) and S ⊂ Ŝ is the complement of the union of mutually disjoint disk
neighborhoods of the critical values of f . (Cf. [9]. See also §2.3.)

The aim of this paper is to show that neither of the above conditions implies
the other. More precisely, we first show that an example given by H. Endo, M.
Korkmaz, D. Kotschick, B. Ozbagci, and A. Stipsicz in [2] satisfies the slope
inequality but has a reducible holonomy group. Secondly, for every sufficiently big
rational number p/q, we construct a Lefschetz fibration whose holonomy group is
irreducible but its slope is equal to −p/q. Indeed, it was expected that there might
exist a lower bound of slopes for every surface bundle over a surface (K. Konno,
oral communication). However, our example gives a negative answer. We also show
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that one of the two conditions is not a sufficient condition for a fibration to admit
a complex structure.

2. Preliminaries

2.1. Holonomy representations of surface bundles. Let h and r be positive
integers with 2h−2+ r > 0. Let S be a compact orientable surface of genus h with
r boundary components. Let Σg be a closed surface of genus g and let Mod(g) be
the mapping class group of Σg. Let f : X0 → S be a surface bundle with fiber Σg.
Fix a base point b0 ∈ Int(S) and a diffeomorphism ϕb0 : Σg → f−1(b0).

Now we define the holonomy ρ : π1(S, b0) → Mod(g) of the fibration as follows
(cf. §2 of [6]):

Let l : [0, 1] → S be a loop with l(0) = l(1) = b0. Since the pull-back l∗f is a
trivial bundle over [0, 1], there is a map ϕ : [0, 1]× Σg → X0 such that

(1) f(ϕ(t, p)) = l(t) for all (t, p) ∈ [0, 1]× Σg,
(2) the map ϕt : Σg → Ft = f−1(l(t)) defined by ϕt(p) = ϕ(t, p) is an

orientation-preserving diffeomorphism, and
(3) ϕ0 = ϕb0 .

We call the image ρ(π1(S, b0)) the holonomy group.
Since F0 = F1, we have a diffeomorphism ϕ−1

b0
◦ ϕ1 : Σg → Σg. The mapping

class of ϕ−1
b0

◦ ϕ1 is determined by the homotopy class {l} of l and is called the

monodromy associated with {l} and ϕb0 . By sending {l} to the mapping class of
ϕ−1
b0

◦ ϕ1 we obtain a map

ρ : π1(S, b0) → Mod(g).

The map ρ is a homomorphism since Mod(g) acts on Σg from the right by con-
vention, and it is called a monodromy by Y. Matsumoto (see [6]). However, we
often employ the terminology “monodromy” to represent a homomorphism from a
Fuchsian group to the Teichmüller modular transformation group which commutes
the classifying map of the holomorphic family of Riemann surfaces (see [9]). Hence,
to avoid confusions, we adopt the terminology “holonomy” to represent ρ above.

2.2. Lefschetz fibrations and the slope inequality. For our purposes, we shall
state the slope inequality via the topological point of view in the case for Lefschetz
fibrations. (Cf. Notation 4.4 of [3]. Compare [11].)

2.2.1. Lefschetz fibrations. We recall the definition of Lefschetz fibrations (cf. §2 of
[6]).

Definition 2.1. Let Ŝ be a compact surface with genus h. A C∞-map f : X → Ŝ
is said to be a Lefschetz fibration if the following conditions are satisfied:

(a) There is a finite set of points b1, b2, · · · , bn (called the critical values of f) in

Ŝ such that f : X0 → S is a C∞-fiber bundle with the fiber diffeomorphic
to Σg, where X0 = f−1(S) and S ⊂ Ŝ is the complement of the union of
the disk neighborhoods of bi for i = 1, · · · , n.

(b) For each i (1 ≤ i ≤ n), there exists a single point pi ∈ f−1(bi) such that

(1) dfp : Tp(M) → Tbi(Ŝ) is onto for any f−1(bi)− {pi};
(2) about pi (resp. bi), there exist local complex coordinates z1, z2 with

z1(pi) = z2(pi) = 0 (resp. local complex coordinate ξ with ξ(bi) = 0),
so that f is locally written ξ = f(z1, z2) = z1z2;
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(3) no fiber contains a (−1)-sphere, i.e., a smoothly embedded 2-sphere
with self-intersection number −1.

Two Lefschetz fibrations fi : Xi → Ŝi (i = 1, 2) are said to be equivalent if there

exist diffeomorphisms H : X1 → X2 and h : Ŝ1 → Ŝ2 such that f2 ◦ H = h ◦ f1.
A Lefschetz fibration is, by definition, holomorphic if there are complex structures
on both X and Ŝ with holomorphic projection f . A Lefschetz fibration is said to
admit a complex structure if it is equivalent to a holomorphic Lefschetz fibration.

