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HIGHER-DIMENSIONAL LINKING INTEGRALS

CLAYTON SHONKWILER AND DAVID SHEA VELA-VICK

(Communicated by Daniel Ruberman)

Abstract. We derive an integral formula for the linking number of two sub-
manifolds of the n-sphere Sn, of the product Sn ×R

m, and of other manifolds
which appear as “nice” hypersurfaces in Euclidean space. The formulas are
geometrically meaningful in that they are invariant under the action of the

special orthogonal group on the ambient space.

1. Introduction

In a half-page paper from 1833 [Gau33], Carl Friedrich Gauss defined an integral
whose purpose was to compute the linking number of two closed curves in Euclidean
3-space. Gauss’s linking integral follows from at least two elementary arguments:
one involves thinking of the curves as wires, running a current through one and
applying Ampère’s Law, while the other is a straightforward degree-of-map argu-
ment (see [Epp98]). The latter extends easily to all Euclidean spaces (as we will
see in Section 2) but cannot be directly adapted to spheres. As such, when Den-
nis DeTurck and Herman Gluck set out to derive integral formulas for the linking
number of closed curves in the 3-sphere and in hyperbolic 3-space [DG08a], they
adapted the first argument, developing steady-state versions of electrodynamics in
those spaces.

The integrals defined by Gauss in the case of R3 and by DeTurck and Gluck in the
case of S3 and H3 apply to the simplest of the eight 3-dimensional model geometries
and motivate the search for a linking integral in the next simplest geometry, S2×R.
An explicit formula for this case is given in Section 4 but the techniques developed
to obtain this formula apply to a much broader class of manifolds which we call
“visible hypersurfaces”.

Call a smooth hypersurfaceMn ⊂ R
n+1 visible from the point p if each ray from p

either misses Mn completely or else meets it just once transversally. We will always
arrange things so that p is the origin in R

n+1 and simply call our hypersurfaces
visible. The principal examples are Sn ⊂ R

n+1 and Sn × R
m ⊂ R

n+m+1. By the
Whitney embedding theorem, every closed, orientable manifold can be embedded
in a sphere of sufficiently high dimension and thus, after thickening, is homotopy
equivalent to a visible hypersurface in some Euclidean space. Our main theorem
gives explicit linking integrals in all visible hypersurfaces:
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Theorem 1.1. Let Kk and L� be disjoint, closed, oriented, null-homologous sub-
manifolds of a visible hypersurface Mn ⊂ R

n+1 such that k+ � = n− 1. Then their
linking number is given by

(1) Lk(K,L) =
1

volSn

∫
K×L

Ωk,�(α)

|x|k+1|y|�+1 sinn α
[x, dx, y, dy],

where

Ωk,�(α) =

∫ π

θ=α

sink(θ − α) sin� θ dθ.

Here α(x, y) is the angle between x ∈ K and y ∈ L, thought of as vectors in R
n+1,

and the notation [x, dx, y, dy] is as defined in Section 3.

In R
3, or equivalently S3, the linking number of K with L is defined to be the

oriented intersection number of K with a chain L bounded by L. Extend this
definition to higher dimensions by defining the linking number of two submanifolds
Kk and L� to be the oriented intersection number K · L of K with a chain L
bounded by L. This intersection number only makes sense when k and � are as in
Theorem 1.1 and the ambient manifold M is orientable.

Remark 1.2. The integrand in (1) is SO(n+ 1)-invariant, meaning that it will be
the same for K and L in Mn ⊂ R

n+1 as it is for h(K) and h(L) in h(M) for all
h ∈ SO(n+ 1), whether or not Mn is invariant under h.

