ŁOJASIEWICZ EXPONENT NEAR THE FIBRE OF A MAPPING

TOMASZ RODAK AND STANISŁAW SPODZIEJA
(Communicated by Ted Chinburg)

Abstract

Let $g: X \rightarrow \mathbb{R}^{k}$ and $f: X \rightarrow \mathbb{R}^{m}$, where $X \subset \mathbb{R}^{n}$, be continuous semi-algebraic mappings, and $\lambda \in \mathbb{R}^{m}$. We describe the optimal exponent $\theta=: \mathcal{L}_{\infty, f \rightarrow \lambda}(g)$ for which the Łojasiewicz inequality $|g(x)| \geqslant C|x|^{\theta}$ holds with $C>0$ as $|x| \rightarrow \infty$ and $f(x) \rightarrow \lambda$. We prove that there exists a semi-algebraic stratification $\mathbb{R}^{m}=S_{1} \cup \cdots \cup S_{j}$ such that the function $\lambda \mapsto \mathcal{L}_{\infty, f \rightarrow \lambda}(g)$ is constant on each stratum S_{i}. We apply this result to describe the set of generalized critical values of f.

Introduction

Let M, N, L be finite-dimensional real vector spaces, $X \subset M$ be a closed semialgebraic set, $g: X \rightarrow N$ and $f: X \rightarrow L$ be continuous semi-algebraic mappings (see [1]), and let $\lambda \in L$. The aim of this article is to describe the Eojasiewicz exponent at infinity of g near the fibre $f^{-1}(\lambda)$, i.e. the supremum of the exponents θ for which the Eojasiewicz inequality

$$
\begin{equation*}
|g(x)| \geqslant C|x|^{\theta} \quad \text { as } \quad x \in X, \quad|x| \rightarrow \infty \quad \text { and } \quad f(x) \rightarrow \lambda \tag{モ}
\end{equation*}
$$

holds with $C>0$ (cf. [12], [18]), where $|\cdot|$ is a norm. We denote this exponent by $\mathcal{L}_{\infty, f \rightarrow \lambda}(g)$ (see Section 1 for details).

We prove that $\mathcal{L}_{\infty, f \rightarrow \lambda}(g) \in \mathbb{Q} \cup\{-\infty,+\infty\}$ for $\lambda \in L$ and that there exists a semi-algebraic stratification $L=S_{1} \cup \cdots \cup S_{j}$ such that the function $\lambda \mapsto \mathcal{L}_{\infty, f \rightarrow \lambda}(g)$ is constant on each stratum S_{i} (Theorem 1.2). If g and f are complex regular mappings, the stratification is complex algebraic (Corollary 1.6). Note that if $\theta=$ $\mathcal{L}_{\infty, f \rightarrow \lambda}(g) \in \mathbb{Q}$, then (モ) holds (Corollary 3.7). The key points in the proofs are Lipschitz stratifications ([13], [14], [20]) and properties of the set of points at which a mapping is not proper (8); see also Section (2).

If $f: M \rightarrow L$ is a semi-algebraic mapping of class \mathscr{C}^{1}, we define the Eojasiewicz exponent of $d f$ near the fibre $f^{-1}(\lambda)$ by

$$
\mathcal{L}_{\infty, \lambda}(f)=\mathcal{L}_{\infty, f \rightarrow \lambda}(\nu(d f)),
$$

where ν is a function introduced by Rabier [17] (see Section 11). This notion was introduced by Ha [7] in the case of complex polynomial functions in two variables (see also 3, [5).

[^0]Let us recall that the exponent $\mathcal{L}_{\infty, \lambda}(f)$ is strongly related to the set of bifurcation points of f. Namely, one can define the set of generalized critical values of f by

$$
K_{\infty}(f)=\left\{\lambda \in L: \mathcal{L}_{\infty, \lambda}(f)<-1\right\}
$$

It is a closed and semi-algebraic set. By Theorem 1.2, the mapping $L \ni \lambda \mapsto$ $\mathcal{L}_{\infty, \lambda}(f)$ has a finite number of values (Corollary (1.5); hence there exists $\alpha>0$ such that

$$
K_{\infty}(f)=\left\{\lambda \in L: \mathcal{L}_{\infty, \lambda}(f)<-1-\alpha\right\} .
$$

If f is of class \mathscr{C}^{2}, then for any $\lambda \in L \backslash K_{\infty}(f)$ there exist a neighbourhood $U \subset L$ of λ and a compact set $\Delta \subset M$ such that $f: f^{-1}(U) \backslash \Delta \rightarrow U$ is a trivial bundle (see [16], 17], [11]; see also [23], [21, [22], [7, [15] for polynomials and polynomial mappings). The smallest set $B \subset L$ such that $L \backslash B$ has the above property is called the bifurcation set at infinity of f and is denoted by $B_{\infty}(f)$. Note that for a complex polynomial f in two variables, $B_{\infty}(f)=K_{\infty}(f)$ (see [7], 15]).

Chądzyński and Krasiński ([3], Corollary 4.7) proved that for a complex polynomial f in two variables with $\operatorname{deg} f>0$ there exists $c_{f} \in \mathbb{Q}$ with $c_{f} \geqslant 0$ such that

$$
\mathcal{L}_{\infty, \lambda}(f)=c_{f} \text { for } \lambda \notin K_{\infty}(f) \quad \text { and } \quad \mathcal{L}_{\infty, \lambda}(f)<-1 \text { for } \lambda \in K_{\infty}(f)
$$

They also asked whether $\lambda \mapsto \mathcal{L}_{\infty, \lambda}(f)$ behaves similarly in the general case. Note that in the multi-dimensional case we cannot require $c_{f} \geqslant 0$. Indeed, for the polynomial $f\left(z_{1}, z_{2}, z_{3}\right)=\left(z_{1} z_{2}-1\right) z_{2} z_{3}\left(\left[17\right.\right.$, Remark 9.1) we have $c_{f}=-1$ (see [3], Proposition 6.4).

As a corollary from Theorem 1.2 we give a partial answer to the above-mentioned question. Namely, for a nonconstant polynomial $f: \mathbb{C}^{n} \rightarrow \mathbb{C}$ there exist a finite set $S \subset \mathbb{C}$ with $K_{\infty}(f) \subset S$ and $c_{f} \geqslant-1$ such that $\mathcal{L}_{\infty, \lambda}(f)=c_{f}$ for $\lambda \in \mathbb{C} \backslash S$ and $\mathcal{L}_{\infty, \lambda}(f)<c_{f}$ for $\lambda \in S$ (Corollary 1.7). It is not clear to the authors whether $S=K_{\infty}(f)$ in Corollary 1.7.

Section 2 has an auxiliary character and contains some results on semi-algebraic mappings, Łojasiewicz exponent and stratifications. In Sections 3 and 4 we prove Theorem 1.2 and Corollary (1.6, respectively.

1. ŁOJASIEWICZ EXPONENT NEAR THE FIBRE OF A MAPPING

Let M, N, L be finite-dimensional real vector spaces, $X \subset M$ be a closed set, let $g: X \rightarrow N$ and $f: X \rightarrow L$, and let $\lambda \in L$.

Definition 1.1. By the Lojasiewicz exponent at infinity of g near the fibre $f^{-1}(\lambda)$ we mean

$$
\mathcal{L}_{\infty, f \rightarrow \lambda}(g):=\sup \left\{\mathcal{L}_{\infty}\left(g \mid f^{-1}(U)\right): U \subset L \text { is a neighbourhood of } \lambda\right\}
$$

where

$$
\mathcal{L}_{\infty}(g \mid S):=\sup \left\{\theta \in \mathbb{R}: \exists_{C, R>0} \quad \forall_{x \in S} \quad\left(x \geqslant R \Rightarrow|g(x)| \geqslant C|x|^{\theta}\right)\right\}
$$

is the Łojasiewicz exponent at infinity of g on a set $S \subset X$.
Our main result is
Theorem 1.2. Let $g: X \rightarrow N$ and $f: X \rightarrow L$ be continuous semi-algebraic mappings.
(i) For any $\lambda \in L, \mathcal{L}_{\infty, f \rightarrow \lambda}(g) \in \mathbb{Q} \cup\{-\infty,+\infty\}$.
(ii) The function

$$
\vartheta_{g / f}: L \ni \lambda \mapsto \mathcal{L}_{\infty, f \rightarrow \lambda}(g)
$$

is upper semi-continuous, and there exists a semi-algebraic stratification

$$
\begin{equation*}
L=S_{1} \cup \cdots \cup S_{j} \tag{1.1}
\end{equation*}
$$

such that $\vartheta_{g / f}$ is constant on each stratum $S_{i}, i=1, \ldots, j$.
The proof of Theorem 1.2 is given in Section 3. Theorem 1.2 (ii) was proved in [18] for complex polynomials, under the assumption (i).