A Lefschetz fibration f : X → Ŝ defines a surface bundle f : X0 → S where
X0 = f−1(S). Hence, it gives a holonomy as in §2.1. It is known that the holonomy
around a critical value is given by a negative Dehn twist along the vanishing cycle
(cf. Figure 1). Indeed, this is a somewhat sufficient condition for a homomorphism

Figure 1. A negative Dehn twist

π1(S) → Mod(g) to be a holonomy of a Lefschetz fibration as follows.

Proposition 2.1 (Theorem 2.6 in [6]). Let Ŝ be a closed orientable surface and

b1, . . . , bn points in Ŝ. Set S ⊂ Ŝ as above and let γi be a loop on S based on b0
which surrounds exclusively bi for i = 1, · · · , n. Let ρ : π1(S, b0) → Mod(g) be
a homomorphism. Suppose that all of ρ(γi) is a negative Dehn twist for a simple

closed curve on Σg. Then there exists a Lefschetz fibration f : X → Ŝ such that
the holonomy is ρ. Moreover the fibration is unique up to the equivalence.

2.2.2. The slopes of Lefschetz fibrations. Now we define the slope of a Lefschetz
fibration.

Definition 2.2. Let f : X → Ŝ be a Lefschetz fibration. Let σ and e be the
signature and Euler characteristic of X, respectively. We set χh = (σ + e)/4 (the
holomorphic Euler characteristic) and K2 = 3σ+2e. Let K2

f = K2−8(g−1)(h−1)

and χf = χh − (g − 1)(h− 1). The slope is the quotient K2
f/χf .

By a simple calculation, we see the slope is equal to 4(3σ(X) + 2n)/(σ(X)+ n),
where n is the number of singular fibers.

Proposition 2.2 ([11]). Let f : X → Ŝ be a Lefschetz fibration which admits a
complex structure. Then the slope inequality

(2.1)
K2

f

χf
≥ 4

(
1− 1

g

)

holds.
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It is important that, as we recall in §3, for a Lefschetz fibration f : X → Ŝ, the
signature of the 4-manifold X, and hence the slope of the fibration f : X → Ŝ, is
calculated from the holonomy of a surface bundle f : X0 → S and the number of
non-dividing vanishing cycles.

2.3. Irreducibility of subgroups of Mod(g). A system of homotopy classes of
mutually disjoint non-trivial and non-peripheral simple closed curves on Σg is called
an admissible system of curves on Σg. A subgroup G of the mapping class group
Mod(g) is said to be reducible if there is an admissible system C of curves such that
any element of G fixes C as a set in the homotopy sense. When G is not reducible,
G is called irreducible (cf. Definition in §2 of [9]).

In [9], it is shown that the irreducibility of the holonomy group is a necessary
condition for a surface bundle to be holomorphic.

Proposition 2.3. Let f : X → S be a non-trivial holomorphic surface bundle with
the holonomy ρ : π1(S, b0) → Mod(g). Then the holonomy group is an infinite and
irreducible subgroup of Mod(g).

Proposition 2.3 also holds when the fibers admit punctures.

3. Calculation of signatures: Meyer’s cocycle

Let A,B ∈ Sp(2g,Z). Consider a subspace VA,B of R2g × R
2g defined by

VA,B = {(x, y) ∈ R
2g × R

2g | (A−1 − I2g)x+ (B − I2g)y = 0},
where I2g is the identity matrix of rank 2g. Define the inner product on VA,B by

〈(x1, y1), (x2, y2)〉A,B = (x1 + y1)J(I2g −B)y2,

where J =

(
0 Ig

−Ig 0

)
. Set τh(A,B) to be the signature of (VA,B, 〈 , 〉A,B). We

call τh the Meyer cocycle.
Let f : X0 → S be a surface bundle with fiber Σg. Let ρ : π1(S, b0) → Mod(g)

by the holonomy of the fibration. Now we fix a symplectic basis of H1(Σh). By
composing ρ and the symplectic representation Π : Mod(g) → Sp(2g,Z), we get an
anti-homomorphism χ = Π ◦ ρ : π1(S, b0) → Sp(2g,Z).

Let {αi, βi, γj}1≤i≤h,1≤j≤r be a system of generators of π1(S, b0) satisfying

h∏
i=1

[αi, βi]

r∏
j=1

γj = 1.

Let κi = [αi, βi] for i = 1, · · · , h. The following result is due to Meyer [7] (see also
Theorem 13 of [2]).

Proposition 3.1 (Meyer). Let f : X0 → S be an oriented surface bundle with
holonomy representation ρ : π1(S, b0) → Mod(g). Then the signature σ(X0) of the
total space X0 is given by the formula

σ(X0) =

h∑
i=1

τh(χ(κi), χ(βi))−
h∑

i=2

τh(χ(κ1 · · ·κi−1), χ(κi))(3.1)

−
r−1∑
j=1

τh(χ(κ1 · · ·κhγ1 · · · γj−1), χ(γj)).
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4. The slope inequality does not imply irreducibility

Here we show that a Lefschetz fibration given in [2] satisfies the slope inequality
but the holonomy group is reducible.

