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CARATHÉODORY MEASURE HYPERBOLICITY

AND POSITIVITY OF CANONICAL BUNDLES

SHIN KIKUTA

(Communicated by Franc Forstneric)

Abstract. In this paper, we prove that the curvature of the Carathéodory
pseudo-volume form is bounded above by −1. On the set where the pseudo-
volume form is non-degenerate, the curvature current of the singular Hermitian
metric associated with the Carathéodory pseudo-volume form is proved to be
strictly positive. Due to these curvature properties, we obtain an explicit re-

lation between the Carathéodory measure hyperbolicity and the positivity of
the canonical bundle. Moreover, we show a relation between the Carathéodory
measure hyperbolicity, the existence of the Bergman kernel form and the ex-
istence of the Bergman metric.

1. Introduction

The positivity of the canonical bundle of a complex manifold is an important no-
tion in algebraic geometry. In differential geometry, the positivity of the curvature
of the pseudo-volume form associated to a complex manifold corresponds to the
algebraic geometric positivity of the canonical bundle. The Bergman kernel form
is used to prove the positivity of the canonical bundle in transcendental methods.

In this paper, we are concerned with the Kobayashi’s curvature and the curvature
current of the Carathéodory pseudo-volume form on a complex manifold. We clarify
the relationship between the positivity of the Carathéodory pseudo-volume form
and the positivity of the Bergman kernel form.

The Carathéodory pseudo-volume form is an important tool for studying holo-
morphic mappings between equidimensional complex manifolds. The definition
of the Carathéodory pseudo-volume form vCX on a complex manifold X is anal-
ogous to that of the Carathéodory pseudo-metric. Regarding the pseudo-metric,
Wong [10], Burbea [2] and Suzuki [9] showed that the holomorphic sectional cur-
vature of the Carathéodory pseudo-metric is bounded above by −1. Regarding the
pseudo-volume form, henceforth denoted by v, Kobayashi [6] defined its curvature
Kv by

Kv := − 2n

(n+ 1)nn!

(
√
−1∂∂ log v)n

v

on the open set where v is C2 and non-degenerate.
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In Section 2, we define the curvature KvC
X

of the continuous pseudo-volume

form vCX analogously, by using the positivity of its curvature current Θ(vC
X )−1 :=√

−1∂∂ log vCX . Here, we regard (vCX)−1 as a singular Hermitian metric on the
canonical bundle KX of X. When vCX is non-trivial, i.e., when X is Carathéodory
measure hyperbolic, we prove that, on a Carathéodory measure hyperbolic complex
manifold, the curvature KvC

X
is bounded above by −1 and the curvature current√

−1∂∂ log vCX is strictly positive on the open set where vCX is non-degenerate.

Theorem 1.1. Let X be a Carathéodory measure hyperbolic complex manifold.
Then the curvature KvC

X
of the Carathéodory pseudo-volume form vCX is bounded

above by −1, and the curvature current Θ(vC
X )−1 is strictly positive on the open set

where vCX is non-degenerate.

Wu [11] stated the second part of Theorem 1.1 without proof. We prove Theo-
rem 1.1 in Section 3.

Thanks to Theorem 1.1, we show that Carathéodory measure hyperbolicity im-
plies the positivity of the canonical bundle.

Corollary 1.2. Let X be a compact complex manifold and X̃ its universal covering
space.

Then we have

vol(KX) ≥ n!(n+ 1)n

(4π)n
volvC

X̃
(X),

where volvC
X̃
is the measure on X with respect to vC

X̃
. Especially, if X̃ is Carathéodory

measure hyperbolic, then X is of general type.
If X̃ is strongly Carathéodory measure hyperbolic, i.e., vC

X̃
is positive everywhere

on X̃, then X is projective algebraic with the ample canonical bundle.

To prove this result, we use another expression formula (Popovici [8]) of the
volume of the canonical bundle

vol(KX) := lim sup
m→∞

n!
h0(mKX)

mn

with respect to the curvature currents and Richberg’s regularization theorem. Corol-
lary 1.2 shows that the Carathéodory measure hyperbolicity, namely, the positivity
of the Carathéodory pseudo-volume form, leads explicitly to the positivity of the
canonical bundle.

Remark that the Carathéodory pseudo-volume form and the Bergman kernel
form are intrinsic: they depend only on the complex structure of X. Thanks
to Corollary 1.2, we show that the Carathéodory measure hyperbolicity, i.e., the
positivity of the Carathéodory pseudo-volume form, implies the positivity of the
Bergman kernel form and of the Bergman metric.

