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HECKE ALGEBRAS RELATED TO THE UNIMODULAR AND

MODULAR GROUPS OVER QUADRATIC FIELD EXTENSIONS

AND QUATERNION ALGEBRAS

MARTIN RAUM

(Communicated by Wen-Ching Winnie Li)

Abstract. We investigate the structure of the Hecke algebras related to the
unimodular and modular groups over quadratic field extensions and quaternion
algebras. In particular, we show that in general there is no decomposition into
primary components. We give a set of generators, and in some special cases
we deduce the commutation relation with the Siegel Φ-operator.

1. Introduction

Much arithmetic information of modular forms is related to the action of the
associated Hecke algebras, i.e. the attached ζ-functions. Moreover, the study of
ζ-functions attached to a quaternion algebra itself reveals interesting properties.
This case has been investigated in [Tam63]. It is closely related to the unimodular
quaternion case that we consider here.

The notion of an abstract Hecke algebra was first introduced by Shimura [Shi59].
Since then Hecke algebras relevant for modular forms have been investigated for
many groups defined over principal ideal domains [Kri90, Kri87]. By using the
Satake isomorphism, very important rationality results [And69, HS83] can be de-
duced. These results hold for local Hecke algebras. The global picture could only
be built in the case of groups over principal ideal domains. The case of non prin-
cipal ideal domains remains mysterious until now. In [Ens08] evidence has been
provided that it behaves differently. We are going to discuss this example in view of
this paper in Section 5. In particular, we will show how to construct double cosets,
which do not split as a product of p-components, in an associated graded algebra.

We prove that the Hecke algebras in question for hermitian fields and definite
quaternion algebras are subalgebras of their adelic analogs. The point of view
suggested by this discovery makes it possible to deduce a set of generators and to
determine how far the algebras are from having a primary decomposition.

In addition, in the PID case we are able to deduce the yet unproven commutation
relation with the Siegel Φ-operator.

The main tool for these investigations is the elementary divisor theory presented
in [Rau10]. There the author proved that the equivalence class of any unimodular

Received by the editors December 22, 2009 and, in revised form, April 27, 2010 and May 2,
2010.

2010 Mathematics Subject Classification. Primary 11F60.

c©2010 American Mathematical Society
Reverts to public domain 28 years from publication

1321



1322 MARTIN RAUM

or modular matrix in quadratic extensions of fields and in quaternion algebras is
completely determined by its adelic elementary divisors.

The paper is organized as follows. In Section 2 we prove that the integral Hecke
algebra is a subalgebra of the adelic one. In Section 3 we determine the structure of
the adelic Hecke algebra. Both results are combined in Section 4 to investigate the
structure of the integral Hecke algebra. In particular, in subsection 4.1 we consider
the Siegel Φ-operator over Q. Finally, in Section 5 we present examples illustrating
the results.

2. Embeddings of integral Hecke algebras

Let K be a number field and let oK denote its ring of integers. Depending on
the case we consider, Ω will either denote a field extension of K or a central simple
K-algebra and Λ will always be a maximal order of Ω. Note that we do not exclude

K = Ω. The set of finite places of Ω will be denoted by Ωf
A
, and the set of all

infinite places Ω∞
A
. For p ∈ Ωf

A
the completions of Ω, Λ, etc., with respect to p will

be denoted by Ωp, Λp, etc. The Ω∞
A
-integral adelic algebras associated to Ω and Λ

will be denoted by ΩA and ΛA.
Let n ∈ N, and whenever Λ is noncommutative assume n ≥ 2. For a finite place

p ∈ Ωf
A
let ˜GLn(Λp) be the group generated by all matrices In + aI

(n,n)
i,j where i �= j

and a ∈ Λp. Here the identity matrix is denoted by In and the n× n matrix with
only zeros but a single one in the i-th row and j-th column is denoted by I

(n,n)
i,j .