In Proposition 17 of [2], the authors construct a Lefschetz fibration f : X → Ŝ

over a surface Ŝ of genus 3 with eight singular fibers. We assume that the genus of
a general fiber is greater than 4. It is shown that the signature of their manifold
X is −4. Hence the slope is 4, which implies that the fibration f : X → Ŝ satisfies
the slope inequality (2.1). On the other hand, in the construction, every simple
closed curve in Dehn twists generating the holonomy group is contained in a genus
3 subsurface with 2 holes of a general fiber. Therefore, the holonomy group must
be reducible.

5. Irreducibility does not imply the slope inequality

In this section, we construct a Lefschetz fibration such that the slope is an
arbitrarily small rational number but the holonomy group is irreducible.

Fix integers m ≥ 0 and g ≥ 3. Let h = 2m and r = m + 4(2g + 1). Let Ŝ
be a closed orientable surface of genus h. Let S be the complement of the union
of disks of centers b1, . . . , br in Ŝ. We construct a family of Lefschetz fibrations
fg,m : Xg,m → Ŝ with general fiber Σg such that the corresponding holonomies are
irreducible but the slopes of the total spaces are small.

5.1. The holonomies. Let {{Xi}2g+1
i=1 ,A1,A2,A3,B1,B2} be a system of sim-

ple closed curves on Σg taken as in Figure 2. Let τi and τα be the mapping

Figure 2. Curves on Σg: The numbers in circles enumerate handles.

classes of negative Dehn twists along Xi for i = 1, · · · , 2g + 1 and along α ∈
{A1,A2,A3,B1,B2}, respectively. We define

φ1 = τA3
,

φ2 = τ8 τB2
τA3

τ8,

φ3 = τ4 τB1
τ6 τ7 τA2

τ6 τ5 τ4,

φ4 = τ−1
5 τA3

,

φ5 = τA1
.

Then from Proposition 14 of [2], the mapping classes φi above satisfy

(5.1) [φ1, φ2][φ3, φ4]φ5 = 1.
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Let α1, β1, . . . , αh, βh, γ1, . . . , γr be a canonical system of simple closed curves gen-
erating π1(S) with

(5.2)

m∏
i=1

[α2i−1, β2i−1][α2i, β2i]γi

r∏
j=m+1

γj = 1,

so that each γi represents a simple closed curve around bi. Hence, we can define
a homomorphism ρ from π1(S) to Mod(Σg) by setting ρ(α2i−1), ρ(β2i−1), ρ(α2i),
ρ(β2i), and ρ(γi) as φ1, φ2, φ3, φ4, and φ5 respectively for i = 1, · · · ,m, and

ρ(γm+j) = τk (1 ≤ j ≤ 2g + 1, 4g + 3 ≤ j ≤ 6g + 3),

ρ(γm+j) = τ2g+2−k (2g + 2 ≤ j ≤ 4g + 2, 6g + 4 ≤ j ≤ 8g + 4),

where k ≡ j mod 2g+1 with 1 ≤ k ≤ 2g+1. Indeed, by the hyperelliptic relation,
it is known that

(τ1 τ2 · · · τ2gτ22g+1τ2g · · · τ2 τ1)2 = 1,

and the homomorphism ρ given above is well-defined (see [3]).
Since ρ(γi) (i = 1, · · · , r) are all negative Dehn twists, by Proposition 2.1, we

get a Lefschetz fibration fg,m : Xg,m → Ŝ.

5.2. The signatures and the slopes. The purpose of this section is to show the
following.

Theorem 5.1. The signature of Xg,m is equal to −m− 4(g + 1).

Proof. Since each vanishing cycle is non-dividing, the signature of Xg,m is equal
to X ′

g,m = f−1(S) (see [3]). By definition, it follows that χ(κ2i−1) = χ(κ1),

χ(κ2i) = χ(κ2), and χ(κ2i−1κ2i) = χ(γ−1
i ) = χ(γ−1

1 ) for i = 1, · · · ,m. Hence
by a straightforward calculation, one can see that