Theorem 1.3. Assume that X̃ is a Carathéodory measure hyperbolic manifold
with a smooth compact quotient. Then the Bergman kernel form is positive and
the Bergman metric is strictly positive on the open set where the Carathéodory
pseudo-volume form vC

X̃
is positive.

In Section 4 we prove Theorem 1.3 by using the Carathéodory measure hyper-
bolicity and some L2 estimates for the ∂ operator (cf. Chen [3]).
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2. Some basic properties and definition of the curvature

for the Carathéodory pseudo-volume forms

Henceforth, X denotes a connected paracompact complex manifold.

Definition 2.1 ([10]). The Carathéodory pseudo-volume form vCX on a complex
manifold X is defined by

vCX := sup{f∗v1 ; f ∈ Hol(X,Bn)},
where v1 := 2n(1 − |z|2)−(n+1)

∧n
α=1 dz

α ∧ dzα is the Poincaré volume form on
the n-dimensional complex ball Bn and Hol(X,Bn) is the space of all holomorphic
mappings from X to B

n.

Since Bn is homogeneous, the Ascoli-Arzelà theorem tells us that, for any x ∈ X,
there exists fx ∈ Hol(X,Bn) with fx(x) = o such that

(vCX)x = sup{(f∗v1)x : f ∈ Hol(X,Bn), f(x) = o} = (f∗
xv1)x.

Therefore the pseudo-volume form is continuous on X. Thus, Z(vCX) := {x ∈
X ; (vCX)x = 0} is a closed analytic subset of X.

We recall the definition of the curvature of the regular pseudo-volume forms:

Definition 2.2 ([10]). For any pseudo-volume form v, we define the curvature Kv

by

Kv := − 2n

(n+ 1)nn!

(
√
−1∂∂ log v)n

v
,

where the pseudo-volume form is non-degenerate and C2.

Now, we want to define a notion of curvature for the Carathéodory pseudo-
volume form analogously. In general, however, the Carathéodory pseudo-volume
form is not regular enough, not even continuous; thus we cannot apply this defini-
tion to vCX directly. Nevertheless, since the logarithm of the Carathéodory pseudo-

volume form is plurisubharmonic,
√
−1∂∂ log vCX is a positive (1, 1)-current. In par-

ticular, it is a normal current, i.e., a (1, 1)-form whose coefficients are Radon mea-
sures. Therefore, we can take the absolutely continuous part of

√
−1∂∂ log vCX with

respect to the Lebesgue measure. Denote it by (
√
−1∂∂ log vCX)ac. Its coefficients

are locally integrable functions. We define the curvature KvC
X

of the Carathéodory

pseudo-volume form by replacing
√
−1∂∂ log vCX with (

√
−1∂∂ log vCX)ac in the above

definition:

Definition 2.3. The curvature KvC
X

of the Carathéodory pseudo-volume form vCX
is defined by

KvC
X
:= − 2n

(n+ 1)nn!

(√
−1∂∂ log vCX

)n
ac

vCX
.

3. Proof of Theorem 1.1

We prove the first part of Theorem 1.1. It is sufficient to prove locally that

(√
−1∂∂ log vCX

)n
ac

≥ (n+ 1)nn!

2n
vCX

almost everywhere onX. Hence we may consider that vCX and f∗
xv1 are non-negative

functions.
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We fix a countable dense subset {xi}i∈N ⊂ X such that vCk := maxj=1,2,...,k f
∗
xj
v1

k→∞−→ vCX on X, where the convergence is locally uniform. Now for any k ∈ N,
we take sequences of positive numbers (εj(l))l∈N (j = 1, 2, . . . , k) such that each
(εj(l))l∈N decreases monotonously to 0. Furthermore, we require these sequences
to satisfy the following property: for any l ∈ N, the set defined by the equation
log f∗

xi
v1 + εi(l) = log f∗

xj
v1 + εj(l) is of Lebesgue measure zero for each i, j ∈

{1, 2, . . . k} with i < j. Finally, we also have the locally uniform convergence

maxj=1,2,...,k(log f
∗
xj
v1 + εj(l))

l→∞−→ log vCk on X.

