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EXPONENTIAL SCALE MIXTURE OF MATRIX VARIATE

CAUCHY DISTRIBUTION

AMADOU SARR AND ARJUN K. GUPTA

(Communicated by Edward C. Waymire)

Abstract. In this paper, we introduce a new subclass of matrix variate ellip-
tically contoured distributions that are obtained as a scale mixture of matrix
variate Cauchy distribution and exponential distribution. We investigate its
properties, such as stochastic representation and characteristic function. Un-
like Cauchy distribution, it is shown that the generating variate of the new
distribution possesses finite moments. The distributions of the unbiased esti-
mators of μ and Σ are derived. Furthermore, an identity involving a special

function with a matrix argument is also obtained.

1. Introduction

In recent years, much attention has been paid to elliptically contoured distribu-
tions. The most important results related to vector variate elliptical distributions
can be found in the book by Fang et al. (1990), while matrix variate elliptical
distributions have been studied by Fang and Zhang (1990), and Gupta and Varga
(1993), among others. Fang and Anderson (1990) include a large number of refer-
ences before 1990 in this area. The following definition is taken from Gupta and
Varga (1993).

Definition 1.1. Let X be a p×n random matrix. Then X is said to have a matrix
variate elliptically contoured (m.e.c.) distribution if its characteristic function has
the form

(1)

φX(T) = etr(iT′M)ψ[tr(T′ΣTΦ)] with T ∈ Rp×n, M ∈ Rp×n, Σ ∈ Rp×p,

Φ ∈ Rn×n, Σ ≥ O, Φ ≥ O and ψ : [ 0, ∞[ → R.

The matricesM, Σ and Φ are the parameters of the distribution, and etr(·) denotes
the exponential of the trace function.

This distribution is denoted by X ∼ Ep,n(M,Σ⊗Φ, ψ). The function ψ is called
the characteristic generator (c.g.). As a special case, when ψ(·) is specified by
ψ(z) = exp(− z

2 ), then X has a matrix variate normal distribution. The class
of elliptically contoured distributions includes the familiar normal one and shares
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many of its properties. In particular, this class possesses the linearity property. In
other words, any linear combination of elliptical distributions is another elliptical
distribution with the same (c.g.) ψ. If n = 1, then x ∼ Ep(m,Σ, ψ) is said to have a
vector variate elliptical distribution. The relationship, in terms of the distributions,
of the matrix and the vector is illustrated as follows:
(2)
X ∼ Ep,n(M,Σ⊗Φ, ψ) if and only if x = vec(X′) ∼ Epn(vec(M

′),Σ⊗Φ, ψ).

Here, vec(A) is defined by

vec(A) =

⎛
⎜⎜⎜⎝

a1
a2
...
an

⎞
⎟⎟⎟⎠ ,

where a1,. . . ,an denote the columns of the p× n matrix A. Following Schoenberg
(1938), Fang and Anderson (1982) derived a stochastic representation of matrix
variate elliptical distributions as follows.

Theorem 1.1. Let X be a p × n random matrix. Let M be p × n, Σ be p × p
and Φ be n × n constant matrices, with Σ ≥ O, Φ ≥ O, rank(Σ) = p1, and
rank(Φ) = n1. Then

X ∼ Ep,n(M,Σ⊗Φ, ψ)

if and only if

(3) X
d
= M+RAUB′,

where U is p1 × n1 and vec(U′) is uniformly distributed on the unit sphere Sp1n1
,

R is a nonnegative random variable, R and U are independent, Σ = AA′ and
Φ = BB′ are rank factorizations of Σ and Φ. Moreover

(4) ψ(y) =

∫ ∞

0

Ωp1n1
(R2y)dF (R), y ≥ 0,

where Ωp1n1
(t′t), t ∈ R

p1n1 , denotes the characteristic generator of vec(U′) and
F (r) denotes the distribution function of R.