Now let $f: M \rightarrow L$ be a semi-algebraic mapping of class \mathscr{C}^{1} and let $d f$ be the differential of f. Let

$$
\nu(d f): M \ni x \mapsto \nu(d f(x)) \in \mathbb{R}
$$

be the Rabier function, i.e. for $A=d f(x): M \rightarrow L$,

$$
\nu(A)=\inf _{\|\phi\|=1}\left\|A^{*}(\phi)\right\|
$$

where $A^{*}: L^{*} \rightarrow M^{*}$ is the adjoint operator and $\phi \in L^{*}$. For a semi-algebraic function $f: M \rightarrow \mathbb{R}$ (or a complex polynomial) we have $\nu(d f)=|\nabla f|$, where ∇f is the gradient of f.

Definition 1.3. The Eojasiewicz exponent of df near a fibre $f^{-1}(\lambda)$ is defned to be $\mathcal{L}_{\infty, \lambda}(f)=\mathcal{L}_{\infty, f \rightarrow \lambda}(\nu(d f))$.

Remark 1.4. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a semi-algebraic mapping of class \mathscr{C}^{1} and let $\kappa(d f): \mathbb{R}^{n} \ni x \mapsto \kappa(d f(x)) \in \mathbb{R}$ be the Kuo function [10]; i.e., for $A=d f(x)=$ $\left(A_{1}, \ldots, A_{m}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$,

$$
\kappa(A)=\min _{1 \leqslant i \leqslant m} \operatorname{dist}\left(\nabla A_{i},\left\langle\nabla A_{j}\right\rangle_{j \neq i}\right)
$$

where $\left\langle a_{j}\right\rangle_{j \neq i}$ is the vector space generated by the vectors $\left(a_{j}\right)_{j \neq i}$. As $\nu(A) \leqslant$ $\kappa(A) \leqslant \sqrt{m} \nu(A)([11]$, Proposition 2.6), for any $\lambda \in L$ we have

$$
\mathcal{L}_{\infty, \lambda}(f)=\mathcal{L}_{\infty, f \rightarrow \lambda}(\kappa(d f)) .
$$

An analogous result holds for the Gaffney function [4] (cf. 9], Proposition 2.3).
The function $\nu(d f)$ is continuous and semi-algebraic (11], Proposition 2.4), so Theorem 1.2 implies:

Corollary 1.5. Let $f: M \rightarrow L$ be a semi-algebraic mapping of class \mathscr{C}^{1}. Then $\mathcal{L}_{\infty, \lambda}(f) \in \mathbb{Q} \cup\{-\infty,+\infty\}$ for any $\lambda \in L$, and the function $L \ni \lambda \mapsto \mathcal{L}_{\infty, \lambda}(f)$ is upper semi-continuous and has a finite number of values. In particular, there exists $\alpha>0$ such that

$$
K_{\infty}(f)=\left\{\lambda \in L: \mathcal{L}_{\infty, \lambda}(f)<-1-\alpha\right\} .
$$

In the case of complex regular mappings, from Theorem 1.2 we obtain:
Corollary 1.6. Let $X \subset \mathbb{C}^{n}$ be a complex algebraic set, and let $g: X \rightarrow \mathbb{C}^{m}$ and $f: X \rightarrow \mathbb{C}^{k}$ be complex regular mappings. Then there exists a complex algebraic stratification $\mathbb{C}^{k}=S_{1} \cup \cdots \cup S_{j}$ such that the function

$$
\vartheta_{g / f}: \mathbb{C}^{k} \ni \lambda \mapsto \mathcal{L}_{\infty, f \rightarrow \lambda}(g) \in \mathbb{Q} \cup\{-\infty,+\infty\}
$$

is constant on each stratum $S_{i}, i=1, \ldots, j$. Moreover, $\vartheta_{g / f}$ is upper semicontinuous.

The proof of the above corollary will be given in Section 4. The crucial fact in the proof is that $\vartheta_{g / f}\left(\mathbb{C}^{n}\right)=\vartheta_{g / f}\left(\mathbb{R}^{2 n}\right)$ and this set is finite (Theorem 1.2).

For a complex polynomial $f: \mathbb{C}^{n} \rightarrow \mathbb{C}$ the set $K_{\infty}(f)$ is finite (Proposition 2.4 see also [11, Theorem 3.1); hence Corollary 1.6 gives:
Corollary 1.7. Let $f: \mathbb{C}^{n} \rightarrow \mathbb{C}$ be a polynomial function with $\operatorname{deg} f>0$. Then there exist a finite set $S \subset \mathbb{C}$ with $K_{\infty}(f) \subset S$ and a constant $c_{f} \in \mathbb{Q}$ with $c_{f} \geqslant-1$ such that $\mathcal{L}_{\infty, \lambda}(f)=c_{f}$ for $\lambda \in \mathbb{C} \backslash S$, and $\mathcal{L}_{\infty, \lambda}(f)<c_{f}$ for $\lambda \in S$.

2. Auxiliary results

In what follows, L, M, N are finite-dimensional real vector spaces. We will use the Euclidean norm $|\cdot|$ in M (or in N, L). For $A \subset M$, let $\varrho(\cdot, A)$ denote the distance function to A, i.e. $\varrho(x, A)=\inf _{y \in A}|x-y|$ if $A \neq \emptyset$, and $\varrho(x, \emptyset)=1$.
2.1. Semi-algebraic mappings. A subset of M is called semi-algebraic if it is defined by a finite alternative of finite systems of inequalities $P>0$ or $P \geqslant 0$, where P are polynomials on M (see [1], 2]). A mapping $f: X \rightarrow N$, where $X \subset M$, is called semi-algebraic if the graph $\Gamma(f)$ of f is a semi-algebraic set. For instance, the distance to a semi-algebraic set is a semi-algebraic function (cf. [2]):

Proposition 2.1. Let $V \subset M$ be a semi-algebraic set. Then the function ϱ_{V} : $M \ni x \mapsto \varrho(x, V) \in \mathbb{R}$ is continuous and semi-algebraic.

Let $X \subset M$ and let $f: X \rightarrow N$ be any mapping. We say (cf. [8) that f is proper at a point $y \in N$ if there exists an open neighbourhood U of y such that $f: f^{-1}(U) \rightarrow U$ is a proper map. The set of points at which f is not proper is denoted by \mathfrak{S}_{f}. It is obvious that the set \mathfrak{S}_{f} is closed. It is known that for a complex algebraic set $X \subset \mathbb{C}^{n}$ and a complex regular mapping $f: X \rightarrow \mathbb{C}^{m}$, the set \mathfrak{S}_{f} is complex algebraic.

Proposition 2.2. Let X be a closed semi-algebraic set. If the mapping $f: X \rightarrow N$ is semi-algebraic, then the set \mathfrak{S}_{f} is also semi-algebraic.

