ŁOJASIEWICZ EXPONENT NEAR THE FIBRE OF A MAPPING

TOMASZ RODAK AND STANISŁAW SPODZIEJA

(Communicated by Ted Chinburg)

ABSTRACT. Let $g: X \to \mathbb{R}^k$ and $f: X \to \mathbb{R}^m$, where $X \subset \mathbb{R}^n$, be continuous semi-algebraic mappings, and $\lambda \in \mathbb{R}^m$. We describe the optimal exponent $\theta =: \mathcal{L}_{\infty, f \to \lambda}(g)$ for which the Lojasiewicz inequality $|g(x)| \geq C|x|^{\theta}$ holds with C > 0 as $|x| \to \infty$ and $f(x) \to \lambda$. We prove that there exists a semi-algebraic stratification $\mathbb{R}^m = S_1 \cup \cdots \cup S_j$ such that the function $\lambda \mapsto \mathcal{L}_{\infty, f \to \lambda}(g)$ is constant on each stratum S_i . We apply this result to describe the set of generalized critical values of f.

Introduction

Let M, N, L be finite-dimensional real vector spaces, $X \subset M$ be a closed semi-algebraic set, $g: X \to N$ and $f: X \to L$ be continuous semi-algebraic mappings (see [1]), and let $\lambda \in L$. The aim of this article is to describe the *Lojasiewicz* exponent at infinity of g near the fibre $f^{-1}(\lambda)$, i.e. the supremum of the exponents θ for which the *Lojasiewicz inequality*

(E)
$$|g(x)| \ge C|x|^{\theta}$$
 as $x \in X$, $|x| \to \infty$ and $f(x) \to \lambda$

holds with C > 0 (cf. [12], [18]), where $|\cdot|$ is a norm. We denote this exponent by $\mathcal{L}_{\infty, f \to \lambda}(g)$ (see Section 1 for details).

We prove that $\mathcal{L}_{\infty,f\to\lambda}(g)\in\mathbb{Q}\cup\{-\infty,+\infty\}$ for $\lambda\in L$ and that there exists a semi-algebraic stratification $L=S_1\cup\dots\cup S_j$ such that the function $\lambda\mapsto\mathcal{L}_{\infty,f\to\lambda}(g)$ is constant on each stratum S_i (Theorem 1.2). If g and f are complex regular mappings, the stratification is complex algebraic (Corollary 1.6). Note that if $\theta=\mathcal{L}_{\infty,f\to\lambda}(g)\in\mathbb{Q}$, then (L) holds (Corollary 3.7). The key points in the proofs are Lipschitz stratifications ([13], [14], [20]) and properties of the set of points at which a mapping is not proper ([8]; see also Section 2).

If $f: M \to L$ is a semi-algebraic mapping of class \mathscr{C}^1 , we define the *Lojasiewicz* exponent of df near the fibre $f^{-1}(\lambda)$ by

$$\mathcal{L}_{\infty,\lambda}(f) = \mathcal{L}_{\infty,f\to\lambda}(\nu(df)),$$

where ν is a function introduced by Rabier [17] (see Section 1). This notion was introduced by Ha [7] in the case of complex polynomial functions in two variables (see also [3], [5]).

This research was partially supported by the program POLONIUM.

Received by the editors May 19, 2009 and, in revised form, April 19, 2010.

²⁰¹⁰ Mathematics Subject Classification. Primary 14R25; Secondary 58K55, 58K05.

 $Key\ words\ and\ phrases.$ Lojasiewicz exponent at infinity, generalized critical values, stratification.

Let us recall that the exponent $\mathcal{L}_{\infty,\lambda}(f)$ is strongly related to the set of bifurcation points of f. Namely, one can define the set of generalized critical values of f by

$$K_{\infty}(f) = \{\lambda \in L : \mathcal{L}_{\infty,\lambda}(f) < -1\}.$$

It is a closed and semi-algebraic set. By Theorem 1.2, the mapping $L \ni \lambda \mapsto \mathcal{L}_{\infty,\lambda}(f)$ has a finite number of values (Corollary 1.5); hence there exists $\alpha > 0$ such that

$$K_{\infty}(f) = \{ \lambda \in L : \mathcal{L}_{\infty,\lambda}(f) < -1 - \alpha \}.$$

If f is of class \mathscr{C}^2 , then for any $\lambda \in L \setminus K_{\infty}(f)$ there exist a neighbourhood $U \subset L$ of λ and a compact set $\Delta \subset M$ such that $f: f^{-1}(U) \setminus \Delta \to U$ is a trivial bundle (see [16], [17], [11]; see also [23], [21], [22], [7], [15] for polynomials and polynomial mappings). The smallest set $B \subset L$ such that $L \setminus B$ has the above property is called the *bifurcation set at infinity* of f and is denoted by $B_{\infty}(f)$. Note that for a complex polynomial f in two variables, $B_{\infty}(f) = K_{\infty}(f)$ (see [7], [15]).