The expression M + RAUB′ is called the stochastic representation of X. In

relation (3), the notation
d
= stands for “equality in distribution”. The random

matrix X does not, in general, possess a probability density function (p.d.f.). But
if it does, it will have the following form (see Gupta and Varga (1993), p. 26):

(5) f(X) = | Σ |−
n
2 | Φ |−

p
2 h(tr((X−M)′Σ−1(X−M)Φ−1)),

where Σ > O and Φ > O. The function h is called the density generator
of the distribution. For example, we obtain the matrix variate Pearson type VII
distribution if we take

h(z) =
Γ (q)

(mπ)
np
2 Γ

(
q − np

2

)
(
1 +

z

m

)−q

with m > 0 and q > np
2 . This subclass of matrix variate elliptical distributions

includes the well known matrix variate t-distributions, and therefore Cauchy dis-
tributions as special cases. Throughout this paper, we focus our attention on the
matrix variate elliptical distribution that possesses a density. The main aim of this
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work is to introduce and investigate a subclass of matrix variate elliptical distri-
butions that is obtained from Cauchy distribution by using a method of mixture.
Indeed, such a method allows one to generate other subclasses of matrix variate
distributions. For the vector case, this is defined in the book by Muirhead (1982).
Gupta and Varga (1993) gave an extension of the above-quoted result for the matrix
variate elliptical distributions.

The paper is organized as follows: In section 2, we will define the subclass of the
scale mixture of Cauchy distribution (SMC) and provide its density. Some proper-
ties of SMC distributions will be investigated in section 3. Finally the distributions
of the unbiased estimators of μ and the scale matrix Σ are obtained in section 4.

2. Scale mixture-Cauchy distribution

Before giving the definition of this distribution, we need the following result, due
to Gupta and Varga (1993).

Theorem 2.1. Let X ∼ Ep,n(M,Σ⊗Φ, ψ) (with Σ,Φ > O) have the p.d.f.

f(X) =
1

| Σ |n2 | Φ | p2
h(tr((X−M)′Σ−1(X−M)Φ−1)).

Suppose G(z) is a distribution function on (0,∞). Let
(6)

g(X) =
1

| Σ |n2 | Φ | p2
·
∫ ∞

0

z−
pn
2 h

(
1

z
tr((X−M)′Σ−1(X−M)Φ−1)

)
dG(z).

Then, g(X) is also the p.d.f. of an m.e.c. distribution.

The proof can be found in Gupta and Varga (1993), pp. 78-79. As a special
case, when the density generator h(·) in (6) is specified by

(7) h(y) = (2π)−
np
2 exp(−y

2
),

then the distribution of X is said to be a scale mixture of normal distribution. Note
that many elliptical distributions belong to the family of scale mixture of normal
distribution. For the vector case, a detailed study of normal mixture distribution
can be found in the book by Muirhead (1982).

Definition 2.1. The p × n random matrix X is said to have a matrix variate
Cauchy (m.v.c.) distribution with parameters M : p × n, Σ : p × p, Φ : n × n
with Σ > O, and Φ > O if its p.d.f. is

(8) f(X) =
Γ
(
np+1

2

)

π
np+1

2 | Σ |n2 | Φ | p2
(
1 + tr

[
(X−M)′Σ−1(X−M)Φ−1

])−np+1
2 .

Its density generator h(·) is given by

(9) h(y) = cnp (1 + y)−
np+1

2 , where cnp =
Γ
(
np+1

2

)

π
np+1

2

.

Remark 2.1. The matrix variate Cauchy distribution can be expressed as a scale
mixture of matrix variate normal distribution. Indeed, consider the Lévy distribu-
tion function G(z), with parameters 1 and 0. That is,

(10) dG(z) =
1√
2π

1

z3/2
exp

(
− 1

2z

)
dz , z > 0 .
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Hence, the corresponding density generator h̃(·) of scale mixture of normal distri-
bution is given by

h̃(u) =
1

(2π)
np
2

∫ ∞

0

z−
np
2 exp

(
− u

2z

)
· 1√

2π

1

z3/2
exp

(
− 1

2z

)
dz

=
1

(2π)
np+1

2

∫ ∞

0

z−
np+3

2 exp

(
−1 + u

2z

)
dz .