Proof. Since X is a closed set, we have

$$
\mathfrak{S}_{f}=\left\{y \in N: \forall_{A, \varepsilon>0} \exists_{x \in X}|x|>A \wedge|f(x)-y|<\varepsilon\right\} .
$$

Then, by the Tarski-Seidenberg Theorem, we obtain the assertion.
Let $f: X \rightarrow N$ with $X \subset M$. The degree of f is defined by

$$
\operatorname{deg} f=\inf \left\{\theta \in \mathbb{R}: \exists_{C, R>0} \forall_{x \in X}\left(|x| \geqslant R \Rightarrow|f(x)| \leqslant C|x|^{\theta}\right)\right\}
$$

Set $\operatorname{supp} f=\{x \in X: f(x) \neq 0\}$.
A curve $\varphi:[r,+\infty) \rightarrow M$ is called meromorphic at $+\infty$ if φ is the sum of a Laurent series of the form

$$
\varphi(t)=a_{p} t^{p}+a_{p-1} t^{p-1}+\cdots, \quad a_{i} \in M, \quad p \in \mathbb{Z}
$$

In the case of a polynomial function and the Laurent series at infinity, the above degree is the usual degree; that is, $\operatorname{deg} \varphi=p$ if $a_{p} \neq 0$, and $\operatorname{deg} \varphi=-\infty$ if $\varphi \equiv 0$.

Proposition 2.3. Let X be a closed semi-algebraic set and let $f: X \rightarrow N$ be a semi-algebraic mapping. Then:
(i) $\operatorname{deg} f \in \mathbb{Q} \cup\{-\infty\}$.
(ii) $\operatorname{deg} f=-\infty$ if and only if $\operatorname{supp} f$ is bounded.
(iii) If $\operatorname{deg} f \in \mathbb{Q}$, then there exist $C, R>0$ such that

$$
|f(x)| \leqslant C|x|^{\operatorname{deg} f} \quad \text { for } x \in X, \quad|x| \geqslant R
$$

(iv) Let $\beta(f)=\min \{n \in \mathbb{Z}: n>0, n \geqslant \operatorname{deg} f\}$. Then there exist $R>0$ and $\alpha<0$ such that

$$
\begin{equation*}
|f(x)| \leqslant\left(1+|x|^{2}\right)^{\beta(f)}|x|^{\alpha} \quad \text { for } x \in X, \quad|x|>R \tag{2.1}
\end{equation*}
$$

Proof. If $\operatorname{supp} f$ is bounded, then the assertion is obvious. Assume that $\operatorname{supp} f$ is unbounded. Then the set

$$
Y=\left\{(y, f(y)) \in X \times N: \forall_{x \in X}|x|=|y| \Rightarrow 2|f(y)| \geqslant|f(x)|\right\}
$$

is unbounded and semi-algebraic. So, by the Curve Selection Lemma at infinity, there exists a curve $\psi=(\varphi, \eta):[r,+\infty) \rightarrow Y$ meromorphic at $+\infty$ such that $\eta=f \circ \varphi, \operatorname{deg} \eta \in \mathbb{Z}$, and $\operatorname{deg} \varphi>0$. Let $\theta=\operatorname{deg} \eta / \operatorname{deg} \varphi$. Then $\theta \in \mathbb{Q}$ and for some $C, D, R>0$,

$$
\begin{equation*}
C|\varphi(t)|^{\theta} \leqslant|f(\varphi(t))| \leqslant D|\varphi(t)|^{\theta}, \quad t>R \tag{2.2}
\end{equation*}
$$

The definition of Y now implies that for $x \in X,|x|=|\varphi(t)|, t>R$,

$$
|f(x)| \leqslant|f(\varphi(t))| \leqslant D|\varphi(t)|^{\theta}=D|x|^{\theta}
$$

So, $\operatorname{deg} f \leqslant \theta$. Since, by (2.2), $\operatorname{deg} f \geqslant \theta$, it follows that $\operatorname{deg} f=\theta$. This gives (i), (ii) and (iii). Part (iv) follows immediately from (iii).
2.2. \mathscr{C}^{1} semi-algebraic functions. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a semi-algebraic function of class \mathscr{C}^{1} in $x=\left(x_{1}, \ldots, x_{n}\right)$. Then the gradient $\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a semi-algebraic mapping.

Proposition 2.4. There exist $C, \delta, R>0$ such that

$$
\begin{align*}
|f(x)| \geqslant R & \Rightarrow|x||\nabla f(x)| \geqslant C|f(x)| \tag{2.3}\\
|f(x)| \leqslant \delta & \Rightarrow|x||\nabla f(x)| \geqslant C|f(x)| \tag{2.4}
\end{align*}
$$

In particular, the set $K_{\infty}(f)$ is finite. The assertion also holds for complex polynomials.

Proof. As in [19] and [6, we use Hörmander's method. To prove (2.3), assume the contrary. Then the semi-algebraic set

$$
X=\left\{(x, y, z, \varepsilon) \in \mathbb{R}^{2 n} \times \mathbb{R}^{2}: y=\nabla f(x), z=f(x),|z| \geqslant \varepsilon, \varepsilon|y||x|<|z|\right\}
$$

has an accumulation point of the form $\left(x_{0}, y_{0}, z_{0},+\infty\right)$. Thus, by the Curve Selection Lemma at infinity there exists a curve $\psi=\left(\varphi, \tau, \eta_{1}, \eta_{2}\right):[r,+\infty) \rightarrow X$ meromorphic at infinity such that $\psi(t) \rightarrow\left(x_{0}, y_{0}, z_{0},+\infty\right)$ as $t \rightarrow+\infty$. Then $\operatorname{deg} \eta_{2}>0, \operatorname{deg} \eta_{1}>0, \operatorname{deg} \varphi>0$, and

$$
\operatorname{deg} \eta_{2}+\operatorname{deg} \tau+\operatorname{deg} \varphi \leqslant \operatorname{deg} \eta_{1}
$$

On the other hand,

$$
\operatorname{deg} \eta_{1}=\operatorname{deg} \eta_{1}^{\prime}+1=\operatorname{deg}(f \circ \varphi)^{\prime}+1 \leqslant \operatorname{deg} \tau+\operatorname{deg} \varphi
$$

and we obtain a contradiction. Analogously we prove (2.4) and the assertion in the complex case.
2.3. Łojasiewicz exponent. For three semi-algebraic sets $X, Y, Z \subset M$ such that $X \cap Y \subset Z$, we define a regular separation exponent of Y and Z on X at a point $x_{0} \in X \cap Y$ to be any real positive θ such that

$$
\varrho(x, Y) \geqslant C \varrho(x, Z)^{\theta} \quad \text { for } x \in X \cap \Omega
$$

where $C>0$ and Ω is a neighbourhood of x_{0}. The infimum of all such exponents θ will be denoted by $\mathcal{L}_{x_{0}}(X ; Y, Z)$. By using the method of Lipschitz stratifications ([13], [14]), the following is proved in Theorem 1.5 of [20]:

Proposition 2.5. Let $X, Y, Z \subset M$ be closed semi-algebraic sets such that $X \cap Y \subset$ Z, and let $x_{0} \in X \cap Y$.
(i) Then $\mathcal{L}_{x_{0}}(X ; Y, Z) \in \mathbb{Q}$, and (\#) holds for $\theta=\mathcal{L}_{x_{0}}(X ; Y, Z)$, some $C>0$ and a neighbourhood Ω of x_{0}, provided $0^{0}=0$.
(ii) If $x_{0} \in \overline{X \backslash Z}$, then $\mathcal{L}_{x_{0}}(X ; Y, Z)$ is attained on an analytic curve, i.e. for any neighbourhood $\tilde{\Omega}$ of x_{0} there exists an analytic curve $\varphi:[0, r) \rightarrow X \cap \tilde{\Omega}$ such that $\varphi((0, r)) \subset X \backslash Z$ and $\varphi(0) \in X \cap Y$, and for some constant $C_{1}>0$,

$$
C \varrho(\varphi(t), Z)^{\mathcal{L}_{x_{0}}(X ; Y, Z)} \leqslant \varrho(\varphi(t), Y) \leqslant C_{1} \varrho(\varphi(t), Z)^{\mathcal{L}_{x_{0}}(X ; Y, Z)}, t \in[0, r) .
$$

If $Z=X \cap Y$ and $x_{0} \in \overline{X \backslash Y}$, then obviously $\mathcal{L}_{x_{0}}(X ; Y, Z)$ is equal to the Eojasiewicz exponent $\mathcal{L}_{x_{0}}(X, Y)$ of X and Y at x_{0}, i.e. the optimum exponent θ in the following separation condition:

$$
\begin{equation*}
\varrho(x, X)+\varrho(x, Y) \geqslant C \varrho(x, X \cap Y)^{\theta} \quad \text { for } x \in \Omega \tag{S}
\end{equation*}
$$

considered in a neighbourhood $\Omega \subset M$ of x_{0} for some constant $C>0$. Note that Proposition 2.5 also holds in the subanalytic case.
2.4. Stratification. By stratification of a subset $X \subset M$ we mean a decomposition of X into a locally finite disjoint union

$$
\begin{equation*}
X=\bigcup S_{\alpha} \tag{2.5}
\end{equation*}
$$

where the subsets S_{α} are called strata, such that each S_{α} is a connected embedded submanifold of M, and each $\left(\overline{S_{\alpha}} \backslash S_{\alpha}\right) \cap X$ is the union of some strata of dimension smaller than $\operatorname{dim} S_{\alpha}$.

