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GEOMETRIC VERSIONS OF SCHWARZ’S LEMMA

FOR QUASIREGULAR MAPPINGS

DIMITRIOS BETSAKOS

(Communicated by Mario Bonk)

Abstract. We prove monotonicity and distortion theorems for quasiregular
mappings defined on the unit ball Bn of Rn. Let KI(f) be the inner dilata-

tion of f and let α = KI(f)
1/(1−n). Let mn denote n-dimensional Lebesgue

measure and cn be the reduced conformal modulus in R
n. We prove that the

functions r−nαmn(f(rBn)) and r−αcn(f(rBn)) are increasing for 0 < r < 1.
These results can be viewed as variants of the classical Schwarz lemma and as
generalizations of recent results by Burckel et al. for holomorphic functions in
the unit disk.

1. Introduction

Let D = {z ∈ C : |z| < 1} be the unit disk in the complex plane C and for
r > 0, let rD := {z ∈ C : |z| < r}. Let f be a function holomorphic in D.
Landau and Toeplitz ([8], [5]) proved a variant of the classical Schwarz’s lemma: If
Diam(f(D)) = 2, then for 0 < r < 1, Diam(f(rD)) ≤ 2r. Here and below, Diam(A)
is the diameter of the set A. In a recent article [5], Burckel, Marshall, Minda, Poggi-
Corradini, and Ransford introduced a new point of view for Schwarz’s lemma, the
Landau-Toeplitz theorem, and related results. They proved that the function

ΦD(r) =
Diam(f(rD))

r
, 0 < r < 1,

is increasing. This easily implies the Landau-Toeplitz theorem. They also proved
some similar monotonicity results involving the area and the logarithmic capacity
C2 of the image of disks under f : Each of the functions

ΦA(r) =
Area(f(rD))

πr2
, ΦC(r) =

C2(f(rD))

r
, 0 < r < 1,

is increasing. Moreover, these functions are strictly increasing except when f is
linear (that is, of the form f(z) = az + b with a, b ∈ C), in which case they are all
constant functions.

The proofs in [5] use complex analytic arguments, as well as geometric inequal-
ities and tools from real analysis. In the present paper, we propose a new ap-
proach. We will use conformal invariants (the conformal capacity of condensers,
the Green function, the modulus metric μG) and their behavior under suitable types
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of symmetrization (Schwarz and Steiner). This approach leads to generalizations
for quasiregular mappings in higher dimensions. As expected, the results in the
quasiregular case are not as sharp as for holomorphic functions.

Let R
n, n ≥ 2, be the n-dimensional Euclidean space. For r > 0, set rBn :=

{x ∈ R
n : |x| < r} and 1Bn = B

n. We denote by mn the n-dimensional Lebesgue
measure. Let Ωn = mn(B

n); denote also by ωn−1 the (n − 1)-dimensional surface
area of the unit sphere Sn−1 in R

n. Quasiregular mappings are generalizations of
holomorphic functions and they are defined on domains in R

n. We will use only
the most basic (though highly non-trivial) properties of quasiregular mappings. We
denote by KI(f) the inner dilatation of a quasiregular mapping f . For the various
definitions and the properties of quasiregular mappings, we refer to [10], [14], [17].
In the sequel, we assume tacitly that every quasiregular mapping that we consider
is non-constant.

Theorem 1 (Volume version of Schwarz’s lemma). Suppose that f : Bn → R
n is a

quasiregular mapping and let α = KI(f)
1/(1−n).

(a) The function

ΦV (r) =
mn(f(rB

n))

rnα
, 0 < r < 1,

is increasing.
(b) If mn(f(B

n)) = Ωn, then mn(f(rB
n)) ≤ Ωnr

nα, 0 < r < 1.

Note that for a holomorphic function on D, Theorem 1 reduces to the area version
of Schwarz’s lemma proven in [5]. We will prove Theorem 1 in section 2 and we
will see that the function ΦV is constant when f is a radial mapping of the form
f(x) = |x|b−1 x, 0 < b < 1. In section 2, we will also give a new proof of the strict
monotonicity in the area version of Schwarz’s lemma.