The general linear group GLn(Λp) is generated by ˜GLn(Λp) and the diagonal
matrices. This holds because Λp is a matrix algebra over a division algebra which
is a left and a right PID (cf. [Rei75]).

Define ˜GLn(ΛA) ⊆ GLn(ΛA) to be the group of all matrices M such that

Mp ∈ ˜GLn(Λp) for all finite places p of Λ. Moreover, we will consider the monoid
of adelic invertible matrices Invn(ΛA) = GLn(ΩA) ∩ Mn(ΛA). In analogy, define
˜GLn(Λp), Invn(Λp), etc. (cf. [Rau10]).
Two elements a, b ∈ Λ are called equivalent, denoted by a ∼ b, if there are units

u, v ∈ Λ× such that a = ubv. The notion of equivalence extends to Λp and ΛA.
If there is an involution ı of the algebra extension Ω|K which fixes K elementwise

and preserves maximal orders, we can define the set of all matrices with similitude
m ∈ K×. In the case of quadratic fields this will be an involution of the second
kind; in the case of a quaternion algebra it will be of the first kind according to
Siegel (cf. [Sie51]).

We denote the transpose matrix by M tr and define M∗ := ı(M)tr for any matrix
M ∈ Mn(Ω):

Δn(Ω,m) := {M ∈ M2n(Ω) : M
∗JM = mJ} with J =

(

0(n,n) In
−In 0(n,n)

)

.

The monoid Δn(Ω) :=
⋃

m∈oK\{0} Δn(Ω,m) of all matrices with integral similitude

contains the modular group

Spn(Ω) :=
⋃

m∈o
×
K

Δn(Ω,m).

These notions can be extended to ΛA and all subrings of ΛA which are stable under
ı.
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We point out that most authors considering the modular group, in particular
Siegel, use m = 1 instead of m ∈ o

×
K . We have to use this slightly extended notion

here since there is no longer any canonical choice of similitudes for Δn.
Recall the definition of a Hecke algebra. Let G be a group and let G ⊆ H

be a monoid such that each double coset GhG, h ∈ H, considered as a set is a
finite union of mutually distinct right cosets Ghi, hi ∈ H. Then the Hecke algebra
H(G,H) over Z is defined to be the free Z-module with basis {GhG : h ∈ H}.
To define the multiplication of two double cosets GhG and Gh̃G, fix one system
of representatives hi and h̃j for their right coset decompositions. Recall that a
multiset is a set A and a map A → N representing the multiplicity of any a ∈ A.
We will denote them by [a1, . . .]. There is a well defined multiset of double cosets

[GĥiG]i such that [Ghih̃j ]i,j =
⋃

i

⋃

j [Gĥi,j ], where GĥiG =
⊎

j Gĥi,j . Hence the

product GhG ·Gh̃G =
∑

i GĥiG is well defined.
We will call the Hecke algebras associated to groups which have coefficients in

Λ the integral Hecke algebras. The terms local Hecke algebra and adelic Hecke
algebra will be used analogously.

We will treat several settings in parallel. In the unimodular case we assume Ω
to be a finite central simple K algebra. In the modular case we distinguish the
hermitian and the quaternionic cases. We assume that Ω|K is either a quadratic
extension of fields and ı is the Galois conjugation or that Ω is a quaternion algebra
and ı is its canonical involution, which restricts itself to the Galois conjugation on
every maximal subfield of Ω (cf. [Rei75]).

We first point out that the approximation lemmata given in [Rau10] can be
used to show that the right coset decomposition of any double coset and its adelic
decomposition into the right coset are in one-to-one correspondence.