By making the change of variable y =
1 + u

2z
, we get

∫ ∞

0

z−
np+3

2 exp

(
−1 + u

2z

)
dz = −

∫ 0

∞

(
1 + u

2y

)−np+3
2

exp(−y)
1 + u

2

dy

y2

=

∫ ∞

0

(
1 + u

2

)−np+1
2

y
np+1

2 −1 exp(−y)dy

=

(
1 + u

2

)−np+1
2

∫ ∞

0

y
np+1

2 −1 exp(−y)dy

︸ ︷︷ ︸
= Γ(np+1

2 )

.

Consequently, we have

h̃(u) =
1

(2π)
np+1

2

2
np+1

2 (1 + u)−
np+1

2 Γ

(
np+ 1

2

)

=
Γ
(
np+1

2

)

π
np+1

2

(1 + u)−
np+1

2 .

We now define the scale mixture of matrix variate Cauchy distribution.

Definition 2.2. The p × n random matrix X is said to have an exponential
scale mixture of matrix variate Cauchy distribution with parameters M : p×n,
Σ : p× p, Φ : n× n with Σ > O, and Φ > O if its p.d.f. is
(11)

g(X) =
1

| Σ |n2 | Φ | p2
·
∫ ∞

0

z−
pn
2 h

(
1

z
tr((X−M)′Σ−1(X−M)Φ−1)

)
dG(z),

where h(·) is specified by (9), and dG(z) = λ exp(−λz)dz, λ > 0 . We shall denote
it by X ∼ SMCp,n(M,Σ⊗Φ, ψ).

Our objective is to find the closed-form density generator, denoted by h1(·), for
the new subclass obtained by mixing the matrix variateCauchy with exponential
distribution. Here, h1(·) is defined by

(12) h1(u) =

∫ ∞

0

z−
np
2 h

(u
z

)
dG(z),
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where h(·) is specified by (9), and dG(z) = λ exp(−λz)dz, λ > 0, z ∈ (o,∞). So

h1(u) = λcnp

∫ ∞

0

z−
np
2

(
1 +

u

z

)−np+1
2

e−λzdz

= λcnp

∫ ∞

0

z−
np
2 z

np+1
2 (z + u)

−np+1
2 e−λzdz

= λcnp

∫ ∞

0

z
1
2 (z + u)−

np+1
2 e−λzdz .

The explicit expression of the density generator of the new subclass of elliptical
distributions is given in the theorem below.

Theorem 2.2. Let X be a p× n random matrix. Assume that the p.d.f. of X is

g(X) =
1

| Σ |n2 | Φ | p2
·
∫ ∞

0

z−
pn
2 h

(
1

z
tr((X−M)′Σ−1(X−M)Φ−1)

)
dG(z),

where h(·) is defined by (9) and where dG(z) = λ exp(−λz)dz, λ > 0, z ∈ (0,∞).
Then the density generator h1(·) of X is given by

(13) h1(u) =
λ

np
4 Γ

(
np+1

2

)

2π
np
2

u−np
4 e

λu
2 ·Wα,β(λu), u ≥ 0 ,

where Wα,β(·) denotes Whittaker’s function with index α = −np+2
4 and β =

−np−2
4 .

Proof. From equation (8) in Gradshteyn and Ryzhik (1965), p. 319, we can write

h1(u) = λ
Γ
(
np+1

2

)

π
np+1

2

·λ
np−4

4 Γ

(
3

2

)
u−np

4 e
λu
2 Wα,β(λu)

=
λ

np
4 Γ

(
np+1

2

)

π
np+1

2

π
1
2

2
·u−np

4 e
λu
2 Wα,β(λu)

=
λ

np
4 Γ

(
np+1

2

)

2π
np
2

·u−np
4 e

λu
2 Wα,β(λu) .

The desired result is then obtained. �

3. Some properties of the SMC distributions

Some properties such as stochastic representation and characteristic function
are discussed in this section. However, by virtue of relation (2), we shall focus this
discussion on the multivariate case only; i.e. when n = 1. Also, we adopt the
notation x ∼ SMCp(μ,Σ, h1), which means that x has scale mixture of Cauchy
(SMC) distribution with density generator h1(·) given in (13).