In section 3 we will prove a capacity version of Schwarz’s lemma for quasiregular
mappings. For a compact set L in R

n, we denote by cn(L) the reduced conformal
modulus of L. This quantity, defined in detail in section 3, will play the role of
logarithmic capacity in higher dimensions. For n = 2, it is equal to the logarithmic
capacity of L; also, in all dimensions, cn(rB

n) = r. If G is an open bounded set in
R

n, then cn(G) will be the reduced conformal modulus of the closure G of G.

Theorem 2 (Capacity version of Schwarz’s lemma). Suppose that f : Bn → R
n is

a quasiregular mapping and let α = KI(f)
1/(1−n).

(a) The function

ΦC(r) =
cn(f(rB

n))

rα
, 0 < r < 1,

is increasing.
(b) If cn(f(B

n)) = 1, then cn(f(rB
n)) ≤ rα, 0 < r < 1.

If f is a holomorphic function on D, Theorem 2 reduces to the logarithmic
capacity version of Schwarz’s lemma, originally proven in [5]. In section 3, we will
also give a new proof of strict monotonicity in this version of Schwarz’s lemma.

In section 4 we will prove a diameter version of Schwarz’s lemma for quasiregular
mappings. It is a distortion theorem involving the function γn. For 1 < s < ∞,
γn(s) is the conformal modulus of the family of curves joining the complementary

components B
n
and [se1,∞] of the Grötzsch ring. Here e1 = (1, 0, . . . , 0) ∈ R

n.
The function γn plays an important role in the distortion theory of quasiconformal
and quasiregular mappings; see [2], [17].



QUASIREGULAR MAPPINGS 1399

Theorem 3 (Diameter version of Schwarz’s lemma). Suppose that f : Bn → R
n is

a quasiregular mapping. For 0 < r < s < 1,

(1.1) γn

(
r̃2 + s̃2

2r̃s̃

)
≤ KI(f) γn

(
r2 + s2

2rs

)
,

where 2r̃ = Diam(f(rBn)) and 2s̃ = Diam(f(sBn)). If Diam(f(Bn)) = 2, then

(1.2) γn

(
r̃2 + 1

2r̃

)
≤ KI(f) γn

(
r2 + 1

2r

)
.

If f is holomorphic on D, then setting n = 2 and KI(f) = 1 and using properties
of the function γ2, we obtain the inequality of the Landau-Toeplitz theorem and
the corresponding monotonicity result of [5]. We give a new proof of the strict
monotonicity result in section 4.

Monotonicity results in the theory of quasiregular mappings, related to Theo-
rems 1–3, appear in [13, p. 82] and [1, p. 698].

2. The volume version of Schwarz’s lemma

2.1. Condensers. Schwarz symmetrization. For the proof of Theorem 1, we
will use Schwarz symmetrization and its action on the conformal capacity of con-
densers. We refer to [9], [10], [15], [17] for the facts about condensers that we will
need in the proof. A condenser is a pair (A,C), where A is an open set in R

n and
C is a compact subset of A. We will denote by cap(A,C) the conformal capacity of
the condenser (A,C). A spherical ring is a condenser of the form (sBn, rBn) with
0 < r < s. The conformal capacity of a spherical ring can be computed explicitly:

(2.1) cap(sBn, rBn) = ωn−1

(
log

s

r

)1−n

.

The Schwarz symmetrization of an open set A with mn(A) < ∞ is the ball
A� centered at the origin with mn(A

�) = mn(A). The Schwarz symmetrization
of a compact set C is similarly the closed ball C� centered at the origin with
mn(C

�) = mn(C). The Schwarz symmetrization of the condenser (A,C) is the
spherical ring (A�, C�). It is known (see [15]) that Schwarz symmetrization decreases
the capacity of condensers:

(2.2) cap(A�, C�) ≤ cap(A,C).

Proof of Theorem 1. Let 0 < r < s < 1. Let f : Bn → R
n be quasiregular. The

map f is an open mapping, and hence the pair (f(sBn), f(rBn)) is a condenser.
Moreover, by a fundamental theorem in the theory of quasiregular mappings [10,
Theorem 7.1],

(2.3) cap(f(sBn), f(rBn)) ≤ KI(f) cap(sB
n, rBn).