Lemma 2.1. Let M ∈ Invn(Λ) and GLn(ΛA)MGLn(ΛA) =
⊎

i GLn(ΛA)Mi with

M̃i ∈ Invn(ΛA). Then there are integral matrices M̂i ∈ Invn(Λ) such that we have

GLn(ΛA)Mi = GLn(ΛA)M̂i and GLn(Λ)MGLn(Λ) =
⊎

i GLn(Λ)M̂i.
In analogy, given m ∈ oK \{0}, M ∈ Δn(Λ,m) we can find Mi ∈ Δn(Λ,m) such

that Spn(ΛA)MSpn(ΛA) =
⊎

i Spn(ΛA)Mi and Spn(Λ)MSpn(Λ) =
⊎

i Spn(Λ)Mi.

We only prove the unimodular case, since the modular case is completely anal-
ogous.

Suppose that there is an adelic right coset GLn(ΛA)M
′ ⊆ GLn(ΛA)MGLn(ΛA)

with M ′ ∈ Invn(ΛA). Then there is V ∈ ˜GLn(ΛA) such that the right cosets
statisfy GLn(ΛA)MV = GLn(ΛA)M

′. Choose m ∈ oK \ {0} such that we have
mM−1, mM ′−1 ∈ Mn(ΛA). Also choose an approximation V̂ ∈ GLn(Λ) modulo
mΛA of V . Then MV̂M ′−1 and M ′(MV̂ )−1 are integral in Mn(ΩA), and hence
GLn(ΛA)MV̂ = GLn(ΛA)M

′.
On the other hand a standard argument shows that two right cosets which are

distinct with respect to Λ are also distinct with respect to ΛA. �
Remark 2.2. As pointed out in [Rau10] this proof is constructive. Namely, given an
adelic double coset we can determine a set of integral right coset representatives.

The lemma immediately yields a structure theorem for integral Hecke algebras.

Theorem 2.3. The integral unimodular Hecke algebra H(GLn(Λ), Invn(Λ)) and
the modular Hecke algebra H(Spn(Λ),Δn(Λ)) are subalgebras of the adelic analogs
H(GLn(ΛA), Invn(ΛA)) and H(Spn(ΛA),Δn(ΛA)), respectively. The embeddings
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map a double coset over Λ generated by M to the adelic double coset generated
by M .

Suppose #Cl(oK) = 1. Then the embedding yields an isomorphism if and only
if Λ is a principal ideal domain.

Proof. We only treat the modular case. By Lemma 2.1 there is an inclusion of
the underlying module Z[Spn(Λ)M, M ∈ Δn(Λ)]

Spn(Λ) into the underlying module
Z[Spn(ΛA)M, M ∈ Δn(ΛA)]

Spn(ΛA). Since multiplication is defined by means of
multiplication of double cosets, this extends to an embedding of algebras.

If Λ is a PID the inclusion of Z-modules is obviously trivial. Suppose that
#Cl(Λ) �= 1. Then by [Rau10, Theorem 3] there is a double coset in Δn(ΛA) which
is disjoint from Δn(Λ). This shows that the inclusion is proper. �

We want to point out that the exceptional modular case Ω = K and ı = idK ,
which corresponds to the symplectic group, builds up the complete picture. Here
the integral and the adelic Hecke algebra are isomorphic.

The adelic Hecke algebra inherits a tensor product decomposition from ΛA. So
does the Hecke algebra over Λ whenever it is a principal ideal domain. We will see
that this is no longer true for the Hecke algebra over an arbitrary Λ which is not a
principal ideal domain. The first evidence for this behavior in the hermitian modu-
lar case was found in [Ens08] by means of elementary methods. This phenomenon
will be investigated in Section 4.

3. Adelic Hecke algebras

The first question arising from the preceding section is how we can understand
the structure of the adelic Hecke algebras. This is easy for the unimodular case.
We immediately see that

H(GLn(ΛA), Invn(ΛA)) ∼=
⊗

p∈Ωf
A

H(GLn(Λp), Invn(Λp)).

The modular case is more involved. Surprisingly, the quaternionic case is much

easier, since the canonical automorphism acts trivially on Ωf
A
. This yields a decom-

position of the adelic Hecke algebra analogous to the unimodular case:

H(Spn(ΛA), Δn(ΛA)) ∼=
⊗

p∈Ωf
A

H(Spn(Λp), Invn(Λp)).