For each i ∈ {1, 2, . . . , k}, on the open set defined by the inequality log f∗
xi
v1 +

εi(l) > maxj=1,2,...,̂i,...,k(log f
∗
xj
v1 + εj(l)), we obtain, by setting Kv1 ≡ −1,

(√
−1∂∂ max

j=1,2,...,k
(log f∗

xj
v1 + εj(l))

)n

=
(√

−1∂∂(log f∗
xi
v1 + εi(l))

)n

=
(√

−1∂∂ log f∗
xi
v1
)n ≥ f∗

xi
(
√
−1∂∂v1)

n = f∗
xi

(
n!(n+ 1)n

2n
v1

)

≥ n!(n+ 1)n

2n
exp

(

max
j=1,2,...,k

(log f∗
xj
v1 + εj(l))− max

j=1,2,...,k
εj(l)

)

.

Therefore, because of choice of the sequences {(εj(l))l∈N}j=1,2,...,k, we infer that

(√
−1∂∂ max

j=1,2,...,k
(log f∗

xj
v1 + εj(l))

)n

ac

≥ n!(n+ 1)n

2n
exp

(

max
j=1,2,...,k

(log f∗
xj
v1 + εj(l))− max

j=1,2,...,k
εj(l)

)

almost everywhere on X.
To conclude, we need the following key lemma by Boucksom:

Lemma 3.1 ([1]). Let (Tk)k∈N, T be positive (1, 1)-currents on X. If Tk

k→∞
−⇀ T,

we have (Tac)
n ≥ lim infk→∞(Tk)

n
ac.

We apply this lemma with Tl =
√
−1∂∂maxj=1,2,...,k(log f

∗
xj
v1 + εj(l)) and T =√

−1∂∂maxj=1,2,...,k log f
∗
xj
v1 to obtain

(
√
−1∂∂ log vCk )

n
ac ≥

n!(n+ 1)n

2n
vCk .

Applying this lemma once again with Tk =
√
−1∂∂ log vCk and T =

√
−1∂∂ log vCX ,

we obtain the desired inequality:

(
√
−1∂∂ log vCX)nac ≥

n!(n+ 1)n

2n
vCX .

We prove the second part of Theorem 1.1. It is sufficient to prove that for any
x0 ∈ X\Z(vCX), there exists a small compact neighborhoodK of x0 in a holomorphic

chart (U ; z1, z2, . . . , zn) centered at x0 such that
√
−1∂∂ log vCX is strictly positive

there.
For a compact neighborhood K of x0 in (U ; z1, z2, . . . , zn), set

K := {fx ∈ Hol(X,Bn) ; x ∈ K}.
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Then, we have log vCX |K = supf∈K log f∗v1, and for any f ∈ K, the inequality

√
−1∂∂ log f∗v1(3.1)

≥
√
−1(n+ 1)

{
(1− |f(z)|2)δij + f i(z)f j(z)

(1− |f(z)|2)2

}
∂f i

∂zα
∂f j

∂zβ
dzα ∧ dzβ

holds true.
Next we prove two key lemmas regarding the compactness of K and the existence

of an appropriate neighbourhood K.

Lemma 3.2. K is compact in C(X,Bn).

Proof. By the complete Kobayashi hyperbolicity of Bn and the compactness of K,
K is relatively compact in C(X,Bn).

Let (fxi
)i∈N ⊂ K, i.e. , {xi}i∈N ⊂ K with fxi

i→∞−→ f∞ in C(X,Bn) for some
f∞ ∈ Hol(X,Bn). By the compactness of K, there exists a subsequence (xi(k))k∈N

of (xi)i∈N such that xi(k)
k→∞−→ x∞ for some x∞ ∈ K. Then f∞(x∞) = o and, since

vCX is continuous, we obtain

(vCX)x∞ = lim
k→∞

(vCX)xi(k)
= lim

k→∞
(f∗

xi(k)
v1)xi(k)

= (f∗
∞v1)x∞ .

Hence K is closed in C(X,Bn) and is thus compact. �

Lemma 3.3. There exists K, small enough, such that, for some constant C > 0,
∣
∣
∣
∣
∣
∣

⎛

⎝
n∑

β=1

∂f i

∂zβ
(z)ζβ

⎞

⎠

i=1,2,...,n

∣
∣
∣
∣
∣
∣
≥ C|ζ|

holds for all z ∈ K, f ∈ K and ζ = (ζβ)β=1,2,...,n ∈ C
n.

Proof. We use reductio ad absurdum. Suppose that, for any ε > 0, there exist

zε, wε ∈ U and ζε ∈ C
n with |ζε| = 1 such that zε

ε→0−→ x0, wε
ε→0−→ x0 and

∣
∣
∣
∣
∣
∣

⎛

⎝
n∑

β=1

∂f i
zε

∂zβ
(wε)(ζε)

β

⎞

⎠

i=1,2,...,n

∣
∣
∣
∣
∣
∣
≤ ε.