Let f(sBn)� = s�Bn and f(rBn)
�
= r�Bn.

By (2.1), (2.2), and (2.3),

ωn−1

(
log

s�

r�

)1−n

= cap(s�Bn, r�Bn) ≤ cap(f(sBn), f(rBn))

≤ KI(f) cap(sB
n, rBn) = KI(f) ωn−1

(
log

s

r

)1−n

.
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Hence

(2.4) log
s

r
≤ KI(f)

1/(n−1) log
s�

r�
,

which is equivalent to the inequality ΦV (r) ≤ ΦV (s). So part (a) of the theorem is
proved. Part (b) follows easily from part (a). �

2.2. The radial mapping. Let 0 < b < 1 and consider the function f : Bn → R
n

with

f(x) =

{
|x|b−1 x, x ∈ B

n \ {0},
0, x = 0.

Then [16, §16.2] f is a quasiconformal mapping with KI(f) = b1−n. Therefore
α := KI(f)

1/(1−n) = b. Moreover, if 0 < ρ < 1, then f(ρBn) = ρbBn. Hence for
0 < r < s < 1,

(2.5)
mn(f(sB

n))

mn(f(rBn))
=

mn(s
b
B
n)

mn(rbBn)
=

snb

rnb
.

So for this function f , we have that ΦV is constant.

2.3. The area version of the Schwarz lemma. We give a new proof of the
following theorem.

Theorem 4 ([5]). Suppose that f is holomorphic on D. The function ΦA(r) :=
(πr2)−1 m2(f(rD)) is strictly increasing for 0 < r < 1, except when f is linear, in
which case ΦA is constant.

Proof. We may assume that f(0) = 0. Setting n = 2 and KI(f) = 1 in Theorem
1, we see that ΦA is increasing. Suppose that φA(r) = φA(s) for some r, s with
0 < r < s < 1. Then it follows from the proof of Theorem 1 that r�/r = s�/s and
that

(2.6) cap(s�D, r�D) = cap(f(sD), f(rD)),

which means that we have equality in the Schwarz symmetrization inequality for
the capacity of planar condensers. By a modification of the argument in [6, §3],
we have then that f(sD) ≈ s�D and f(rD) ≈ r�D, where “≈” means that the
symmetric difference between the two sets has logarithmic capacity zero. The
relation f(sD) ≈ s�D implies that f(sD) ⊂ s�D. Then by the classical Schwarz
lemma, for all z ∈ sD,

|f(z)| ≤ s�

s
|z|.

The relation f(rD) ≈ r�D implies that for some real θ,

|f(reiθ)| = r� =
r�

r
r =

s�

s
|reiθ|.

So we have equality in Schwarz’s lemma. Therefore f is linear. �



QUASIREGULAR MAPPINGS 1401

3. The capacity version of Schwarz’s lemma

3.1. The reduced conformal modulus. If (A,C) is a condenser in R
n, we will

denote by Mn(A,C) the conformal modulus of the family of curves in A joining C
with ∂A. We will also use the extremal length of this family defined by λn(A,C) =
Mn(A,C)1/(1−n). The conformal capacity of (A,C) is defined through the Dirichlet
integral and it is equal to Mn(A,C); see [9, Appendix A] and the references therein.

We define the reduced conformal modulus by a standard method. Let L be
a compact set in R

n. Suppose that r1 is large enough so that L ⊂ r1B
n. If

0 < r1 < r2, then by a well-known property of extremal length (see e.g. [2, pp. 159-
161] or [9, Appendix A]),

λn(r2B
n, L) ≥ λn(r1B

n, L) + λn(r2B
n, r1Bn)

= λn(r1B
n, L) + ω

1/(1−n)
n−1 log

r2
r1

.

Hence the function r 	→ λn(rB
n, L)− ω

1/(1−n)
n−1 log r is increasing. Let

λn(L) := lim
r→∞

(
λn(rB

n, L)− ω
1/(1−n)
n−1 log r

)
.

The reduced conformal modulus of the compact set L ⊂ R
n is defined by

(3.1) cn(L) = exp
(
−ω

1/(n−1)
n−1 λn(L)

)
.