One important case remains to be treated. This is the split hermitian mod-
ular case. The Galois conjugation acts nontrivially on split prime ideals in Λ.
For the associated p ∈ Ωf

A
define the monoid of restricted invertible matrices

InvRes
n (Λp) ⊆ Invn(Λp)× N0 to be the set of all pairs (M, l) such that plM−1 is

integral.
Let us first present the result:

H(Spn(ΛA), Δn(ΛA))

∼=
⊗

p=ı(p)∈Ωf
A

H(Spn(Λp), Δn(Λp))⊗
⊗

{p, ı(p)}:p�=ı(p)∈Ωf
A

H(Spn(Λp ⊕ Λp̄), Δn(Λp ⊕ Λp̄))

∼=
⊗

p=ı(p)∈Ωf
A

H(Spn(Λp), Δn(Λp))⊗
⊗

{p, ı(p)}:p�=ı(p)∈Ωf
A

H(GLn(Λp), Inv
Res
n (Λp)).
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Here GLn(Λp) acts trivially on the second component of InvRes
n (Λp). The first

isomorphism is obvious since the definition of modular matrices only involves M
and M .

We have to prove that

H(Spn(Λp ⊕ Λp̄), Δn(Λp ⊕ Λp̄)) ∼= H(GLn(Λp), Inv
Res
n (Λp)).

Write (Mp, Mı(p)) = M ∈ Δn(Λp ⊕ Λp̄, m), where m ∈ Fixı(Λp ⊕ Λp̄) \ {(0, 0)}.
The restriction M∗JM = mJ is equivalent to Mı(p) = mJ−1(M−1

p )∗J . Since Mı(p)

has to be integral, mM−1
p has to be integral too, and this completely determines

M . The right and double coset decompositions only depend on the first component,
and this proves the statement. �

The theorems on generators of primary components given in [Kri90] and [Kri87]
generalize to all local Hecke algebras mentioned above. To prove this we can use
the normal p-rank. For any double coset we will call the rank of any representative
over Λ/pΛ its p-rank.

Let [B1, . . . , Bi], i ∈ N, denote a block diagonal matrix. We have Λp
∼= Mr(D)

for some r ∈ N and some local division algebra D. We will denote a prime element
of D by πD.

Lemma 3.1. (1) A set of generators of H(GLn(Λp), Invn(Λp)) is given by the
double cosets Ti for i = 1, . . . , rn. Each Ti is the double coset associated to
[Inr−i, πDIi] ∈ Mnr(D) ∼= Mn(Λp).

(2) In the inert hermitian modular case suppose πD = πD. A set of generators
of H(Spn(Λp), Δn(Λp)) is given by Ti with i = 0, . . . , rn. Here T0 is the
double coset associated to [Inr, πDInr]. The Ti, i = 1, . . . , rn, are double
cosets associated to [Irn−i, πDIi, π

2
DIrn−i, πDIi].

(3) In the ramified quaternionic case and in the ramified hermitian modular
case a set of generators of H(Spn(Λp), Δn(Λp)) is given by double cosets
Ti with i = 0, . . . , rn. The Ti, i = 0, . . . , rn, are double cosets associated to
[Irn−i, πDIi, πDπDIrn−i, πDIi].

(4) In the split hermitian modular case a set of generators of the Hecke algebra

H(GL2n(Λp), Inv
Res
2n (Λp)) is given by Ti, i = 0, . . . , 2n. The Ti are double

cosets generated by [I2n−i, πDIi]. The second component of each Ti is 1.
(5) In the split quaternionic modular case a set of generators of the Hecke

algebra H(Spn(Λp), Δn(Λp)) is given by S, S′ and R2, . . . , R2n. Here S is
generated by [I2n, πDI2n] and S′ is generated by [I2n−1, πD, πDI2n−2, 1, πD].
The R2i are generated by [I2n−2i, πDI2i, π

2
DI2n−2i, πDI2i], and the R2i−1 are

generated by [I2n−2i+1, πDI2i−1, π
2
DI2n−2i, πD, π2

D, πDI2i−2].
All these Hecke algebras are commutative, and all sets of generators are algebraically
independent.