3.1. Representation: Distribution of R2. Let x ∼ SMCp(μ,Σ, h1), with Σ >
O. As a member of the elliptical family, x admits the stochastic representation

(14) x
d
= μ+RΣ

1
2u(p),

where Σ
1
2 is the square root of Σ. The density of R2 is derived in the next lemma.

Lemma 3.1. Let x ∼ SMCp(μ,Σ, h1). Then the density of U = R2 is given by

(15) g(u) = k1(p, λ)u
p
4−1e

λu
2 ·Wα,β(λu), u ≥ 0 ,
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where k1(p, λ) =
λ

p
4 Γ( p+1

2 )
2Γ( p

2 )
, α = −p+2

4 , and β = −p−2
4 .

Proof. The result is directly obtained from Fang et al. (1990), p. 76, by writing

g(u) =
π

p
2

Γ
(
p
2

)u p
2−1h1(u), where h1(u) is given in (13). �

Remark 3.1. Using the stochastic representation (14), one can generate a random
vector from SMC distributions. Indeed, the density of R2 being explicitly given,
the uniform distributions can be generated with the help of an efficient algorithm
which has been presented in Fang and Wang (1994).

3.2. Moments of R2. The following lemma provides the expressions of E(R2s).

Lemma 3.2. For any s > 0, we have

(16) E
(
R2s

)
=

Γ(s+ 1)Γ
(
p+2s

2

)
√
πλs

.

Proof. From the density of U = R2 given in (15), we have

E(R2s) = E(Us) = k1(p, λ)

∫ ∞

0

u
p
4+s−1e

λu
2 ·Wα,β(λu)du,

which becomes (after letting y = λu)

E(R2s) =
Γ
(
p+1
2

)

2λsΓ
(
p
2

)
∫ ∞

0

y
p
4+s−1e

y
2 ·Wα,β(y)dy.

Now, using the following equation (see Gradshteyn and Ryzhik 1965, p. 861, eq. 12),

(17)

∫ ∞

0

yν−1e
y
2 ·Wα,β(y)dy = Γ(−α− β)

Γ
(
1
2 + β + ν

)
Γ
(
1
2 − β + ν

)

Γ
(
1
2 − β − α

)
Γ
(
1
2 + β − α

) ,

we arrive at the desired result by substituting α = −p+2
4 , β = −p−2

4 and ν = p+4s
4

in formula (17). �

Remark 3.2. Let Rc be the generating variate of the p-dimensional Cauchy distri-
bution. It has been shown in Fang et al. (1990), p. 82, that U = R2

c has a beta

type II distribution with parameters
p

2
and 1

2 . That is, its density function is given

by

g(u) =
1

B
(
p
2 ,

1
2

)u p
2−1(1 + u)−

p+1
2 , u > 0.

Hence, the kth moment (if it exists) of U = R2
c is evaluated as follows:

E
(
R2k

c

)
=

1

B
(
p
2 ,

1
2

)
∫ ∞

0

u
p
2+k−1(1 + u)−

p+1
2 du,

and it is straightforward to see that E
(
R2k

c

)
=

B
(
p
2 + k, 1

2 − k
)

B
(
p
2 ,

1
2

) . Since k = 1, 2, . . .

and the arguments of beta function B(·, ·) must be positive, the kth moment of R2
c

does not exist.

The first two moments and the multidimensional kurtosis coefficient γ of x are
given in the following corollary.
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Corollary 3.1. Let x ∼ SMCp(μ,Σ, h1). Then we have

(18) E(x) = μ, Cov(x) = Σ1 =
Γ
(
p
2

)
2λ

√
π
Σ, γ =

2p(p+ 2)
√
π

Γ
(
p
2

) .

Proof. The first equality is obvious, while the second arises from the general formula

(see Fang et al. (1990), p. 43) Cov(x) =
E(R2)

rank(Σ)
Σ. Here, rank(Σ) = p, and

E(R2) is given in (16).
The multidimensional kurtosis coefficient γ is defined (see Mardia et al. (1979),

p. 31) by

γ = E
([

(x− μ)′Σ−1
1 (x− μ)

]2)
(19)

=
p2

E2(R2)
·E

([
(x− μ)′Σ−1(x− μ)

]2)
.