We will see now that for n = 2, c2 is equal to the logarithmic capacity C2. Let
L be a planar compact set. If C2(L) = 0, then for every disk rD containing L,
we have cap(rD, L) = 0 and therefore c2(L) = 0. Suppose that L has positive
logarithmic capacity. Let gL be the Green function of the complement of L. The
Robin constant γ(L) of L is defined by

gL(z,∞) = log |z|+ γ(L) + o(1), z → ∞.

Then C2(L) = exp(−γ(L)). It follows from the analysis in [7, pp. 126-127] that

1

2π
γ(L) = lim

r→∞

(
1

cap(rD, L)
− 1

2π
log r

)

= lim
r→∞

(
λ2(rD, L)−

1

2π
log r

)
= λ2(L).

Hence C2(L) = exp(−2πλ2(L)) = c2(L).
The reduced conformal modulus of a closed ball is equal to its radius. Indeed,

λn(ρBn) = lim
r→∞

(
λn(rB

n, ρBn)− ω
1/(1−n)
n−1 log r

)

= lim
r→∞

(
ω
1/(1−n)
n−1 log

r

ρ
− ω

1/(1−n)
n−1 log r

)

= −ω
1/(1−n)
n−1 log ρ.

Hence cn(ρBn) = exp(log ρ) = ρ.

3.2. A special symmetrization lemma. We will need the following lemma. We
note that an analogous result with Newtonian capacity in place of the reduced
conformal modulus has been proved by Zorii [18].
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Lemma 1. Let (G,L) be a condenser in R
n with G bounded. Let G∗ denote the ball

centered at the origin with cn(G
∗) = cn(G). Let L∗ denote the closed ball centered

at the origin with cn(L
∗) = cn(L). Then

(3.2) cap(G∗, L∗) ≤ cap(G,L).

Proof. Set G∗ = s∗Bn and L∗ = r∗Bn. Take ρ > 0 large enough so that G ⊂ ρBn.
By well-known properties of extremal length (see e.g. [9] or [17]),

(3.3) λn(ρB
n, L) ≥ λn(ρB

n, G) + λn(G,L)

and

λn(ρB
n, L∗) = λn(ρB

n, r∗Bn) = ω
1/(1−n)
n−1 log

ρ

r∗

= ω
1/(1−n)
n−1 log

ρ

s∗
+ ω

1/(1−n)
n−1 log

s∗

r∗
(3.4)

= λn(ρB
n, s∗Bn) + λn(s

∗
B
n, r∗Bn)

= λn(ρB
n, G∗) + λn(G

∗, L∗).

Subtracting ω
1/(1−n)
n−1 log ρ from both sides of (3.3) and taking limits as ρ → ∞, we

obtain

(3.5) λn(G,L) ≤ λn(G)− λn(L).

Similarly, (3.4) yields

(3.6) λn(G
∗, L∗) = λn(G∗)− λn(L

∗).

The assumptions cn(G) = cn(G
∗) and cn(L) = cn(L

∗) together with (3.5) and (3.6)
give

(3.7) λn(G,L) ≤ λn(G
∗, L∗),

which is equivalent to (3.2). �

Proof of Theorem 2. The outer boundary of a bounded set in R
n is the boundary of

the unbounded complementary component of the set. By a well-known property of
extremal length (see [16, Section 11]), the reduced conformal modulus of a compact
set is equal to the reduced conformal modulus of its outer boundary.

Let 0 < r < s < 1. Let Lr be the compact set bounded by the outer boundary
of f(rBn). Let Gs be the domain bounded by the outer boundary of f(sBn). Then

(3.8) cn(f(rB
n)) = cn(Lr) and cn(f(sB

n)) = cn(Gs).

Also, the pair (Gs, Lr) is a condenser. Every curve joining ∂Gs with Lr also joins

∂f(sBn) with f(rBn). Hence Mn(Gs, Ls) ≤ Mn(f(sB
n), f(rBn)) or, equivalently,

(3.9) cap(Gs, Lr) ≤ cap(f(sBn), f(rBn)).