The i-th skeleton of the stratification (2.5) is

$$
X^{i}=\bigcup_{\operatorname{dim} S_{\alpha} \leqslant i} S_{\alpha}
$$

The stratification (2.5) is called semi-algebraic if all the skeletons X^{i} are semialgebraic sets (or equivalently if the number of strata is finite and they are all semi-algebraic). The stratification (2.5) of a complex algebraic subset X of a complex linear space M is called complex algebraic if all the skeletons X^{i} are complex algebraic subsets of M and the number of strata is finite.

By Corollaries 2.6 and 2.7 in [20] we have:
Proposition 2.6. Let $X, Y, Z \subset M$ be closed semi-algebraic sets such that $X \cap Y \subset$ Z. Then there exists a stratification

$$
\begin{equation*}
X \cap Y=S_{1} \cup \cdots \cup S_{k} \tag{2.6}
\end{equation*}
$$

of $X \cap Y$ such that the function

$$
\begin{equation*}
X \cap Y \ni x \mapsto \mathcal{L}_{x}(X ; Y, Z) \tag{2.7}
\end{equation*}
$$

is constant on each stratum S_{i}. In particular, the function (2.7) is upper semicontinuous. If additionally $X_{1}, \ldots, X_{n} \subset X \cap Y$ are semi-algebraic sets, then one can require that the stratification (2.6) is compatible with any X_{j}, i.e. any X_{j} is a union of some strata S_{i}.

3. Proof of Theorem 1.2

Let $X \subset M$ be a closed semi-algebraic set, and let $g: X \rightarrow N$ and $f: X \rightarrow L$ be continuous semi-algebraic mappings.

The values $\vartheta_{g / f}(\lambda) \in\{-\infty,+\infty\}$ are characterised by the following:
Remark 3.1. (i) By Proposition 2.3 and the definition of \mathfrak{S}_{f} we have:

$$
\begin{equation*}
\vartheta_{g / f}(\lambda)=+\infty \quad \Longleftrightarrow \quad \lambda \in L \backslash \mathfrak{S}_{f} \tag{3.1}
\end{equation*}
$$

(ii) Let $h=\left.f\right|_{g^{-1}(0)}$. From the definition of $\mathcal{L}_{\infty, f \rightarrow \lambda}(g)$ we have:

$$
\begin{equation*}
\vartheta_{g / f}(\lambda)=-\infty \Leftrightarrow \lambda \in \mathfrak{S}_{h} \Leftrightarrow \mathcal{L}_{\infty}\left(f-\lambda \mid g^{-1}(0)\right)<0 \tag{3.2}
\end{equation*}
$$

Before the proof of Theorems 1.2 we give four lemmas and a proposition. Let $B=\{z \in M:|z|<1\}$ and let $H: B \rightarrow M$ be of the form

$$
H(z)=\frac{z}{1-|z|^{2}}
$$

Lemma 3.2. The mapping H is semi-algebraic and invertible with inverse

$$
H^{-1}(x)=\frac{2 x}{1+\sqrt{1+4|x|^{2}}}
$$

Moreover, for any $R>0$,

$$
\begin{equation*}
|H(z)| \geqslant R \quad \Longleftrightarrow \quad \frac{2 R}{1+\sqrt{1+4 R^{2}}} \leqslant|z|<1 \tag{3.3}
\end{equation*}
$$

Proof. H is a semi-algebraic mapping as the restriction of a rational mapping to the semi-algebraic set B. By an easy calculation we obtain (3.3) and the formula for H^{-1}.

By Lemma 3.2 we may define the following semi-algebraic sets:

$$
\begin{aligned}
Y & =\{(x, \lambda, \delta) \in X \times L \times \mathbb{R}:|f(x)-\lambda| \leqslant \delta\} \\
Z_{1} & =\{(z, \lambda, \delta) \in B \times L \times \mathbb{R}:(H(z), \lambda, \delta) \in Y\} \\
Z_{2} & =\partial B \times L \times \mathbb{R} \\
Z & =Z_{1} \cup Z_{2}
\end{aligned}
$$

Let $V=g^{-1}(0)$, and let

$$
W=\left\{(z, \lambda, \delta) \in Z_{1}: H(z) \in V\right\}
$$

Define a mapping $F: Z \rightarrow \mathbb{R}$ by

$$
F(z, \lambda, \delta)=\left(1-|z|^{2}\right) \varrho((z, \lambda, \delta), W)
$$

Since W is a semi-algebraic set, Proposition 2.1 implies that F is a semi-algebraic mapping.

For any $\lambda \in L, \delta \geqslant 0$ and $S \subset X$ we set

$$
S_{\lambda, \delta}=\{x \in S:|f(x)-\lambda| \leqslant \delta\} .
$$

Lemma 3.3. Let $\lambda_{0} \in L$ and $\delta_{0}>0$ be such that the set $V_{\lambda_{0}, \delta_{0}}$ is bounded, and suppose $X_{\lambda_{0}, \delta}$ is unbounded for any $\delta>0$. Then there exist $C, D, R>0$ such that for any $(x, \lambda, \delta) \in Y$, where $0<\delta \leqslant \frac{\delta_{0}}{2}$ and $\left|\lambda-\lambda_{0}\right| \leqslant \delta$, we have

$$
\begin{equation*}
C|x|^{-1} \leqslant F\left(H^{-1}(x), \lambda, \delta\right) \leqslant D|x|^{-1}, \quad x \in X_{\lambda_{0}, \delta}, \quad|x| \geqslant R . \tag{3.4}
\end{equation*}
$$

Proof. Let $Z^{\delta}=\left\{(z, \lambda, \delta) \in Z_{1}:\left|\lambda-\lambda_{0}\right| \leqslant \delta\right\}$. Then $Z^{\delta^{\prime}} \subset Z^{\delta^{\prime \prime}}$ if $\delta^{\prime} \leqslant \delta^{\prime \prime}$. By the definition of F we have

$$
F(z, \lambda, \delta)=|H(z)|^{-1}|z| \varrho((z, \lambda, \delta), W) \quad \text { for } \quad(z, \lambda, \delta) \in Z_{1}, \quad z \neq 0
$$

Hence, by (3.3), it suffices to prove that for some $c, d, r>0$, with $r<1$, and $\delta_{1}=\frac{\delta_{0}}{2}$,

$$
\begin{equation*}
c \leqslant|z| \varrho((z, \lambda, \delta), W) \leqslant d \quad \text { for } \quad(z, \lambda, \delta) \in Z^{\delta_{1}}, \quad r \leqslant|z|<1 \tag{3.5}
\end{equation*}
$$

Because $Z^{\delta_{1}}$ is bounded, the set $\left\{|z| \varrho((z, \lambda, \delta), W):(z, \lambda, \delta) \in Z_{\lambda_{0}, \delta_{1}}\right\}$ is also bounded. Hence the right-hand estimate in (3.5) holds. By (3.3) and the assumptions on $V_{\lambda_{0}, \delta_{0}}$ and $X_{\lambda_{0}, \delta}$, there exists $0<r<1$ for which the set W has no accumulation points in $A=\left\{(z, \lambda, \delta) \in Z^{\delta_{1}}: r \leqslant|z|\right\}$. Moreover, A is bounded, so $c=\inf \{|z| \varrho((z, \lambda, \delta), W):(z, \lambda, \delta) \in A\}>0$. This gives the left-hand estimate in (3.5).