As an immediate corollary to Theorem 1.1, we get an integral formula for the
linking number of submanifolds of Sn which agrees with the formulas obtained
independently and by quite different methods by Kuperberg [Kup08] and DeTurck
and Gluck [DG08b]:

Theorem 1.3. Let Kk and L� be disjoint, closed, oriented submanifolds of the
round n-sphere Sn with k + � = n− 1. Then

Lk(K,L) =
1

volSn

∫
K×L

Ωk,�(α)

sinn α
[x, dx, y, dy],

where

Ωk,�(α) =

∫ π

θ=α

sink(θ − α) sin� θ dθ.

Here α(x, y) is the distance in Sn from x ∈ K to y ∈ L.

Remark 1.4. The integrand in Theorem 1.3 is invariant under orientation-preserving
isometries of Sn.

To prove Theorem 1.1, we first adapt the degree-of-map proof of the Gauss
linking integral to get an integral formula for the linking number of closed sub-
manifolds of RN for all N . Then, for submanifolds K and L of the visible hyper-
surface Mn ⊂ R

n+1, we associate to K a family of closed singular submanifolds
CKR ⊂ R

n+1 of one higher dimension for R ∈ (1,∞). We apply the integral for-
mula in R

n+1 to the pair (CKR, L) and, after taking an appropriate limit, deduce
the integral in Theorem 1.1.
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2. A linking integral for R
N

To obtain a linking integral formula for RN , we directly adapt the degree-of-map
proof of the Gauss linking integral.

Let Kk, L� ⊂ R
N be disjoint, closed, oriented submanifolds such that k + � =

N − 1. Let x : Rk → K ⊂ R
N and y : R� → L ⊂ R

N be oriented local coordinates
for K and L, where s = (s1, . . . , sk) and t = (t1, . . . , t�) give the coordinates on R

k

and R
�, respectively. Then, up to sign, we can express Lk(K,L) as the degree of a

map:

Lemma 2.1. If K and L are as above and f : K × L → SN−1 is given by

f(x, y) =
x− y

|x− y| ,

then the degree of the map f is equal to (−1)N times the linking number of K and
L. In other words, if ω is a volume form on SN−1, then

Lk(K,L) =
(−1)N

volSN−1

∫
K×L

f∗ω.

The idea of the proof of Lemma 2.1 is the following: if we change K by a ho-
mology in the complement of L (or vice versa), the degree of f remains unchanged.
Hence, we can replace K and L by collections of pairwise meridional round k- and
�-spheres. In this special case, it is a straightforward exercise to check that the
degree of f is (−1)N times the linking number.

With Lemma 2.1 in hand, we turn to finding a linking integral for submanifolds
of R

N . In the following theorem and throughout the rest of this paper we will
use the notation (v1, . . . , vN ) to denote the N ×N matrix with rows given by the
vectors v1, . . . , vN ∈ R

N .

Theorem 2.2. With K and L as above,

(2) Lk(K,L) =
(−1)k+1

volSN−1

∫
K×L

1

|x− y|N [x− y, dx, dy],

where

[x− y, dx, dy] = det

(
x− y,

∂x

∂s1
, · · · , ∂x

∂sk
,
∂y

∂t1
, · · · , ∂y

∂t�

)
ds dt.

Remark 2.3. Theorem 2.2 is a direct generalization of the original Gauss linking
integral,

Lk(K,L) =
1

4π

∫
K×L

x− y

|x− y|3 ·
(
dx

ds
× dy

dt

)
ds dt,

since 1
|x−y|3 [x− y, dx, dy] is equal to the triple product in the above integrand.

Proof. By Lemma 2.1, it suffices to show that

(3) f∗ω =
(−1)�

|x− y|N [x− y, dx, dy],

where ω is the volume form on SN−1.
For SN−1 embedded in R

N in the usual way, we can give an explicit formula
for the volume form ω on SN−1. If p ∈ SN−1 and V1, . . . , VN−1 ∈ TpS

N−1, then
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ωp(V1, . . . , VN−1) is equal to the volume of the parallelpiped spanned by the vectors
p, V1, . . . , VN−1 in R

N :

ωp(V1, . . . , VN−1) = det(p, V1, . . . , VN−1).