Next we consider the balls G∗
s = s∗Bn and L∗

r = r∗Bn with cn(G
∗
s) = cn(Gs)

and cn(L
∗
r) = cn(Lr). By Lemma 1,

(3.10) cap(G∗
s, L

∗
r) ≤ cap(Gs, Lr).
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By [10, Theorem 7.1], (3.9), and (3.10),

ωn−1

(
log

s

r

)1−n

= cap(sBn, rBn)(3.11)

≥ KI(f)
−1 cap(f(sBn), f(rBn))

≥ KI(f)
−1cap(Gs, Lr)

≥ KI(f)
−1cap(G∗

s, L
∗
r)

= KI(f)
−1cap(s∗Bn, r∗Bn)

= KI(f)
−1 ωn−1

(
log

s∗

r∗

)1−n

.

Hence

(3.12)
sα

rα
≤ s∗

r∗
.

It follows from (3.8) and (3.12) that

ΦC(r) =
cn(f(rB

n))

rα
=

cn(Lr)

rα
=

cn(L
∗
r)

rα
=

r∗

rα
≤ s∗

sα

=
cn(G

∗
s)

sα
=

cn(f(sB
n))

sα
= ΦC(s)

and part (a) of the theorem is proved. Part (b) follows easily from part (a). �

Remark. For the radial mapping of subsection 2.2, the function ΦC is constant.

3.3. The logarithmic capacity version of Schwarz’s lemma. In this subsec-
tion we restrict ourselves to dimension n = 2 and consider a holomorphic function
f : D → C and the function ΦC(r) := r−1C2(f(rD)). It has been proved in [5] that
ΦC is strictly increasing unless f is linear. It follows easily from Theorem 2 that
φC is increasing. To achieve strict monotonicity, we need to modify the method of
proof and use conformal mappings and properties of logarithmic capacity that can
be found in [11] and [6].

Theorem 5 ([5]). Suppose that f is holomorphic on D. The function ΦC(r) :=
r−1 C2(f(rD)) is strictly increasing for 0 < r < 1, except when f is linear, in which
case ΦC is constant.

Proof. Let 0 < r < s < 1. Let Lr be the compact set bounded by the outer
boundary of f(rD) and let Gs be the simply connected domain bounded by the
outer boundary of f(sD). Then dr := C2(f(rD)) = C2(Lr) and ds := C2(f(sD)) =
C2(Gs). Moreover,

2π
(
log

s

r

)−1

= cap(sD, rD)(3.13)

≥ cap(f(sD), f(rD)) ≥ cap(Gs, Lr).

Let Dr be the complement of Lr in the extended complex plane Ĉ and consider

the conformal mapping g : Dr → Ĉ \ drD with g(∞) = ∞ and g′(∞) = 1. Then g
maps the boundary ofGs onto the boundary of a simply connected domain As which
contains the disk drD and C2(As) = C2(Gs) = ds. By the conformal invariance of
the condenser capacity,

(3.14) cap(As, drD) = cap(Gs, Lr).
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Let d�sD be the Schwarz symmetrization A�
s of As. Then

(3.15) cap(As, drD) ≥ cap(A�
s, drD) = 2π

(
log

d�s
dr

)−1

.

Schwarz symmetrization also reduces the logarithmic capacity of compact sets.
Hence

(3.16) d�r ≤ C2(As) = ds.

We combine (3.13), (3.14), (3.15), and (3.16) to obtain

(3.17)
s

r
≤ ds

dr
.

Therefore

(3.18) ΦC(r) =
C2(f(rD))

r
=

dr
r

≤ ds
s

=
C2(f(sD))

s
= ΦC(s).

We have proved that ΦC is increasing. Now suppose that for some 0 < r < s < 1,
ΦC(r) = ΦC(s). Then ΦC(ρ) = ΦC(s) for all ρ with r < ρ < s. Moreover, we
have equality in the Schwarz symmetrization inequality for the capacity of planar
condensers. Therefore (see [6]), after a translation, As = dsD. Hence the function
g ◦ f maps the annulus {r < |z| < s} onto the annulus {dr < |z| < ds} and each
circle {|z| = ρ} onto a circle centered at the origin. By the annulus theorem [12,
Chapter 9], g ◦ f(z) = ds

s z, r < |z| < s. Therefore

f = g−1

(
ds
s
z

)
, r < |z| < s.