Remark 3.2. In (1) notice that the condition on the elementary divisors in D corre-
sponds to the condition ei‖ei+1 imposed on the generators over the Hurwitz order
given in [Kri87].

Proof. These statements are essentially contained in Krieg’s work, which we cited
above. We first proof the statements on generators.

Let us first consider the unimodular case. We have Λp = Mr(D) for some local
division algebra D. Hence, we can assume that Λp is a division algebra. Given
some nontrivial double coset M choose 1 ≤ i ≤ n such that ên−i(M) �= 0 and
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ên−i−1(M) = 0. Let M ′ be the double coset with êj(M
′) = êj(M) if j < n− i and

êj(M
′) = êj(M)− 1 ≥ 0 otherwise. Using the p-rank as in [Kri90, Theorem V.8.2]

we can prove that TiM
′ = M +

∑

i Ri, where all Ri have p-rank less than n − i.
Using induction on the p-rank proves statement (1).

In the symplectic case we can reduce the split field extension case to the unimod-
ular case. In all other cases we can apply the ideas given above. More precisely, in
the quaternion case the proofs can be done along the lines of [Kri87, Theorem 3.8].
There, Krieg essentially exploits the local structure of the Hurwitz order. Notice
that 2 is the only place ramified in this quaternion algebra. The hermitian case is
the local field case. Hence, we treat the modular group over a PID. The results
follow from [Kri90, Theorem VI.6.2].

In all cases but the split hermitian modular case, the last statements follow
from the existence of the canonical anti isomorphism of the Hecke algebra given by
M 
→ ı(M)tr. By the elementary divisor theory given in [Rau10], this is indeed the
identity. The commutativity in the split hermitian modular case follows from the
unimodular case.

The algebraic independence of the generators follows from counting the double
cosets with fixed maximal elementary divisors or fixed similitude, respectively, as
Krieg has done in [Kri87]. �

To investigate the structure and determine generators of the integral Hecke al-
gebra we need to prove one further lemma. It is a vast generalization of well known
lemmata on the multiplication of certain elements of the primary components.

For the rest of this section we will only be concerned with the local Hecke alge-
bras. We will identify double cosetsM with the ordered set of their defining elemen-
tary divisor valuations ê(M) := (ê1(M) ≤ · · · ≤ êrn(M)) in the unimodular case.
In the modular case if p is ramified we set (ê(M) := (ê1(M) ≤ · · · ≤ êrn(M)), l),
where m ∼ pl and 2 | l. The split hermitian modular case is an exception. In this
case we will identify the double cosets with (ê(M) := (ê1(M) ≤ · · · ≤ ê2n(M)), l)
where m ∼ (pı(p))l. Here êi(M) is the valuation of the i-th elementary divisor
ei(M).

We introduce an order on the modular double cosets:

(ê(M), l) < (ê(M ′), l′) :⇔ (l < l′) ∨ (l = l′ ∧ ê(M) < ê(M ′))

ê(M) < ê(M ′) :⇔ ∃i : êi(M) > êi(M
′) ∧ ∀j < i : êj(M) = êj(M

′).

The order on unimodular cosets is given as above, ignoring the similitude valuation
l. Notice that in the second line the ordering symbols are reversed. We use this
notation to obtain a usual filtration on the Hecke algebra (cf. Remark 3.4).

The important fact about the order given above is that it induces a very useful
filtration on the Hecke algebra. This will lead to a better understanding of products
of arbitrary double cosets.