Therefore,
(4)

f∗ω

(
∂

∂s1
, . . . ,

∂

∂sk
,
∂

∂t1
, . . . ,

∂

∂t�

)
= det

(
f(x, y),

∂f

∂s1
, . . . ,

∂f

∂sk
,
∂f

∂t1
, . . . ,

∂f

∂t�

)
.

Note that

(5)
∂f

∂si
=

∂

∂si

(
x− y

|x− y|

)
=

∂x
∂si

|x− y| + (x− y)
∂

∂si

(
1

|x− y|

)

and

(6)
∂f

∂tj
=

∂

∂tj

(
x− y

|x− y|

)
=

− ∂y
∂tj

|x− y| + (x− y)
∂

∂tj

(
1

|x− y|

)
.

For each i and j, the second terms in both (5) and (6) contribute nothing to the
determinant since they are collinear with f(x, y) = x−y

|x−y| , which appears in the first
row.

Thus, combining (4), (5) and (6), we see that

f∗ω

(
∂

∂s1
, . . . ,

∂

∂sk
,
∂

∂t1
, . . . ,

∂

∂t�

)

=
(−1)�

|x− y|N det

(
x− y,

∂x

∂s1
, . . . ,

∂x

∂sk
,
∂y

∂t1
, . . . ,

∂y

∂t�

)
,

which is just a restatement of (3). �

3. A linking integral for visible hypersurfaces

In this section, we prove Theorem 1.1 by making use of the linking integral
in R

n+1. We assume n > 1; in the special case that n = 1, K and L are both
zero-dimensional and Theorem 1.1 can be verified directly. To set notation, let Kk

and L� be disjoint, closed, oriented, null-homologous submanifolds of the visible
hypersurface Mn ⊂ R

n+1 such that k + � = n − 1. We use x, y, s and t as in
Section 2 and use [x, dx, y, dy] to denote

det

(
x,

∂x

∂s1
, . . . ,

∂x

∂sk
, y,

∂y

∂t1
, . . . ,

∂y

∂t�

)
ds dt.

Since the linking number satisfies the anti-commutation rule

Lk(Kk, L�) = (−1)(k+1)(�+1)Lk(L�,Kk),

we may assume, after a possible change of sign, that k ≤ �.
The key idea is to derive an integral formula for linking numbers in Mn from

the one in R
n+1 appearing in Theorem 2.2. This is illustrated in Figure 1 in the

case M = Sn.
The cycles K and L in M are shown in Figure 1(a). K and L are unlinked in

R
n+1, but, since M is a visible hypersurface, their linking number in M is the same

as the linking number in R
n+1 of CK and L, where CK := {τx : x ∈ K, 0 ≤ τ < ∞}

is the half-infinite cone over K (see Figure 1(b)).
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L

KK

(a)

CK

L

(b)

L

CKR

RK

(c)

Figure 1

We intend to take the formula for Lk(CK,L) in R
n+1, expressed as an integral

over CK ×L, and partially integrate it over the rays 0 ≤ τ < ∞ to reduce it to an
integral over K × L for Lk(K,L) in M .

The noncompactness of CK raises questions about the meaning of Lk(CK,L)
and the convergence of the linking integral, which we handle by approximation as
follows. As shown in Figure 1(c), let CKR be the truncated cone {τx : x ∈ K, 0 ≤
τ ≤ R} capped off by the scaled version RK of a chain K in M bounded by K.
Then LkRn+1(CKR, L) = LkM (K,L) because CKR meets a chain L bounded by
L exactly as K does. The integral for Lk(CKR, L) converges to the integral for
Lk(CK,L) as R → ∞ because the contribution to the linking integral coming from
the cap RK vanishes as R → ∞.

Lemma 3.1. With K and L as in Theorem 1.1 and provided that n > 1,

(7) Lk(K,L) =
(−1)k

volSn

∫
CK×L

1

|τx− y|n+1
[τx− y, d(τx), dy].