The function f is holomorphic in D and the function g−1(dsz/s) is holomorphic in
C \ rD with a simple pole at ∞. Hence the function

F (z) =

{
f(z), z ∈ D,

g−1(dsz/s), z ∈ C \ rD,
is holomorphic in C with a simple pole at ∞. It follows that f(z) = F (z) = dsz/s
+ a constant. �

4. The diameter version of Schwarz’s lemma

4.1. Steiner symmetrization. The Steiner symmetrization of an open set G ⊂
R

n with respect to an (n − 1)-dimensional plane Π is the open set G� which is
symmetric with respect to Π and has the following property: If Σ is a straight line
perpendicular to Π, then the set G� ∩ Σ is a single interval with m1(G

� ∩ Σ) =
m1(G ∩ Σ). The Steiner symmetrization of a closed set is defined in an analogous
way. We say that an open set G is Steiner symmetric with respect to Π if G� = G.
For detailed definitions, properties, and applications of Steiner symmetrization, we
refer to [6], [7], [15], [4]. It is clear that Steiner symmetrization decreases the
diameter of an open or closed set. It also decreases the capacity of condensers; see
[15]. We will need the following simple geometric result.

Lemma 2. Let Ω be an open set in R
n with Diam(Ω) = d. Suppose that Ω contains

the points (−d/2, 0, . . . , 0) and (d/2, 0, . . . , 0) and that Ω is Steiner symmetric with
respect to all the (n − 1)-dimensional planes {(x1, x2, . . . , xn) ∈ R

n : xj = 0},
j = 1, 2, . . . , n. Then Ω ⊂ d

2B
n.



QUASIREGULAR MAPPINGS 1405

Proof. Suppose that there exists a point x = (x1, x2, . . . , xn) ∈ Ω with |x| > d/2.
By the symmetry assumption, the point −x = (−x1,−x2, . . . ,−xn) belongs to Ω.
Hence

Diam(Ω) ≥ |x− (−x)| = 2|x| > 2d/2 = d,

a contradiction. �

4.2. The modulus metric. Let G be a bounded domain in R
n. For x, y ∈ G, we

define

μG(x, y) := inf
Cxy

Mn(G,Cxy),

where the infimum is taken over all curves Cxy inG joining x and y. The function μG

is a conformally invariant metric called the modulus metric. We list the properties
of the modulus metric that we will need; for more information, see [17].

(i) If x, y ∈ D ⊂ G, then μD(x, y) ≥ μG(x, y).
(ii) If f : G → R

n is quasiregular, then μf(G)(f(x), f(y)) ≤ KI(f) μG(x, y); see
[17, Section 10].

(iii) If Π is an (n−1)-dimensional plane passing through x, y ∈ G, then μG(x, y) ≥
μG�(x, y). This comes from the definition of μG and the fact that Steiner sym-
metrization decreases the capacity of condensers.

(iv) If G is Steiner symmetric with respect to every plane {xj = 0}, j =
2, 3, . . . , n, and both x and y lie on the straight line {x2 = x3 = · · · = xn = 0},
then an extremal curve in the definition of μG is the linear segment joining x and
y. This follows from (iii).

(v) If G is Steiner symmetric with respect to each of the planes {xj = 0},
j = 2, 3, . . . , n, and G� is the Steiner symmetrization of G with respect to the
plane {x1 = 0}, then μG(−te1, te1) ≥ μG�(−te1, te1). This comes from (iv) and
the fact that Steiner symmetrization decreases the capacity of condensers.

(vi) There exist explicit formulae for μBn(x, y); see [17, Section 10], [2, Chapter 8].
It follows from these formulae that

μBn(−te1, te1) = γn

(
1 + t2

2t

)
.

Recall that γn is the conformal modulus of the Grötzsch ring; see the introduction.
(vii) If x and y lie on the sphere {|x| = r}, 0 < r < 1, then μBn(x, y) ≤

μBn(−re1, re1). This also follows from the formulae mentioned in (vi).