Then, by using the convergent subsequences of zε, wε, fzε and ζε as in the proof of
Lemma 3.2, we can find fx0

and ζ0 ∈ C
n with |ζ0| = 1 such that

∣
∣
∣
∣
∣
∣

⎛

⎝
n∑

β=1

∂f i
x0

∂zβ
(x0)(ζ0)

β

⎞

⎠

i=1,2,...,n

∣
∣
∣
∣
∣
∣
= 0.

This contradicts (vCX)x0
= (f∗

x0
v1)x0


= 0. �

We now fix a compact set K as in Lemma 3.3. Since {f(z) ∈ B
n ; f ∈ K, z ∈ K}

is compact by Lemma 3.2, we infer from (3.1) that there exists some constant C ′ > 0
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such that

(n+ 1)

{
(1− |f(z)|2)δij + f i(z)f j(z)

(1− |f(z)|2)2

}
∂f i

∂zα
∂f j

∂zβ
ζαζβ(3.2)

≥ C ′

∣
∣
∣
∣
∣
∣

⎛

⎝
n∑

β=1

∂f i

∂zβ
(z)ζβ

⎞

⎠

i=1,2,...,n

∣
∣
∣
∣
∣
∣

2

for any z ∈ K, f ∈ K and ζ = (ζβ)β=1,2,...,n ∈ C
n. Moreover, it follows from (3.2)

and Lemma 3.3 that

(n+ 1)

{
(1− |f(z)|2)δij + f i(z)f j(z)

(1− |f(z)|2)2

}
∂f i

∂zα
(z)

∂f j

∂zβ
(z)ζαζβ ≥ c|ζ|2

for all z ∈ K, f ∈ K and ζ = (ζβ)β=1,2,...,n ∈ C
n, where we have set c := C2 · C ′.

These inequalities altogether imply
√
−1∂∂ log vCX ≥ c

√
−1∂∂|z|2

on K.
Finally, we prove Corollary 1.2. Regarding the first part of this corollary, we

combine the first part of Theorem 1.1 with a formula for the volume of a line
bundle L by Boucksom and Popovici:

Theorem 3.4 ([1], [8]). Let X be a compact complex manifold and L a holomorphic
line bundle over X. Then we have

vol(L) = sup

{∫

X

Tn
ac ; T ∈ c1(L) is a positive (1, 1)-current

}

.

We will apply this result with L = KX . First, note that the Carathéodory
pseudo-volume form vC

X̃
of the universal covering X̃ on X is biholomorphically

invariant. Thus, we can regard (vC
X̃
)−1 as a singular Hermitian metric on KX .

Hence we can take T = (2π)−1Θ(vC
X̃
)−1 ∈ c1(KX) in Theorem 3.4. From the first

part of Theorem 1.2, we conclude that

vol(KX) ≥
∫

X

(
1

2π

√
−1∂∂ log vCX

)n

ac

≥ n!(n+ 1)n

(4π)n
volvC

X̃
(X).

To prove the second part of this corollary, we apply Richberg’s regularization
technique ([5]) to the continuous strictly plurisubharmonic function log vC

X̃
. We use

this to regularize the singular Hermitian metric (vC
X̃
)−1 while keeping the strict

positivity of the curvature current. Hence we get a smooth Hermitian metric on
KX that has the strictly positive curvature form on X. By Kodaira’s embedding
theorem, X turns out to be a projective algebraic manifold with ample KX .

4. Proof of Theorem 1.3

We denote by (α, β) :=
√
−1

n2 ∫
X
α ∧ β the Hermitian inner product of two

(n, 0)-forms α, β. Recall the definitions of the Bergman kernel and metric:

Definition 4.1. Let X be a paracompact connected complex manifold and {αi}∞i=0

be a complete orthonormal system of the Hilbert space L2(Ωn
X) consisting of the
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holomorphic n-form α satisfying ‖α‖2 = (α, α) < ∞. The Bergman kernel vBX on
X is defined by

vBX :=
∞∑

i=0

√
−1

n2

αi ∧ αi = sup
α∈L2(Ωn

X), ‖α‖=1

√
−1

n2

α ∧ α.

The pseudo-metric associated to the curvature form Θ(vB
X )−1 of the singular Her-

mitian metric (vBX)−1 as the fundamental (1, 1)-form is called the Bergman pseudo-
metric on X. When Θ(vB

X )−1 is non-degenerate on X, we call it the Bergman metric
on X.