Since (x− μ)′Σ−1(x− μ)
d
= R2, γ can be written as γ = p2

E(R4)

E2(R2)
, and hence,

from formula (16), we get the desired result. �

Now, a result due to Schoenberg (1938), will be used in order to determine the
characteristic function of x ∼ SMCp(μ,Σ, h1).

3.3. Characteristic function of SMCp(μ,Σ, h1). The characteristic function
φx(·) of x ∼ SMCp(μ,Σ) has the form (see Fang et al. (1990), p. 32)

φx(t) = exp(it′μ)·ψ (t′Σt) ,

where ψ(·) denotes the characteristic generator (c.g.) of x. Without loss of gener-
ality, here we treat the special case μ = 0 and Σ = Ip, since ψ does not depend on
the choice of μ and Σ. A theorem of Schoenberg (1938) and the expression of the
c.g. Ωp(·) of u(p) given in Fang et al., p. 70, imply in general that

ψ(t′t) =

∫ ∞

0

Ωp(t
′tR2)dF (R)

=
Γ
(
p
2

)
√
π

∞∑
k=0

(−1)k(t′t)k

(2k)!

Γ
(
2k+1

2

)

Γ
(

p+2k
2

) ·
∫ ∞

0

R2kdF (R),(20)

where F (·) is the distribution function of R, provided that E(R2k) < ∞ for k =
1, 2, . . . , and the series on the right hand side is convergent. Now, for the particular
case of the scale mixture of Cauchy distribution, we have (see (16))

(21) E
(
R2k

)
=

k!Γ
(

p+2k
2

)
√
πλk

.
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Substituting (21) in (20) and using the relation
Γ
(
k + 1

2

)
√
π(2k)!

=
1

4kk!
, we find

ψ(t′t) =
Γ
(
p
2

)
√
π

∞∑
k=0

(−1)k(t′t)k

(2k)!

Γ
(
2k+1

2

)

Γ
(

p+2k
2

) ·
k!Γ

(
p+2k

2

)
√
πλk

=
Γ
(
p
2

)
√
π

∞∑
k=0

(−1)k(t′t)k
Γ
(
k + 1

2

)
√
π(2k)!

· k!
λk

=
Γ
(
p
2

)
√
π

∞∑
k=0

(−1)k(t′t)k
1

4kk!
· k!
λk

=
Γ
(
p
2

)
√
π

∞∑
k=0

(
−t′t

4λ

)k

.

Hence, we derive a closed form for the characteristic function of x in the next
theorem.

Theorem 3.1. Let x ∼ SMCp(μ,Σ, h1), with parameters μ, Σ > O, and λ > 0.
Then the c.f. of x is given by

(22) φx(t) =
Γ
(
p
2

)
√
π

eit
′μ 4λ

4λ+ t′Σt
, t ∈ R

p,

provided that 0 ≤ t′Σt < 4λ.

Proof. It suffices to prove that the power series on the right hand side converges

under the condition 0 ≤ t′Σt < 4λ. To this end, consider bk =
(
− t′t

4λ

)k

. Hence,

we have

lim
k→∞

∣∣∣∣
bk+1

bk

∣∣∣∣ =
t′t

4λ
= q.

Now, according to the D’Alembert rule (see Gradshteyn and Ryzhik (1965), p. 5),
if q < 1, the series (22) converges. Here q < 1 is equivalent to 0 ≤ t′Σt < 4λ. The
theorem is therefore proved. �

4. Unbiased estimators of μ, Σ and | Σ |
We define the n-dimensional vector en and the n×nmatrixD as en = (1, . . . , 1)′,

and D = In − 1
nene

′
n, where In denotes the identity matrix.