Proof of Theorem 3. Let f : Bn → R
n be a quasiregular mapping. Let 0 < r < s <

1. Let r̃ := Diam(f(rBn))/2 and s̃ := Diam(f(sBn))/2. Let yr, ỹr be two points

on f(rBn) with Diam(f(rBn)) = |yr − ỹr|. We may assume that yr = −r̃e1 and
ỹr = r̃e1. Let xr, x̃r be points on the sphere {|x| = r} with f(xr) = −r̃e1 and
f(x̃r) = r̃e1. By the properties of the modulus metric presented in subsection 4.2,

μf(sBn)(−r̃e1, r̃e1) ≤ KI(f) μsBn(xr, x̃r)(4.1)

≤ KI(f) μsBn(−re1, re1)

= KI(f) μBn

(
−r

s
e1,

r

s
e1

)

= KI(f) γn

(
r2 + s2

2rs

)
.
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Let Sj denote Steiner symmetrization with respect to the (n − 1)-dimensional
plane {xj = 0}. Let

Ωs := S1 ◦ S2 ◦ · · · ◦ Sn(f(sB
n)).

By the properties of Steiner symmetrization and of the modulus metric presented
in subsections 4.1 and 4.2,

μf(sBn)(−r̃e1, r̃e1) ≥ μΩs
(−r̃e1, r̃e1) ≥ μs̃Bn(−r̃e1, r̃e1)(4.2)

= μBn

(
− r̃

s̃
e1,

r̃

s̃
e1

)
= γn

(
r̃2 + s̃2

2r̃s̃

)
.

Now (1.1) follows from (4.1) and (4.2). The inequality (1.2) follows easily from
(1.1) and the continuity and monotonicity of the function γn. �
Remark. I do not know whether the function r 	→ Diam(f(rBn))/rα has a mono-
tonicity property as in Theorems 1 and 2 or not.

4.3. The diameter version in the plane. We give a new proof of the following
theorem, which implies the theorem of Landau and Toeplitz. We will use the Green
function in place of the modulus metric. We denote by gΩ the Green function for
a domain Ω.

Theorem 6 ([5]). Suppose that f is holomorphic on D. The function ΦD(r) :=
r−1 Diam(f(rD)) is strictly increasing for 0 < r < 1, except when f is linear, in
which case ΦD is constant.

Proof. Let 0 < r < s < 1. Let r̃ := Diam(f(rD))/2 and s̃ := Diam(f(sD))/2. Let

wr, w̃r be two points on f(rD) with Diam(f(rD)) = |wr−w̃r|. We may assume that
wr = −r̃ and w̃r = r̃. Let zr, z̃r be points on the circle {|z| = r} with f(zr) = −r̃
and f(z̃r) = r̃. By well-known properties of the Green function,

(4.3) gf(sD)(−r̃, r̃) ≥ gsD(zr, z̃r) ≥ gsD(−r, r) = log

(
1 + r2/s2

2r/s

)
.

Let S1, S2 denote Steiner symmetrization with respect to the real and imaginary
axes, respectively. Let Ωs := S1 ◦ S2(f(sD)). Since the Green function is increased
by Steiner symmetrization (see [3]) and by domain expansion, we have

(4.4) gf(sD)(−r̃, r̃) ≤ gΩs
(−r̃, r̃) ≤ gs̃D(−r̃, r̃) = log

(
1 + r̃2/s̃2

2r̃/s̃

)
.

By (4.3), (4.4), and the fact that the function x 	→ (1 + x2)/(2x) is decreasing for
0 < x < 1, we conclude that r̃/s̃ ≤ r/s. This implies that ΦD is increasing.

Suppose that ΦD(r) = ΦD(s) for some 0 < r < s < 1. Then ΦD(r) = ΦD(ρ) =
ΦD(s) for all ρ with r < ρ < s. We must have equality in the Steiner symmetrization
inequality for the Green function. Hence (see [4]) f(sD) ≈ s̃D. Also, the first
inequality in (4.3) becomes equality. It follows then from [11, Theorem 4.4.10] that
f maps the disk sD conformally onto s̃D. So f is linear. �
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