Lemma 3.3. Given double cosets M and N with respect to the symplectic group,
we have MN = P +

∑

j Rj, where ê(P ) = ê(M) + ê(N) and Rj are double cosets
satisfying Rj < P .

Remark 3.4. This shows that the order given above induces a filtration on the
Hecke algebra. We will exploit the structure of the associated graded ring in the
next section.
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Proof. To unburden notation we consider the unimodular case. The symplectic
case differs only by the similitude, which does not change the argument.

We prove that if M < N , the leading term of TiM is smaller than the leading
term of TiN for all generators Ti given above. We will use induction on ê(M) with
respect to the order given above. Using the p-rank we can write M = SM ′+

∑

j Rj

with a generator S and Rj < M for all j. We apply the induction hypothesis to
the product of S and the analogous decomposition of M ′. Iterating this, M can be
written in terms of generators and the rest

∑

j R
′
j , where R′

j < M .

We can write TiM = Ti

∏

j Sj +
∑

j TiRj . Reordering the generators Sj and Ti

we see that the leading term M ′ of the product satisfies ê(M ′) = ê(M) + ê(Ti).
This proves our intermediate statement.

Now, the final statement can be proved by repetition of the argument. Namely,
we first decompose M and N into a product of generators up to the rest that is
strictly less. Then we calculate the product of these generators, which gives the
leading term and the rest as stated above. �

4. The integral Hecke algebra

In Section 2 we have already shown that the integral Hecke algebras are subal-
gebras of the adelic ones. We will now provide a set of generators and prove some
results about it that make their computation possible. One special case which gave
rise to the presented investigation will be given explicitly. Here we can even prove
the minimality of a set of generators with respect to inclusion.

In this section all ê and êi will be indexed by finite places of Λ. In particular, let
ê(M) denote the tuple of all local elementary divisor valuations (êp(M))

p∈Ωf
A

. Let

G be the set of all double cosets M in Invn(Λ) or Δn(Λ) such that whenever the
elementary divisor valuations satisfy ê(M) = ê(N1) + ê(N2) for two double cosets
N1, N2 over Λ, it follows that one of them is trivial. We will call the double cosets
in G irreducible. This is motivated by the fact that they are irreducible in the
graded algebra associated to the integral Hecke algebra with rational coefficients
according to Lemma 3.3. Notice that in [Ens08] Ensenbach called some double
cosets satisfying this property indecomposable.

Using the definition ofG and Lemma 3.3 we immediately see thatG generates the
Hecke algebra as a Z-algebra. This makes the irreducible double coset important,
and we want to deduce an upper bound for the number of places with nontrivial
local elementary divisors as well as for the number of distinct local elementary
divisors.

We may regard any local elementary divisor as an element of the Picard group.
In [Rau10] we proved that an adelic double coset is the image of an integral double
coset if and only if the sum of its elementary divisors vanishes in Pic(Λ). We
denote the order of the Picard group by hΛ and its exponent by eΛ. Furthermore,
we consider the fundamental divisor valuations ê of a matrix or double coset. We
set f̂i := êi−êi−1 with ê0 := (0)

p∈Ωf
A

. These are the fundamental divisor valuations.

Suppose hΛ �= 1. Any double coset with f̂p,i ≥ eΛ for some p and i is decompos-

able. Consider a double coset M and assume f̂p,i < eΛ for all indices. Suppose that
there are at least bΛ := (hΛ − 1)(eΛ − 1) + 1 pairwise distinct and nonconjugated

places p ∈ Ωf
A
such that f̂p(M) is not trivial. Then we may find a subset of eΛ
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places pj and indices ij such that in Pic(Λ) we have
∑

j p
ηj · (n+ 1− ij) = 0 with

exponents ηj = f̂pj ,ij . Hence M is decomposable.
This proves

Lemma 4.1. The set G of irreducible double cosets generate the Hecke algebra.
Moreover, there is an upper bound for the number of places where any irreducible
double coset is nontrivial, and there is an upper bound for the valuation of the local
elementary divisors.