Let x1,x2, . . . ,xn be p-dimensional random vectors, such that n > p and xi ∼
SMCp(μ,Σ, h1), i = 1, . . . , n. Moreover, assume that xi, i = 1, . . . , n, are un-
correlated (but not necessarily independent) and that their joint distribution is
absolutely continuous. Then, as shown in Gupta and Varga (1993), p. 259, this
model can be expressed as

(23) X ∼ SMCp,n(μe
′
n,Σ⊗ In, h1),

where X = (x1,x2, . . . ,xn) and h1 is defined in (13). Now we are interested in the
unbiased estimators of the parameters μ, Σ, and | Σ |. To this end, consider the
sample mean and the sample sum of products of matrix S which are defined by
x = 1

n

∑n
i=1 xi and S =

∑n
i=1(xi − x)(xi − x)′ respectively.
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For matrix variate elliptical distributions having the structure (23), Anderson
and Fang (1982) showed that the unbiased estimators of μ and Σ, in general, are
given by

μ̂ = x, Σ̂ =
np

(n− 1)E (R2)
S,

provided that 0 < E(R2) < ∞. Also, X
d
= μe′n +RAU is the stochastic represen-

tation of X. Note that E(R2) can be obtained from formula (16) by substituting

pn for p. Hence, Σ̂ is given by

Σ̂ =
2λ

√
π

(n− 1)Γ
(
np
2

)S.

The exact distribution of μ̂ and S are derived in the following theorem.

Theorem 4.1. Let X ∼ SMCp,n(μe
′
n,Σ⊗ In, h1), where h1 is defined in (13).

(1) Then the joint density of μ̂ and S is

(24) p(μ̂,S) =
n

p
2 | S |n−p

2 π
p(n−1)

2

Γp

(
n−1
2

)
| Σ |n2

h1

(
n(μ̂− μ)′Σ−1(μ̂− μ) + tr(Σ−1S)

)
.

(2) The p.d.f. of μ̂ is

(25) p1(μ̂) =
λ

np
2 n

p
2 v

p(n−1)
2

π | Σ | 12
G31

23

(
λv

1−np
2 , 0

−p(n−1
2 , 2−np

2 , 0

)
,

where v = n(μ̂− μ)′Σ−1(μ̂− μ).
(3) The p.d.f. of S is

(26)

f(S) =
λ

np
2 | S |n−p

2 −1
(
tr(Σ−1S)

) p
2

√
πΓp

(
n−1
2

)
| Σ |n−1

2

G31
23

(
λtr(Σ−1S)

1−np
2 , 0

−p
2 ,

2−np
2 , 0

)
,

where Gts
qr denotes Meijer’s G-function.

Proof. From theorem 7.2.1 in Gupta and Varga (1993), p. 239, (1) is obvious. Now,
since the proofs of (2) and (3) are similar, we shall give the details only for the latter.
Indeed, the p.d.f. of the sample sum of products matrix S is (see Gupta and Varga
(1993), p. 239)

(27) f(S) =
2π

pn
2 | S |n−p

2 −1

Γ
(
p
2

)
Γp

(
n−1
2

)
| Σ |n−1

2

∫ ∞

0

xp−1h1(x
2 + tr(Σ−1S))dx,

where h1 is given in (13). Let b = tr(Σ−1S), and let C1 =
λ

np
4 Γ

(
np+1

2

)

2π
np
2

be the

normalizing constant of h1(·). Then, the integral in (27) becomes
∫ ∞

0

xp−1h1

(
x2 + b

)
dx

= C1

∫ ∞

0

xp−1(x2 + b)−
np
4 exp

(
λ(x2 + b)

2

)
Wα,β(λx

2 + λb)dx

= C1λ
np
4 e

λb
2

∫ ∞

0

xp−1(λx2 + λb)−
np
4 e

λx2

2 Wα,β(λx
2 + λb)dx,
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which reduces to (by making a change of variable y = λx2 and putting a = λb)

λ
np−2p

4 C1e
a
2

2

∫ ∞

0

y
p
2−1(y + a)−

np
4 e

y
2 Wα,β(y + a)dy.

Now, from equation (6), p. 866 in Gradshteyn and Ryzhik (1965), we can write
∫ ∞

0

y
p
2−1(y + a)−

np
4 e

y
2 Wα,β(y + a)dy

=
Γ(p/2)a

p
2 e−

a
2

Γ(3/2)Γ
(
np+1

2

)G31
23

(
λtr(Σ−1S)

1−np
2 , 0

−p
2 ,

2−np
2 , 0

)
.