Let $X_{H}=H^{-1}(X) \cup \partial B$ and $V_{H}=H^{-1}(V)$. Since g and H are semi-algebraic mappings the sets V, X_{H}, V_{H} are semi-algebraic. Moreover, X_{H} is closed and $V_{H}=(g \circ H)^{-1}(0)$. Define $g_{H}: X_{H} \rightarrow N$ by

$$
g_{H}(z)= \begin{cases}\frac{g \circ H(z)}{\left(1+|H(z)|^{2}\right)^{\beta(g)}} & \text { for } z \in X_{H} \cap B \\ 0 & \text { for } z \in \partial B\end{cases}
$$

where $\beta(g)$ is defined in Proposition 2.3 (iv).
Lemma 3.4. The mapping g_{H} is continuous, semi-algebraic and

$$
\begin{equation*}
\left(g_{H}\right)^{-1}(0)=V_{H} \cup \partial B \tag{3.6}
\end{equation*}
$$

Proof. By (2.1) in Proposition 2.3, g_{H} is continuous. Since the mapping g is semialgebraic, so is $B \ni x \mapsto g \circ H(x)$, and hence also $h:\left(X_{H} \cap B\right) \ni z \mapsto(g(z),(1+$ $\left.\left.|H(z)|^{2}\right)^{\beta(g)}\right) \in N \times \mathbb{R}$. The graph of g_{H} is the union of $\partial B \times\{0\}$ and the image of the graph h under the semi-algebraic mapping $M \times N \times(0,+\infty) \ni(z, y, t) \mapsto\left(z, \frac{1}{t} y\right) \in$ $M \times N$, so the graph of g_{H} is semi-algebraic. The equality (3.6) is obvious.

The set Z is semi-algebraic and X_{H} is its image under the projection map $Z \ni$ $(z, \lambda, \delta) \mapsto z \in M$. Hence, we may define a semi-algebraic mapping $G: Z \rightarrow N$ by

$$
G(z, \lambda, \delta)=g_{H}(z)
$$

Let Γ be the graph of the semi-algebraic mapping $(G, F): Z \rightarrow N \times \mathbb{R}$. Since Z is a closed set, so is Γ.

Lemma 3.5. There exists a stratification

$$
\begin{equation*}
G^{-1}(0)=S_{1} \cup \cdots \cup S_{j} \tag{3.7}
\end{equation*}
$$

such that the function

$$
\begin{equation*}
\mathfrak{L}: G^{-1}(0) \ni v \mapsto \mathcal{L}_{(v, 0,0)}(\Gamma ; Z \times\{0\} \times \mathbb{R}, Z \times N \times\{0\}) \tag{3.8}
\end{equation*}
$$

is constant on each stratum S_{i}. In particular, the set of values of \mathfrak{L} is a finite subset of \mathbb{Q}.
Proof. By (3.6), $G^{-1}(0)=F^{-1}(0)$, so

$$
G^{-1}(0) \times\{0\} \times\{0\}=\Gamma \cap(Z \times\{0\} \times \mathbb{R}) \subset Z \times N \times\{0\}
$$

Proposition 2.5 now shows that the values of \mathfrak{L} are rational numbers. Moreover, from Proposition 2.6 we obtain a stratification (3.7) satisfying the assertion.

Take any $\lambda_{0} \in L$ and define

$$
l_{\lambda_{0}}(g)=\max \left\{\mathfrak{L}\left(z, \lambda_{0}, 0\right):\left(z, \lambda_{0}, 0\right) \in Z_{2}\right\}
$$

By Lemma 3.5, $l_{\lambda_{0}}(g) \in \mathbb{Q}$.
Proposition 3.6. Let $\delta_{0}>0$ be such that the set $V_{\lambda_{0}, \delta_{0}}$ is bounded, and suppose the set $X_{\lambda_{0}, \delta}$ is unbounded for any $\delta>0$. Then

$$
\begin{equation*}
\mathcal{L}_{\infty, f \rightarrow \lambda_{0}}(g)=2 \beta(g)-l_{\lambda_{0}}(g) \tag{3.9}
\end{equation*}
$$

and for any sufficiently small $0<\delta \leqslant \frac{\delta_{0}}{2}$ there exist $C, C^{\prime}, R>0$ such that

$$
\begin{equation*}
|g(x)| \geqslant C|x|^{2 \beta(g)-l_{\lambda_{0}}(g)} \quad \text { for } x \in X_{\lambda_{0}, \delta}, \quad|x| \geqslant R \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
C^{\prime}|\varphi(t)|^{2 \beta(g)-l_{\lambda_{0}}(g)} \geqslant|g(\varphi(t))| \geqslant C|\varphi(t)|^{2 \beta(g)-l_{\lambda_{0}}(g)}, t \in[r,+\infty) \tag{3.11}
\end{equation*}
$$

for some curve $\varphi:[r,+\infty) \rightarrow X_{\lambda_{0}, \delta}$ meromorphic at $+\infty$, with $\operatorname{deg} \varphi>0$.
Proof. Let $E=\left\{(z, \lambda, \delta) \in Z_{2}: \lambda=\lambda_{0}, \delta=0\right\}$ and $\alpha=l_{\lambda_{0}}(g)$. By the definition of $l_{\lambda_{0}}(g)$, for any $\left(z, \lambda_{0}, 0\right) \in E$ there exist a neighbourhood $\Omega_{z} \subset M \times L \times \mathbb{R}$ of $\left(z, \lambda_{0}, 0\right)$ and $C_{z}>0$ such that

$$
|G(y, \lambda, \delta)| \geqslant C_{z}|F(y, \lambda, \delta)|^{\alpha}, \quad(y, \lambda, \delta) \in \Omega_{z} \cap Z
$$

Since the set E is compact, there exists $\tilde{C}>0$ such that $C_{z} \geqslant \tilde{C}$ for $\left(z, \lambda_{0}, 0\right) \in E$, and there exist $0<r_{1}<1$ and $0<\delta_{1} \leqslant \frac{\delta_{0}}{2}$ such that

$$
\left|G\left(y, \lambda, \delta_{1}\right)\right| \geqslant \tilde{C}\left|F\left(y, \lambda, \delta_{1}\right)\right|^{\alpha}, \quad\left|\lambda-\lambda_{0}\right| \leqslant \delta_{1}, \quad r_{1} \leqslant|y|<1
$$

where $\left(y, \lambda, \delta_{1}\right) \in Z$. Consequently,

$$
\frac{|g(x)|}{\left(1+|x|^{2}\right)^{\beta(g)}} \geqslant \tilde{C}\left|F\left(H^{-1}(x), \lambda_{0}, \delta_{1}\right)\right|^{\alpha}, \quad x \in X_{\lambda_{0}, \delta_{1}}, \quad|x| \geqslant R
$$

where $R>0$ is the unique solution of the equation $r_{1}=\frac{2 R}{1+\sqrt{1+4 R^{2}}}$. Together with (3.4) this gives

$$
|g(x)| \geqslant \tilde{C} C\left(1+|x|^{2}\right)^{\beta(g)}|x|^{-\alpha} \quad \text { for } x \in X_{\lambda_{0}, \delta_{1}}, \quad|x| \geqslant R
$$