Proof. We will interpret (7) as the limit of integrals given by applying Theorem 2.2
to the family of closed, singular manifolds CKR, 1 < R < ∞. By construction,
Lk(K,L) = Lk(CKR, L) for all R > 1. Since the singularities of CKR have measure
zero, we can use Theorem 2.2 to compute Lk(CKR, L):

Lk(CKR, L) =
(−1)k+2

volSn

∫
CKR×L

1

|ξ − y|n+1
[ξ − y, dξ, dy]

=
(−1)k+2

volSn

∫
{τx:x∈K,τ∈[0,R]}×L

1

|τx− y|n+1
[τx− y, d(τx), dy](8)

+
(−1)k+2

volSn

∫
K×L

1

|Rz − y|n+1
[Rz − y, d(Rz), dy].

As R → ∞, the first term on the right hand side of (8) approaches the right hand
side of (7). Therefore, to complete the proof we need only show that

(9)
(−1)k+2

volSn

∫
K×L

1

|Rz − y|n+1
[Rz − y, d(Rz), dy] → 0
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as R → ∞. However, as R gets large the numerator in the integrand grows like
Rk+2, whereas the denominator grows like Rn+1. The assumptions k ≤ � and n > 1
imply that k + 2 < n+ 1. Therefore, the integrand vanishes in the limit, implying
(9) and completing the proof. �

Now we are ready to prove the linking integral formula for M .

Proof of Theorem 1.1. By Lemma 3.1,

(10) Lk(K,L) =
(−1)k

volSn

∫
CK×L

1

|τx− y|n+1
[τx− y, d(τx), dy].

Focusing first on [τx− y, d(τx), dy], we see that

[τx− y, d(τx), dy] = dτ ∧
[
det

(
τx− y, x, τ

∂x

∂s1
, . . . , τ

∂x

∂sk
,
∂y

∂t1
, . . . ,

∂y

∂t�

)
ds dt

]

= (−1)kτkdτ ∧ [x, dx, y, dy].

Combining this with (10) yields

Lk(K,L) =
1

volSn

∫
K×L

∫ ∞

τ=0

τk

|τx− y|n+1
dτ ∧ [x, dx, y, dy].

Therefore, it suffices to show that

(11)

∫ ∞

τ=0

τk

|τx− y|n+1
dτ =

1

|x|k+1|y|�+1 sinn α

∫ π

θ=α

sink(θ − α) sin� θ dθ.

α

τx

y

x

τ |x| cosα− |y|

τ |x| sinα

|τ
x
−
y
|

Figure 2

As illustrated in Figure 2, we can re-write |τx− y|n+1 as

|τx− y|n+1 =
(
|y|2 + τ2|x|2 − 2τ 〈x, y〉

)n+1
2 =

(
|y|2 + τ2|x|2 − 2τ |x||y| cosα

)n+1
2 ,

where we recall that α(x, y) is the angle (in R
n+1) formed by x and y.

Now make the substitution u = τ − |y|
|x| cosα in the left hand side of (11) to get

1

|x|n+1

∫ ∞

− |y|
|x| cosα

(
u+ |y|

|x| cosα
)k

(
u2 + |y|2

|x|2 sin
2 α

)n+1
2

du.
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Substituting − |y|
|x| sinα cot θ for u and simplifying yields

1

|x|k+1|y|�+1 sinn α

∫ π

θ=α

(cosα− sinα cot θ)k sinn−1 θ dθ

=
1

|x|k+1|y|�+1 sinn α

∫ π

θ=α

sink(θ − α) sin� θ dθ,

which is the right hand side of (11), completing the proof of the theorem. �

4. A few examples

To see that Theorem 1.1 is useful in practice, we apply it to some prototypical
examples. First, we note that Theorem 1.3 can be used to recover a linking integral
in S3. In this case, k = � = 1, so

Ω1,1(α) =

∫ π

α

sin(θ − α) sin θ dθ

=
(π − α) cosα+ sinα

2
.