To prove Theorem 1.3, we start by using some L2 estimates for the ∂ operator
in order to construct the suitable elements in L2(Ωn

X) by following Chen [3].

Let X̃ be a Galois covering of a compact complex manifold X and let πX :
X̃ → X be the covering map. Note that vC

X̃
is biholomorphically invariant, and we

can consider it as defined on X. We proceed to construct the weight function and
complete Kähler domain in X̃ to set up the suitable L2 space in order to use the
L2 estimate for the ∂ operator.

First we construct the weight function. Let {xi}i∈N ⊂ X̃ be a countable dense
subset such that

X̃ \ Z(vC
X̃
) =

∞⋃

i=1

Ui, Ui := X̃ \
(
df1

xi
∧ df2

xi
∧ · · · ∧ dfn

xi

)−1
(0)

for fxi
= (f1

xi
, . . . , fn

xi
) ∈ Hol(X̃,Bn) in the notation of Section 2. Consider the

smooth and bounded plurisubharmonic function

φ := log

(

1 +

∞∑

i=1

1

2i
‖fxi

‖2
)

,

where ‖fxi
‖2 :=

∑n
j=1 |f j

xi
|2 < 1.

Lemma 4.2. φ is strictly plurisubharmonic on X̃ \ Z(vC
X̃
).

Proof. We denote by gk (k = 0, 1, 2, . . . ) the bounded holomorphic functions in
the definition of φ as they come ordered in the sum: g0 = 1, g1 = 1

2f
1
x1
, g2 =

1
2f

2
x1
, . . . , gn+1 = 1

2f
n
x1
, gn+2 = 1

22 f
1
x2
, and so on. We set log κ := log

(∑∞
k=0 |gk|2

)
.

Now, take any point x ∈ X̃\Z(vC
X̃
) and let i ∈ N such that x ∈ Ui. By the definition

of fx and Ui, (zα)α=1,2,...,n = (fα
xi
)α=1,2,...,n is a holomorphic local coordinate

system around x of X̃. The complex Hessian with respect to this coordinate system
is

(4.1)
∂2φ

∂zα∂zβ
=

1

κ2

∞∑

k<l

{

gk
∂gl
∂zα

− ∂gk
∂zα

gl

}{

gk
∂gl
∂zβ

− ∂gk
∂zβ

gl

}

.

Therefore for any ζ = (ζα)α=1,2,...,n ∈ C
n we obtain

n∑

α,β=1

∂2φ

∂zα∂zβ
(x)ζαζβ =

∞∑

k<l

∣
∣
∣
∣
∣

n∑

α=1

{

gk(x)
∂gl
∂zα

(x)− ∂gk
∂zα

(x)gl(x)

}
ζα

κ(x)

∣
∣
∣
∣
∣

2

,

which is equal to 0 if and only if
n∑

α=1

{

gk(x)
∂gl
∂zα

(x)− ∂gk
∂zα

(x)gl(x)

}

ζα = 0
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for any k, l = 0, 1, . . . . If, in the last expression, for any β = 1, 2, . . . , n we take l = 0
and k ∈ N such that gk = 1

2i f
β
xi
, fβ

xi
= zβ holds, then ζβ vanishes because of the

choice of the local coordinate system (zα)α=1,2,...,n = (fα
xi
)α=1,2,...,n. Therefore the

Hermitian form (4.1) vanishes if and only if ζ = 0, which means that φ is strictly

plurisubharmonic at any x ∈ X̃ \ Z(vC
X̃
). �

Second, we construct a complete Kähler domain in X̃. By hypothesis, X̃ has
a smooth compact quotient complex manifold X, and by Corollary 1.2, X is of
general type. Hence Moishezon’s theorem ([7]) implies that there exists a projective

manifold Y obtained after finitely many blow-ups σ : Y = YN
σN→ YN−1 · · ·Y2

σ2→
Y1

σ1→ Y0 = X along smooth centers Sk ⊂ Yk for all k = 0, 1, . . . , N − 1. Denote by
Ek+1 the divisor on Yk+1 and by Sk the subvariety of Yk with codimYk

Sk ≥ 2 such

that σk+1 : Yk+1 \Ek+1
∼→ Yk \Sk is biholomorphic for any k = 0, 1, . . . , N − 1. Set

(πX)−1(S0) by S̃0. We see that the blow-up Ỹ1
σ̃1→ X̃ along S̃0 is the covering space

πY1
: Ỹ1 → Y1 over Y1 satisfying the commutative diagram

Ỹ1
σ̃1−→ X̃

πY1
↓ � ↓ πX

Y1
σ1−→ X.