τh(χ(κ2i−1), χ(β2i−1)) = τh(χ(κ1), χ(β1)) = 0,

τh(χ(κ2i), χ(β2i)) = τh(χ(κ2), χ(β2)) = −1,

τh(χ(κ1 · · ·κ2i−1), χ(κ2i)) = τh(χ(γ
−i+1
1 κ1), χ(κ2)) = −1,

τh(χ(κ1 · · ·κ2i−2), χ(κ2i−1)) = τh(χ(γ
−i+1
1 ), χ(κ1)) = 0

for i = 1, · · · ,m. By (5.1),
∏m

i=1 κ2i−1κ2i

∏m
i=1 γi = 1. Hence, we get

τh(χ(κ1 · · ·κ2mγ1 · · · γj−1), χ(γj)) = τh(χ(γ
−m+j−1
1 ), χ(γ1)) = 1

for j = 1, · · · ,m. Since the product
∏r

j=m+1 ρ(γj) is the hyperelliptic relation in

Mod(g), we have

r∑
j=m+1

τh(χ(κ1 · · ·κ2mγ1 · · · γj−1), χ(γj))

=

4(2g+1)∑
j=1

τh(χ(γm+1 · · · γm+j−1), χ(γm+j))

= 4(g + 1)
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(see [3]). Thus, by Proposition 3.1, we get

σ(Xg,m) = σ(X ′
g,m)

=

h∑
i=1

τh(χ(κi), χ(βi))−
h∑

i=2

τh(χ(κ1 · · ·κi−1), χ(κi))

−
r−1∑
j=1

τh(χ(κ1 · · ·κhγ1 · · · γj−1), χ(γj))

= m(0 + (−1))− (m− 1) · (0 + (−1))− ((m− 1) · 1 + 4(g + 1))

= −m− 4(g + 1).

�

Corollary 1. The slope of Xg,m is −(m − 4g + 4)/g if g > 0. In particular, for

any p/q ∈ Q with p + 4q ≥ 1 and q ≥ 1, there is a Lefschetz fibration f : X → Ŝ
with the irreducible monodromy such that the slope of X is equal to −p/q.

Proof. The first statement is obtained from a simple calculation. For the second
statement, consider the equation (m − 4g + 4)/g = p/q. Then there is a non-zero
integer a such that m−4g+4 = ap and g = aq. This means that m = a(p+4q)−4
and g = aq. Thus, when p and q satisfy the conditions p + 4q ≥ 1 and q ≥ 1,
take a ≥ 1 such that a(p + 4q) − 4 ≥ 1 and set m = a(p + 4q) − 4 and g = aq.

Then the Lefschetz fibration fg,m : Xg,m → Ŝ has the slope −p/q. Moreover, from
Theorem 3.1 of [8], we can see that

ρ(γm+1γ
−1
m+2γm+3 · · · γm+2g−1γ

−1
m+2gγm+2g+1)

is a pseudo-Anosov homeomorphism on Σg, and hence the holonomy group is irre-
ducible. �

6. Concluding remarks

6.1. The holonomy group of the fibration Xg,m → Ŝ in §5 contains the Dehn-
Lickorish-Humphries generator of the mapping class group which consists of Dehn
twists along Xi for all i = 1, · · · , 2g and along A1 ([4]). Hence, the holonomy group
coincides with the whole of Mod(g), which also implies the irreducibility of the
holonomy of Xg,m. The authors thank Professor Hisaaki Endo for pointing this
out. The authors do not know of the existence of a surface bundle whose holonomy
group is irreducible but “small”, for instance, a subgroup of infinite index.

However, the holonomy can be “small” if the fibers are allowed to have punctures.
Indeed, letR be a closed Riemann surface of genus g ≥ 2. SetX = R×R\{diagonal}
and consider the first projection π : X → R. Then the holonomy group is a
subgroup of the mapping class group Mod(g, 1) of Σg − {point} of infinite index.
In fact, it coincides with the kernel π1(Σg) of Birman’s exact sequence

1 → π1(Σg) → Mod(g, 1) → Mod(g) → 1

(see [5]). Since (X, π,R) is a holomorphic family of Riemann surfaces, the holonomy
group is irreducible, as remarked in §2.3.
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6.2. We have considered the slope inequality and the irreducibility of the holonomy
group each of which is a necessary condition for a Lefschetz fibration to admit a
complex structure. However, examples given in §4 and §5 show that neither of
them is a sufficient condition. As we mentioned in the introduction, the slope
inequality is a complex geometric condition and the irreducibility of the holonomy
is a topological condition, so they reflect different aspects of the Lefschetz fibration.

It is optimistically thought that a Lefschetz fibration f : X → Ŝ admits a
complex structure when it satisfies the slope inequality (2.1) and its holonomy

group is irreducible. However, I. Smith showed that if the genus of Ŝ is zero, the
holonomy group is always irreducible (see Corollary 4.3 of [10]). On the other hand,
when the base surface is of genus zero, it is conjectured that the slope inequality
also holds for every Lefschetz fibration (by R. Hain; see Question 5.10 of [1] and
also see Conjecture 4.12 of [3]).

In any case, it might be expected that a condition other than the slope inequality
and the irreducibility of the holonomy group is required for the Lefschetz fibration
to admit a complex structure.
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