Thus, the linking number of disjoint closed curves K and L in S3 is given by

Lk(K,L) =
1

4π2

∫
K×L

(π − α) cosα+ sinα

sin3 α
[x, dx, y, dy].

This is equivalent to the formulas obtained by DeTurck and Gluck in [DG08a] and
Kuperberg in [Kup08].

The same computation in the case of disjoint, closed curves in S2 ×R yields the
linking formula

Lk(K,L) =
1

4π2

∫
K×L

(π − α) cosα+ sinα

|x|2|y|2 sin3 α
[x, dx, y, dy].

As noted in the introduction, the integrand in this linking integral formula is in-
variant under the action of SO(4) on the ambient Euclidean space, so it is invariant
under rotations in the S2 factor, though not necessarily under translations in the R
factor. This is in contrast to the formulas of Gauss in R

3 and DeTurck and Gluck
in S3 and H3, whose integrands are invariant under the full group of orientation-
preserving isometries of their respective manifolds.

Now we turn to more concrete examples. Let K = Sk and L = S� be two great
spheres contained in Sk+�+1 at constant geodesic distance π/2. Up to ambient
isometry, we may as well take K as the unit sphere in the first k+1 coordinates in
R

k+�+2 and L as the unit sphere in the last �+1 coordinates. Then, by construction,
Lk(K,L) = 1; we want to see that Theorem 1.3 gives the same result.

To simplify the computation, we recall the following fact relating integrals of
sines and cosines to the volumes of spheres:

(12) volSk+�+1 = volSk volS�

∫ π/2

0

cosk θ sin� θ dθ.

This follows from viewing Sk+�+1 as the spherical join of orthogonal great spheres
Sk and S� and computing the volume in the natural coordinates that result from
this identification.
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In our example, sinceK and L are at constant geodesic distance π/2, (12) implies
that Ωk,� has the form

Ωk,�(α) =

∫ π

π/2

sink(θ − π/2) sin� θ dθ

=

∫ π/2

0

cosk θ sin� θ dθ

=
volSk+�+1

volSk volS�
.

Therefore,

Lk(K,L) =
1

volSk+�+1

∫
K×L

1

sink+�+1(π/2)

volSk+�+1

volSk volS�
[x, dx, y, dy]

=
1

volSk volS�

∫
K×L

[x, dx, y, dy]

=
1

volSk volS�
volSk volS�

= 1.

The second-to-last equality follows because, since K is contained in the Rk+1 factor
and L is contained in the R�+1 factor of Rk+�+2 = R

k+1×R
�+1, the form [x, dx, y, dy]

splits as [x, dx] ∧ [y, dy] = dVolSk ∧ dVolS� .
Finally, we use Theorem 1.1 to compute the simplest example in S2×R. Thinking

of the R factor as time, let K be the instantaneous equator on the S2 factor at time
0 and let L be the union of the eternal north pole traversed positively in time with
the eternal south pole traversed negatively in time. We can think of L as the limit
when τ → ∞ of the curves Lτ shown in Figure 3.

Figure 3. K and Lτ in S2 × R

With this choice of K and L, α is again equal to π/2 for all x ∈ K and y ∈ L.
Therefore,

Ω1,1(α) =
volS3

volS1 volS1
=

volS3

4π2
.
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Thus,

Lk(K,L) =
1

volS3

∫
K×L

volS3

|y|24π2
[x, dx, y, dy]

= 2 · 1

4π2

∫ ∞

−∞

∫ 2π

0

1

1 + t2
det

⎛
⎜⎜⎝

cos s sin s 0 0
− sin s cos s 0 0

0 0 1 t
0 0 0 1

⎞
⎟⎟⎠ ds dt

=
1

2π2

∫ ∞

−∞

∫ 2π

0

1

1 + t2
ds dt

= 1.

In the second equality we use the symmetry of L to eliminate the integral over the
south pole component by doubling the contribution of the north pole component.
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