By iterating this process, we obtain the following commutative diagram:

σ̃ : Ỹ = ỸN
σ̃N−→ ỸN−1 → · · · → Ỹ1

σ̃1−→ X̃

πY ↓ � ↓ πYN−1
· · · πY1

↓ � ↓ πX

σ : Y
σN−→ YN−1 → · · · → Y1

σ1−→ X.

The maps in rows are the blow-ups; the maps in columns are the coverings. Now,
we can take a divisor E on Y and an analytic subset S of X of codimXS ≥ 2. Set
Ẽ := (πY )

−1(E) and S̃ := (πX)−1(S). We obtain the commutative diagram

(4.2)

Ỹ \ Ẽ σ̃−→ X̃ \ S̃
πY ↓ � ↓ πX

Y \ E σ−→ X \ S.
The horizontal maps are biholomorphic.

By the biholomorphic invariance of the Carathéodory pseudo-volume form and
diagram (4.2), we have

σ̃∗vC
X̃
|Ỹ \Ẽ = σ̃∗vC

X̃\S̃ = vC
Ỹ \Ẽ = vC

Ỹ
|Ỹ \Ẽ .

Here we have used the Riemann extension theorem in the first and last equalities.
Since the Carathéodory pseudo-volume form is continuous, we have σ̃∗vC

X̃
= vC

Ỹ
.

Since Z(vC
Ỹ
) = Ẽ ∪ σ̃−1(Z(vC

X̃
)), the map

(4.3) σ̃ : Ỹ \ Z(vC
Ỹ
)

∼→ X̃ \
(
S̃ ∪ Z(vC

X̃
)
)

is a biholomorphism.

The domain D := X̃ \
(
S̃ ∪ Z(vC

X̃
)
)
is the desired complete Kähler domain in X̃.

To prove this, it is sufficient by (4.3) to prove that Ỹ \ ZC
Ỹ

has a complete Kähler

metric. This follows by a similar construction of Demailly [4, p. 471, Lemma 7.2].
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Lemma 4.3. Ỹ \ ZC
Ỹ

has a complete Kähler metric ωY .

Proof. We observe that Ỹ has a complete Kähler metric ω0. Furthemore, there
exists a smooth Hermitian metric h on KỸ satisfying ω0 ≥ Θh and the invariance
by the covering transformation. By using h, we construct an upper continuous
function τ by

τ := log

( ∞∑

i=1

1

2i
h̃(df1

xi
∧ · · · ∧ dfn

xi
, df1

xi
∧ · · · ∧ dfn

xi
)

)

,

where τ is well defined since ‖fx‖ < 1. Notice that τ is bounded by above. We
may assume, without loss of generality, that it is smaller than or equal to −1.
We remark that τ−1(−∞) = Z(vC

Ỹ
) and

√
−1∂∂τ ≥ −Θh ≥ −ω0. Therefore we

can construct a complete Kähler metric ω on Ỹ \ Z(vC
Ỹ
) using τ and ω0 by the

same argument as Demailly in [4, p. 471, Lemma 7.2]: it suffices to set ωỸ :=

3ω0 +
√
−1∂∂ (τ − log(−τ )). �

To complete the proof, we use the next result by Chen in [3] applied to the

complete Kähler manifold (D,ωD := ((σ̃|Ỹ \ ZC
Ỹ
)−1)∗ωY ):

Proposition 4.4. Let (M,ωM ) be a complete Kähler manifold. Suppose that there
exists on M a bounded smooth strictly plurisubharmonic function φ. Then M pos-
sesses a Bergman kernel and metric.

This proposition directly implies the existence of the Bergman kernel and metric

on D = X̃ \
(
S̃ ∪ Z(vC

X̃
)
)
. Regarding the existence on X̃ \Z(vC

X̃
), we observe that

the proof of Proposition 4.4 turns out to be applicable to every point in S̃ \Z(vC
X̃
)

since the φ constructed above is strictly plurisubharmonic there. The existence of
the Bergman kernel and of the Bergman metric on X̃ \ Z(vC

X̃
) follows.

Acknowledgements

The author would like to express his thanks to Professors Shigetoshi Bando and
Hajime Tsuji for their kindness and valuable advice.

References

1. S. Boucksom, On the volume of a line bundle, Internat. J. Math. 13 (2002), no. 10, 1043–1063.
MR1945706 (2003j:32025)
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