A simple calculation shows that

λ
np−2p

4 C1e
a
2

2
· Γ(p/2)a

p
2 e−

a
2

Γ(3/2)Γ
(
np+1

2

) =
λ

np−p
2 Γ(p/2)a

p
2

2π
np+1

2

=
λ

np
2 Γ(p/2)

(
tr(Σ−1S)

) p
2

2π
np+1

2

.

This implies
∫ ∞

0

xp−1h1

(
x2 + b

)
dx

=
λ

np
2 Γ(p/2)

(
tr(Σ−1S)

) p
2

2π
np+1

2

G31
23

(
λtr(Σ−1S)

1−np
2 , 0

−p
2 ,

2−np
2 , 0

)
.

(28)

Consequently, the rest of the proof follows directly by substituting (28) in (27). �

The next lemma provides an unbiased estimator of | Σ | and an identity involving
the special function Gts

qr, with matrix argument.

Lemma 4.1. For any m > 0, the mth moment of | S | is
(i)

(29) E (| S |m) =
2m(p−1)m!Γ

(
np
2

)
Γp

(
n−1
2 +m

)
√
πλmΓp

(
n−1
2

) | Σ |m .

(ii) The unbiased estimator of δ =| Σ | is

(30) δ̂ =
2λ

√
π

Γ
(
np
2

) Γ(n− p)

Γ(n)
| S | .

(iii)

∫

S>O

| S |
2m+n−p

2 −1
(
tr(Σ−1S

) p
2 G31

23

(
λtr(Σ−1S)

1−np
2 , 0

−p
2 ,

2−np
2 , 0

)
dS

=
2m(p−1)m!Γ

(
np
2

)
Γp

(
n−1
2 +m

)

λ
np+2m

2

| Σ | 2m+n−1
2 .

(31)

Proof. Before going into the details, recall that S can be expressed as S = XDX′,
where D is defined in the beginning of this section. To prove (29), consider the
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function K(·) defined as K(X) =| XDX′ |m. Thus, for a > 0, we have K(aX) =
a2mK(X). Using the result presented in Gupta and Varga (1993), p. 100, we can
write

(32) E (K(X)) =
E
(
R2m

)
Γ
(
np
2

)

2mΓ
(
np+2m

2

) E (K(Y)) ,

where K(Y)
d
=| Wp(n − 1,Σ) |m. Here, the symbol Wp stands for the Wishart

matrix. Since E(K(Y)) is given (see Gupta and Nagar (2000), p. 105) by

(33) E (K(Y)) =
2pmΓp

(
n−1
2 +m

)

Γp

(
n−1
2

) | Σ |m

and

(34) E
(
R2m

)
=

m!Γ
(
np+2m

2

)
√
πλm

,

then (29) is obtained by substituting (34) and (33) in (32). The special case where

m = 1 in (29) leads to the unbiased estimator δ̂. Finally, (31) can be easily obtained
by writing

E (| S |m) =

∫

S>O

| S |m f(S)dS.

The lemma is then proved. �

5. Concluding remarks

In this paper, we have introduced and investigated a new subclass of matrix
variate elliptical distributions. Such a subclass is obtained by making use of a
mixture method. In spite of the presence of a special function in the expression
of the density generator h1(·), namely Whittaker’s function, simple closed forms
have been derived both for the characteristic function and for the moments of the
generating variate R. Unlike the Cauchy distribution, which suffers from limited
applicability because of the lack of finite moments (see Remark 3.2), the SMC
distribution could therefore be a better model for certain practical situations.

If, in formula (22), p = 1, Σ = σ2, μ = 0, and λ = 1
2 , then the c.f. φx(t) =

1

1 + σ2t2

2

is the characteristic function of a univariate Laplace distribution with

mean zero and variance σ2 (see Kotz et al. (2003)). Moreover, when p = 1 in
(18), then γ equals 6, which is also the kurtosis coefficient of the univariate Laplace
distribution (see Krishnamoorthy (2006)). Hence, because of these remarks, the
scale mixture of Cauchy distribution can be viewed as an extension of the univariate
Laplace distribution.

Further details regarding the special functions that have been used in this work
can be found in Abramowitz and Stegun (1965) or in Gradshteyn and Ryzhik
(1965).
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