Since the irreducibility of any double coset depends only on the valuation of
its elementary divisors and the images of the local left ideals in the Picard group,
there are indeed only finitely many cases we have to consider. In the quaternion
modular case the Picard group’s exponent divides 2, and hence the set of irreducible
double cosets is easy to derive. In the hermitian modular case the set of irreducible
double cosets may become rather large. Using the following idea the computation
is feasible.

First consider a decomposition into cyclic p-groups Pic(Λ) ∼=
⊕r

i=1(Cp
ηi
i
)li with

pairwise distinct pairs (pi, ηi). Notice that any integral double coset vanishes in
each component of the Picard group. A double coset is irreducible if and only if it
is irreducible with respect to each of the p-components

⊕

i:pi=p(Cp
ηi
i
)li . Hence, by

applying a basis transformation, we may assume that Pic(Λ) ∼= Cpη for one prime
p and some η ∈ N.

Consider the multisets [cj ]j of elements in Pic(Λ) such that
∑

i c̃i = 0. Then
for any submultiset [c̃i]i we have

∑

i ci �= 0. Given one of these multisets consider
the multisets of pairs of places and indices (pj , ij) satisfying pj(n + 1 − ij) = ci.
These multisets are in a one-to-one correspondence to irreducible double cosets M
by virtue of

∀p∀i ∈ {1, . . . , n} : #{j : pj = p ∨ ij = i} = f̂p, i(M).

According to Lemma 4.1 we only have to consider multisets of length at most
(pη − 1)3. So transversing all of them we can list all representatives of irreducible
double cosets. To get the desired double cosets over some ideal n of Λ it suffices to
determine the image of all prime divisors in the Picard group.

4.1. The commutation relation with the Siegel Φ-operator. The applica-
tion of these results to the theory of modular forms renders the following question
important. One is interested in proving that the Siegel Φ-operator is surjective.
Suppose that K = Q and that Λ is a principal ideal domain. To simplify the no-
tation we let Ñ(δ) = δ for given δ ∈ Ω if Ω is commutative, and Ñ(δ) = δı(δ)

otherwise. Notice that Ñ ı(Ñ) equals #(Λp/pΛp) (cf. [Rei75]).
Using this notation suppose that k ∈ N such that k divides the exponent of

N(Λ×). In the field extension case we have to assume that Λ is hermitian, since
otherwiseN(Λ×) will not be finite. We also suppose that n ≥ 2, if Λ is commutative,
and n ≥ 3 otherwise. We consider the underlying modules of linear combinations
of right cosets as mentioned in Section 2 to define the map

Φk : Q⊗H(Spn(Λ), Δn(Λ)) → Q⊗H(Spn−1(Λ), Δn−1(Λ)).
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Fix a set of right coset representatives hi of a double coset M and suppose

hi =

⎛

⎜

⎜

⎝

Ai 0(n−1,1) Bi ∗
∗ αi ∗ ∗
Ci 0(n−1,1) Di ∗

0(1,n−1) 0 0(1,n−1) δi

⎞

⎟

⎟

⎠

.

Then we define Φk(M) =
∑

i Ñ(δi)
−kSpn(Λ)

(

Ai Bi

Ci Di

)

Spn(Λ).
Since we identified the integral Hecke algebra with the adelic one, our final

theorem can be proved by a standard counting argument.

Theorem 4.2. Let Ω|Q be a hermitian field or a quaternion algebra with class
number #Cl(Ω) = 1. Let k ∈ N such that k divides the exponent of N(Λ×) ∈ {1, 2}.
If Ω is hermitian, suppose n ≥ 2; otherwise n ≥ 3.

The map Φk is surjective except if Λ is noncommutative and k = 2n − 1 or
k = 2n− 2.

Remark 4.3. Notice that if Λ is not a principal ideal domain, the adelic Φ-operator
will map integral double cosets to nonintegral ones.