Hence for any $0<\delta \leqslant \delta_{1}$, (3.10) follows.
Take any $0<\delta \leqslant \delta_{1}$. Let $\left(z_{0}, \lambda_{0}, 0\right) \in Z_{2}$ be a point such that $\mathfrak{L}\left(z_{0}, \lambda_{0}, 0\right)=$ $l_{\lambda_{0}}(g)$. By the assumption on $V_{\lambda_{0}, \delta_{0}}$ we have

$$
\begin{equation*}
\left(z_{0}, \lambda_{0}, 0,0,0\right) \in \overline{\overline{\Gamma \backslash(Z \times N \times\{0\})},} \quad\left(z_{0}, \lambda_{0}, 0\right) \notin \bar{W} \tag{3.12}
\end{equation*}
$$

and $\mathfrak{L}\left(z_{0}, \lambda_{0}, 0\right)>0$. Thus, by Proposition 2.5, for any sufficiently small neighbour$\operatorname{hood} \tilde{\Omega}$ of $\omega=\left(z_{0}, \lambda_{0}, 0, G\left(z_{0}, \lambda_{0}, 0\right), F\left(z_{0}, \lambda_{0}, 0\right)\right)=\left(z_{0}, \lambda_{0}, 0,0,0\right)$ there exists an analytic curve

$$
\psi=\left(\psi_{1}, \psi_{2}, \psi_{3}\right):[0, r) \rightarrow \Gamma \cap \tilde{\Omega}
$$

where $\psi_{1}:[0, r) \rightarrow Z, \psi_{2}=G \circ \psi_{1}:[0, r) \rightarrow N, \psi_{3}=F \circ \psi_{1}:[0, r) \rightarrow \mathbb{R}$, $\psi((0, r)) \subset \Gamma \backslash(Z \times N \times\{0\})$ and $\psi(0) \in \Gamma \cap(Z \times\{0\} \times \mathbb{R})$, such that for some constant $C_{1}>0$,

$$
\begin{equation*}
\varrho(\psi(t), Z \times\{0\} \times \mathbb{R}) \leqslant C_{1} \varrho(\psi(t), Z \times M \times\{0\})^{\alpha} \quad \text { for } t \in[0, r) \tag{3.13}
\end{equation*}
$$

Let $\varphi_{1}:[0, r) \rightarrow M, \varphi_{2}:[0, r) \rightarrow L, \varphi_{3}:[0, r) \rightarrow \mathbb{R}$, and let $\psi_{1}=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$. By the choice of ψ we have $\varphi_{1}(t) \in B$ for $t \in(0, r)$, and $\varphi(0) \in \partial B$ by (3.12). Hence,

$$
\begin{equation*}
\left|H\left(\varphi_{1}(t)\right)\right| \quad \rightarrow \infty \quad \text { as } \quad t \rightarrow 0 \tag{3.14}
\end{equation*}
$$

Since the neighbourhood Ω of ω can be small, one can assume that $0 \leqslant \varphi_{3}(t)<\delta$ for $t \in[0, r)$. Then, by the definition of Z, we have $\left|H\left(\varphi_{1}(t)\right)-\lambda_{0}\right| \leqslant \varphi_{3}(t)<\delta$ for $t \in(0, r)$, and so

$$
\begin{equation*}
H\left(\varphi_{1}(t)\right) \in X_{\lambda_{0}, \delta} \quad \text { for } t \in(0, r) \tag{3.15}
\end{equation*}
$$

By (3.13),

$$
\left|G\left(\psi_{1}(t)\right)\right| \leqslant C_{1}\left|F\left(\psi_{1}(t)\right)\right|^{\alpha} \quad \text { for } \quad t \in[0, r] .
$$

Hence, from (3.4) and (3.14), for some $0<r_{1}<r$,

$$
\frac{\left|g\left(H\left(\varphi_{1}(t)\right)\right)\right|}{\left(1+\left|H\left(\varphi_{1}(t)\right)\right|^{2}\right)^{\beta(g)}} \leqslant C_{1} D^{l_{\lambda_{0}}(g)}\left|H\left(\varphi_{1}(t)\right)\right|^{-\alpha}, \quad t \in\left(0, r_{1}\right] .
$$

Together with (3.14) and (3.15), this gives

$$
\left|g\left(H\left(\varphi_{1}(t)\right)\right)\right| \leqslant C^{\prime}\left|H\left(\varphi_{1}(t)\right)\right|^{2 \beta(g)-\alpha}, \quad t \in\left(0, r_{1}\right]
$$

for some $C^{\prime}>0$. Now setting $\varphi(t)=H\left(\varphi_{1}\left(\frac{1}{t}\right)\right)$ for $t \in\left[\frac{1}{r_{1}},+\infty\right)$ we obtain (3.11). Finally, (3.11) and (3.10) yield (3.9).

Proof of Theorem 1.2. Fix $\lambda_{0} \in L$. First we prove (i). If for any $\delta>0$ the set $V_{\lambda_{0}, \delta}$ is unbounded, then $\mathcal{L}_{\infty, f \rightarrow \lambda_{0}}(g)=-\infty$. If for some $\delta>0$ the set $X_{\lambda_{0}, \delta}$ is bounded, then $\mathcal{L}_{\infty, f \rightarrow \lambda_{0}}(g)=+\infty$. The remaining case in (i) follows from the fact that $\beta(g) \in \mathbb{Z}$ (see Proposition [2.3) and from (3.9) in Proposition 3.6.

To prove (ii), we adopt the method of the proof of Theorem 3.2.2 in 18. By Lemma 3.5, let

$$
\vartheta_{g / f}(L)=\left\{r_{1}, \ldots, r_{s}\right\} \subset \mathbb{Q} \cup\{-\infty,+\infty\}, \quad \text { where } \quad r_{1} \leqslant \cdots \leqslant r_{s}
$$

Define $\Lambda_{\xi}=\left\{\lambda \in L: \mathcal{L}_{\infty, f \rightarrow \lambda}(g) \leqslant \xi\right\}$ for $\xi \in \overline{\mathbb{R}}$.
Fix r_{i}. We now prove that the set $\Lambda_{r_{i}}$ is closed and semi-algebraic. If $r_{i} \in$ $\{-\infty,+\infty\}$ this follows from Remark 3.1 and Proposition 2.2. So, let $r_{i}=\frac{a}{b}$, where $a, b \in \mathbb{Z}$ and $b>0$. Define

$$
T=\left\{(x, c) \in X \times \mathbb{R}:|g(x)|^{b}=c|x|^{a}\right\}
$$

and let $p: T \ni(x, c) \mapsto(f(x), c) \in L \times \mathbb{R}$. Since the mapping p is semi-algebraic, Proposition 2.2 shows that the set \mathfrak{S}_{p} is also semi-algebraic.

Let $\pi: L \times \mathbb{R} \ni(y, c) \mapsto y \in L$ and observe that

$$
\begin{equation*}
\Lambda_{r_{i}}=\overline{\pi\left(\mathfrak{S}_{p}\right)} \tag{3.16}
\end{equation*}
$$

Indeed, let $\lambda \in \Lambda_{r_{i}}$, and let $U \subset L$ be a neighbourhood of λ. Take a neighbourhood $U_{1} \subset L$ of λ such that $\overline{U_{1}} \subset U$. Then, by Proposition 3.6, there exist $C^{\prime}>0$ such that the set

$$
\left\{(x, y) \in f^{-1}\left(U_{1}\right) \times N: y=g(x),|y|^{b} \leqslant C^{\prime}|x|^{a}\right\}
$$

is unbounded. Since it is semi-algebraic, there exists a curve $\psi=(\varphi, \eta):[r,+\infty) \rightarrow$ $f^{-1}\left(U_{1}\right) \times N$ meromorphic at infinity such that $\operatorname{deg} \varphi>0, \eta=g \circ \varphi$ and

$$
\mid g\left(\left.\varphi(t)\right|^{b} \leqslant C^{\prime}|\varphi(t)|^{a}, \quad t \in[r,+\infty)\right.
$$

Then, for some $\lambda^{\prime} \in \overline{U_{1}} \subset U$ and $0 \leqslant c \leqslant C^{\prime}$,

$$
f \circ \varphi(t) \rightarrow \lambda^{\prime} \quad \text { and } \quad \frac{|g(\varphi(t))|^{b}}{|\varphi(t)|^{a}} \rightarrow c \quad \text { as } \quad t \rightarrow \infty
$$

Hence, $\lambda^{\prime} \in \pi\left(\mathfrak{S}_{p}\right) \cap U$, and so $\lambda \in \overline{\pi\left(\mathfrak{S}_{p}\right)}$.
Now let $\lambda \in \overline{\pi\left(\mathfrak{S}_{p}\right)}$. Take any neighbourhood $U \subset L$ of λ, and let $\lambda^{\prime} \in U$ and $c \in \mathbb{R}$ be such that $\left(\lambda^{\prime}, c\right) \in \mathfrak{S}_{p}$. Then for some sequence $\left(x_{n}, c_{n}\right) \in T$, where $x_{n} \in f^{-1}(U)$ and $c_{n} \in \mathbb{R}$ for $n \in \mathbb{N}$, we have

$$
\left|x_{n}\right| \rightarrow \infty, \quad f\left(x_{n}\right) \rightarrow \lambda^{\prime} \quad \text { and } \quad c_{n} \rightarrow c \quad \text { as } \quad n \rightarrow \infty
$$

Hence, there exists $C>0$ such that $\left|c_{n}\right| \leqslant C$ for $n \in \mathbb{N}$, and so

$$
\left|g\left(x_{n}\right)\right|^{b} \leqslant C\left|x_{n}\right|^{a}, \quad n \in \mathbb{N}
$$

This gives $\mathcal{L}_{\infty}\left(g \mid f^{-1}(U)\right) \leqslant r_{i}$, and hence $\mathcal{L}_{\infty, f \rightarrow \lambda}(g) \leqslant r_{i}$. Summing up, $\lambda \in \Lambda_{r_{i}}$ and (3.16) is proved.

By Proposition 2.2 the set \mathfrak{S}_{p} is semi-algebraic, so, by (3.16), $\Lambda_{r_{i}}$ is closed and semi-algebraic. In particular, the function $\vartheta_{g / f}$ is upper semi-continuous. From the definition of $\Lambda_{r_{i}}$ we have $\Lambda_{r_{1}} \nsubseteq \ldots \mp \Lambda_{r_{s}}=L$. Hence, Λ_{ξ} is semi-algebraic for any $\xi \in \overline{\mathbb{R}}$. Therefore there exists a semi-algebraic stratification of the form (1.1) compatible with any intersection $X_{1} \cap \cdots \cap X_{j}$, where $X_{1}, \ldots, X_{j} \in\left\{\Lambda_{r_{1}}, \ldots, \Lambda_{r_{s}}\right\}$. Thus, the function $\vartheta_{g / f}$ is constant on each stratum S_{i}, and Theorem 1.2 is proved.

Corollary 3.7. If $\theta=\mathcal{L}_{\infty, f \rightarrow \lambda}(g) \in \mathbb{Q}$, then for some $C, C^{\prime}, R, \delta>0$,

$$
\begin{gather*}
|g(x)| \geqslant C|x|^{\theta} \quad \text { for } x \in X,|x| \geqslant R,|f(x)-\lambda|<\delta, \tag{3.17}\\
C^{\prime}|\varphi(t)|^{\theta} \geqslant|g(\varphi(t))| \geqslant C|\varphi(t)|^{\theta} \quad \text { for } t \in[r,+\infty) \tag{3.18}
\end{gather*}
$$

where $\varphi:[r,+\infty) \rightarrow X$ is a curve meromorphic at infinity such that $\operatorname{deg} \varphi>0$ and $|f(\varphi(t))-\lambda|<\delta$ for $t \in[r,+\infty)$.
Proof. The assertion follows immediately from (3.10), (3.11) and Theorem 1.2 ,

4. Proof of Corollary 1.6

Let $\left(z_{1}, \ldots, z_{n}\right),\left(y_{1}, \ldots, y_{m}\right)$ be the coordinates of $z \in \mathbb{C}^{n}, y \in \mathbb{C}^{m}$, respectively.
As in the proof of Theorem 1.2 we now show that for any $\xi \in \mathbb{Q} \cup\{-\infty,+\infty\}$, the set $\Lambda_{\xi}=\left\{\lambda \in \mathbb{C}^{k}: \mathcal{L}_{\infty, f \rightarrow \lambda}(g) \leqslant \xi\right\}$ is complex algebraic. For $\xi \in\{-\infty,+\infty\}$, this is obvious. Fix $\xi=\frac{a}{b}$, where $a, b \in \mathbb{Z}, b>0,(a, b)=1$.

Let $g=\left(g_{1}, \ldots, g_{m}\right)$. For any $i=1 \ldots, n$ we define algebraic sets

$$
T_{\xi}^{i}=\left\{(z, y, u) \in X \times \mathbb{C}^{m} \times \mathbb{C}: z_{i} u=1, g_{j}^{b}(z)=y_{j} z_{i}^{a}, j=1, \ldots, m\right\}
$$

if $\xi \geqslant 0$,

$$
T_{\xi}^{i}=\left\{(z, y, u) \in X \times \mathbb{C}^{m} \times \mathbb{C}: z_{i} u=1, g_{j}^{b}(z) z_{i}^{-a}=y_{j}, j=1, \ldots, m\right\}
$$

if $\xi<0$, and mappings

$$
p_{i}: T_{\xi}^{i} \ni(z, y, u) \mapsto(f(z), y, u) \in \mathbb{C}^{k} \times \mathbb{C}^{m} \times \mathbb{C}
$$

Denote by \mathfrak{S}_{i} the set of points at which p_{i} is not proper, and

$$
A_{i}=\mathfrak{S}_{i} \cap\left\{(\lambda, y, u) \in \mathbb{C}^{k} \times \mathbb{C}^{m} \times \mathbb{C}: u=0\right\}, \quad i=1, \ldots, n
$$

Since each \mathfrak{S}_{i} is algebraic, so is A_{i}.
Let $\pi: \mathbb{C}^{k} \times \mathbb{C}^{m} \times \mathbb{C} \ni(\lambda, y, u) \mapsto \lambda \in \mathbb{C}^{k}$ and observe that

$$
\begin{equation*}
\Lambda_{\xi}=\bigcup_{i=1}^{n} \overline{\pi\left(A_{i}\right)} \tag{4.1}
\end{equation*}
$$

Indeed, let $\lambda \in \mathbb{C}^{k}$ satisfy $\mathcal{L}_{\infty, f \rightarrow \lambda}(g) \leqslant \xi$. Take any neighbourhoods $U, W \subset$ \mathbb{C}^{k} of λ such that $\bar{W} \subset U$. By Corollary 3.7, there exist $C>0$ and a curve $\varphi=\left(\varphi_{1}, \ldots, \varphi_{n}\right):[r,+\infty) \rightarrow f^{-1}(W)$ meromorphic at infinity with $\operatorname{deg} \varphi>0$ such that

$$
\begin{equation*}
|g(\varphi(t))| \leqslant C|\varphi(t)|^{\xi}, \quad t \in[r, \infty) \tag{4.2}
\end{equation*}
$$

Let $\operatorname{deg} \varphi_{i}=\operatorname{deg} \varphi$. Then $\operatorname{deg} \varphi_{i}>0$. By the definition of φ, there exists $\lambda^{\prime} \in \bar{W}$ such that

$$
\begin{equation*}
f(\varphi(t)) \rightarrow \lambda^{\prime} \quad \text { as } \quad t \rightarrow \infty \tag{4.3}
\end{equation*}
$$

By (4.2), there exists $y \in \mathbb{C}^{m}$ such that

$$
\eta(t):=\left(\frac{g_{1}^{b}(\varphi(t))}{\varphi_{i}^{a}(t)}, \ldots, \frac{g_{m}^{b}(\varphi(t))}{\varphi_{i}^{a}(t)}\right) \rightarrow y \quad \text { as } \quad t \rightarrow \infty
$$

Since $\operatorname{deg} \varphi_{i}>0$, we may assume that $\varphi_{i}(t) \neq 0$ for $t \in[r,+\infty)$. Putting $u(t)=$ $\frac{1}{\varphi_{i}(t)}$ for $t \in[r,+\infty)$, we easily see that

$$
p_{i}(\varphi(t), \eta(t), u(t)) \rightarrow\left(\lambda^{\prime}, y, 0\right) \quad \text { as } \quad t \rightarrow \infty
$$

Hence $\left(\lambda^{\prime}, y, 0\right) \in \mathfrak{S}_{i}$, so $\lambda^{\prime} \in U \cap \pi\left(A_{i}\right)$, and thus $\lambda \in \overline{\pi\left(A_{i}\right)}$. This gives the inclusion " \subset " in (4.1).