For a proof consider Krieg’s extensive studies of the Hurwitz order in [Kri87].

Note that in the quaternionic case he writes N(δ)−k/2 instead of Ñ(δ)−k. All of
his arguments are still valid, but we have to replace p by #(Λp/pΛp). This does
not change the underlying systems of linear relations for the images of the Hecke
algebra’s generators. �

5. Examples

In this section we reproduce an example given in the unpublished dissertation
[Ens08, Remark 3.3.6]. Using our results it can now be completely understood. We
also illustrate our result by two other examples.

Example 5.1 (An example found by Ensenbach). We deal with the hermitian case
and n = 2.

Ensenbach considered the following very concrete example. Let ω =
√
−5 and

Ω = Q(ω), K = Q. We set M6 = [1, 1 + ω] and M = [M6, 6ı(M)−tr]. Then M is
an irreducible double coset with similitude 6.

A more general construction is as follows. Consider two places p, q which are
inverse to each other in the class group of Λ. Choose primes p and q in K above
them. Let m be a generator the ideal associated to pq. Then the double coset
given the adelic matrix [1, . . . , 1,m, 1, . . . , pqı(m)−1] will generate a double coset
contained in integral Hecke algebra. As an element of the integral Hecke algebra it
is irreducible in the sense of Section 4.

Example 5.2 (Abstract generators for the integral Hecke algebra). We want to
illustrate the idea behind Lemma 4.1. Therefore, we will calculate the irreducible
double cosets in the hermitian modular case with class number 2 for n = 2, K = Q.

So let us first consider those cosets which have prime similitude p ∈ Q. If p is inert
the valuation of the elementary divisors of irreducible cosets are (0, 0, 1, 1), (0, 1, 1, 2)
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and (1, 1, 1, 1). If p ramifies, there are the irreducible double cosets (1, 1, 1, 1) and
(0, 0, 2, 2). Moreover, if the ramified prime ideal above p is principal, (0, 1, 1, 2) is
irreducible; otherwise (0, 2, 2, 4) is irreducible.

If p splits, we have to distinguish two cases. If it splits into principal ideals, all
irreducible double cosets have similitude p, and the valuation of the local elementary
divisors over Λp are (0, 0, 0, 0), (0, 0, 0, 1) (0, 0, 1, 1), (0, 1, 1, 1) and (1, 1, 1, 1). If it
splits into nonprincipal ideals, those irreducible double cosets with similitude p
are (0, 0, 0, 0), (0, 0, 1, 1) and (1, 1, 1, 1). In addition, there are three which have
similitude p2. They are (0, 1, 1, 2), (0, 2, 2, 2) and (0, 0, 0, 2).

There remain those double cosets which have similitude p1p2 with distinct primes
p1 and p2. They are the product of exactly two adelic double cosets (0, 1, 1, 2) if pi
ramifies and (0, 1, 1, 1) or (0, 0, 0, 1) with similitude pi if pi splits.

Actually this is a minimal generating set with respect to inclusion of sets. This
can easily be seen by the algebraic independence of the generators of the adelic
Hecke algebra.

Example 5.3 (Concrete generators for the integral Hecke algebra). More con-
cretely we can consider ω =

√
−6, Ω = Q(ω) and K = Q as in the first example.

Set M2 =
(

ω −2
2 ω

)

. The component of the Hecke algebra above 2 is generated by
[M2, 2ı(M2)

−tr], [1, 1, 2, 2] and [1, 2, 4, 2]. In analogy, the Hecke algebra above 3 is
generated by [M3, 3ı(M3)

−tr], [1, 1, 3, 3] and [1, 3, 9, 3]. Here, we have M3 =
(

ω −3
3 ω

)

.
In accordance with the first example the component above 6 is not the tensor

product of the components above 2 and 3. But we have to add one further generator
[M6, 6ı(M6)

−tr] with M6 = ( ω 2
ω 3 ).
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