We now prove " \supset ". Let $\lambda \in \overline{\pi\left(A_{i}\right)}$. Take any neighbourhood U of λ. Then there exists $\lambda^{\prime} \in U \cap \pi\left(A_{i}\right)$, and so $\left(\lambda^{\prime}, y, 0\right) \in \mathfrak{S}_{i}$ for some $y=\left(y_{1}, \ldots, y_{m}\right) \in \mathbb{C}^{m}$. The definitions of A_{i} and T_{ξ}^{i} now yield a sequence $x_{l}=\left(x_{1, l}, \ldots, x_{n, l}\right) \in f^{-1}(U), l \in \mathbb{N}$, such that $f\left(x_{l}\right) \rightarrow \lambda^{\prime}$ and

$$
\left|x_{i, l}\right| \rightarrow \infty, \quad \frac{g_{j}^{b}\left(x_{l}\right)}{x_{i, l}^{a}} \rightarrow y_{j} \quad \text { as } \quad l \rightarrow \infty, \quad j=1, \ldots, m
$$

Consequently, there exists $C>|y|$ such that

$$
\left|g\left(x_{l}\right)\right| \leqslant C\left|x_{l}\right|^{\xi} \quad \text { for } l \in \mathbb{N}
$$

Hence, $\mathcal{L}_{\infty}\left(g \mid f^{-1}(U)\right) \leqslant \xi$. This gives $\mathcal{L}_{\infty, f \rightarrow \lambda}(g) \leqslant \xi$, and the inclusion " \supset " in (4.1) is proved.

By Theorem [1.2, the set $\vartheta_{g / f}\left(\mathbb{C}^{k}\right) \subset \mathbb{Q} \cup\{-\infty,+\infty\}$ is finite, say $\left\{r_{1}, \ldots, r_{s}\right\}$ with $r_{1}<\cdots<r_{s}$. By (4.1), the sets $\Lambda_{r_{i}}, i=1, \ldots, s$, are algebraic, and $\Lambda_{r_{1}} \nsubseteq$ $\cdots \nsubseteq \Lambda_{r_{s}}=\mathbb{C}^{k}$. Then the function $\vartheta_{g / f}$ is upper semi-continuous. Hence the usual complex stratification of \mathbb{C}^{n} compatible with complex constructible sets $\Lambda_{r_{i}} \backslash \Lambda_{r_{i-1}}$ is a desired stratification. This ends the proof.

References

[1] R. Benedetti, J.-J. Risler, Real algebraic and semi-algebraic sets, Actualités Mathématiques, Hermann, Paris, 1990. MR1070358 (91j:14045)
[2] J. Bochnak, M. Coste, M.-F. Roy, Real algebraic geometry, Ergeb. Math. Grenzgeb., vol. 36, Springer-Verlag, Berlin, 1998. MR 1659509 (2000a:14067)
[3] J. Chądzyński, T. Krasiński, The gradient of a polynomial at infinity, Kodai Math. J. 26 (2003), 317-339. MR2018725 (2004j:32026)
[4] T. Gaffney, Fibers of polynomial mappings at infinity and a generalized Malgrange condition. Compositio Math. 119 (1999), no. 2, 157-167. MR1723126 (2001b:32054)
[5] J. Gwoździewicz, A. Płoski, Łojasiewicz exponents and singularities at infinity of polynomials in two complex variables. Colloq. Math. 103 (2005), no. 1, 47-60. MR2148949 (2006b:32038)
[6] J. Gwoździewicz, S. Spodzieja, The Eojasiewicz gradient inequality in a neighbourhood of the fibre, Ann. Polon. Math. 87 (2005), no. 1, 151-163. MR2208542 (2007b:14137)
[7] H. V. Ha, Nombres de Łojasiewicz et singularités à l'infini des polynômes de deux variables complexes, C. R. Acad. Sci. Paris 311 (1990), 429-432. MR1075664 (91i:32033)
[8] Z. Jelonek, The set of points at which a polynomial map is not proper, Ann. Polon. Math. 58 (1993), no. 3, 259-266. MR1244397 (94i:14018)
[9] Z. Jelonek, On the generalized critical values of a polynomial mapping, Manuscripta Math. 110 (2003), no. 2, 145-157. MR 1962530 (2004c:58082)
[10] T. C. Kuo, Characterizations of v-sufficiency of jets, Topology 11 (1972) 115-131. MR0288775(44:5971)
[11] K. Kurdyka, P. Orro, S. Simon, Semialgebraic Sard theorem for generalized critical values, J. Differential Geom. 56 (2000), no. 1, 67-92. MR1863021 (2003c:58008)
[12] S. Łojasiewicz, Sur le problème de la division, Studia Math. 18 (1959), 87-136; Rozprawy Matem. 22 (1961). MR0107168 (21:5893) MR0126072 (23:A3369)
[13] T. Mostowski, Lipschitz equisingularity, Dissertationes Math. 243 (1985), 46 pp. MR 808226 (87e:32008)
[14] A. Parusiński, Lipschitz stratification of subanalytic sets, Ann. Sci. École Norm. Sup. 27 (1994), 661-696. MR1307677|(96g:32017)
[15] A. Parusiński, On the bifurcation set of complex polynomial with isolated singularities at infinity, Compositio Math. 97 (1995), 369-384. MR 1353280 (96i:32038)
[16] F. Pham, Vanishing homologies and the n-variables saddlepoint method, Proc. Symposia Pure Math. 40, Part 2, Amer. Math. Soc., Providence, RI, 1983, 319-333. MR713258 (85d:32026)
[17] P. J. Rabier, Ehresmann fibrations and Palais-Smale conditions for morphisms of Finsler manifolds. Ann. of Math. (2) 146 (1997), no. 3, 647-691. MR1491449 (98m:58020)
[18] T. Rodak, Wyktadnik Łojasiewicza w pobliżu poziomicy. Ph.D. thesis, University of Łódź, 2005 (in Polish).
[19] S. Spodzieja, Eojasiewicz inequality at infinity for the gradient of a polynomial, Bull. Acad. Polon. Sci. Math. 50 (2002), 273-281. MR. 1948075 (2003k:14080)
[20] S. Spodzieja, The Eojasiewicz exponent of subanalytic sets, Ann. Polon. Math. 87 (2005), no. 1, 247-263. MR2208551 (2006k:32011)
[21] A. N. Varchenko, Theorems on the topological equisingularity of families of algebraic varieties and families of polynomial mappings, Math. USSR Izv. 6 (1972), 949-1008. MR0337956 (49:2725)
[22] J. L. Verdier, Stratifications de Whitney et théorème de Bertini-Sard. Invent. Math. 36 (1976), 295-312. MR0481096(58:1242)
[23] A. H. Wallace, Linear sections of algebraic varieties. Indiana Univ. Math. J. 20 (1970/1971), 1153-1162. MR0285534 (44:2752)

Faculty of Mathematics and Computer Science, University of Łódź, S. Banacha 22, 90-238 Lódź, Poland

E-mail address: rodakt@math.uni.lodz.pl
Faculty of Mathematics and Computer Science, University of Łódź, S. Banacha 22, 90-238 Łódź, Poland

E-mail address: spodziej@math.uni.lodz.pl

[^0]: Received by the editors May 19, 2009 and, in revised form, April 19, 2010.
 2010 Mathematics Subject Classification. Primary 14R25; Secondary 58K55, 58K05.
 Key words and phrases. Łojasiewicz exponent at infinity, generalized critical values, stratification.

 This research was partially supported by the program POLONIUM.