Chądzyński and Krasiński ([3], Corollary 4.7) proved that for a complex polynomial f in two variables with deg f>0 there exists $c_f\in\mathbb{Q}$ with $c_f\geqslant 0$ such that

$$\mathcal{L}_{\infty,\lambda}(f) = c_f \text{ for } \lambda \notin K_{\infty}(f) \text{ and } \mathcal{L}_{\infty,\lambda}(f) < -1 \text{ for } \lambda \in K_{\infty}(f).$$

They also asked whether $\lambda \mapsto \mathcal{L}_{\infty,\lambda}(f)$ behaves similarly in the general case. Note that in the multi-dimensional case we cannot require $c_f \geqslant 0$. Indeed, for the polynomial $f(z_1, z_2, z_3) = (z_1 z_2 - 1) z_2 z_3$ ([17], Remark 9.1) we have $c_f = -1$ (see [3], Proposition 6.4).

As a corollary from Theorem 1.2 we give a partial answer to the above-mentioned question. Namely, for a nonconstant polynomial $f: \mathbb{C}^n \to \mathbb{C}$ there exist a finite set $S \subset \mathbb{C}$ with $K_{\infty}(f) \subset S$ and $c_f \geqslant -1$ such that $\mathcal{L}_{\infty,\lambda}(f) = c_f$ for $\lambda \in \mathbb{C} \setminus S$ and $\mathcal{L}_{\infty,\lambda}(f) < c_f$ for $\lambda \in S$ (Corollary 1.7). It is not clear to the authors whether $S = K_{\infty}(f)$ in Corollary 1.7.

Section 2 has an auxiliary character and contains some results on semi-algebraic mappings, Łojasiewicz exponent and stratifications. In Sections 3 and 4 we prove Theorem 1.2 and Corollary 1.6, respectively.

1. Łojasiewicz exponent near the fibre of a mapping

Let M, N, L be finite-dimensional real vector spaces, $X \subset M$ be a closed set, let $g: X \to N$ and $f: X \to L$, and let $\lambda \in L$.

Definition 1.1. By the Lojasiewicz exponent at infinity of g near the fibre $f^{-1}(\lambda)$ we mean

$$\mathcal{L}_{\infty,f\to\lambda}(g) := \sup\{\mathcal{L}_{\infty}(g|f^{-1}(U)) : U \subset L \text{ is a neighbourhood of } \lambda\},$$

where

$$\mathcal{L}_{\infty}\left(g|S\right) := \sup\{\theta \in \mathbb{R}: \ \exists_{C,R>0} \ \forall_{x \in S} \ (x \geqslant R \ \Rightarrow \ |g(x)| \geqslant C|x|^{\theta})\}$$

is the Lojasiewicz exponent at infinity of q on a set $S \subset X$.

Our main result is

Theorem 1.2. Let $g: X \to N$ and $f: X \to L$ be continuous semi-algebraic mappings.

(i) For any
$$\lambda \in L$$
, $\mathcal{L}_{\infty, f \to \lambda}(g) \in \mathbb{Q} \cup \{-\infty, +\infty\}$.

(ii) The function

$$\vartheta_{q/f}: L \ni \lambda \mapsto \mathcal{L}_{\infty, f \to \lambda}(g)$$

is upper semi-continuous, and there exists a semi-algebraic stratification

$$(1.1) L = S_1 \cup \cdots \cup S_i$$

such that $\vartheta_{g/f}$ is constant on each stratum S_i , i = 1, ..., j.

The proof of Theorem 1.2 is given in Section 3. Theorem 1.2(ii) was proved in [18] for complex polynomials, under the assumption (i).

Now let $f: M \to L$ be a semi-algebraic mapping of class \mathscr{C}^1 and let df be the differential of f. Let

$$\nu(df): M \ni x \mapsto \nu(df(x)) \in \mathbb{R},$$

be the Rabier function, i.e. for $A = df(x) : M \to L$,

$$\nu(A) = \inf_{\|\phi\| = 1} \|A^*(\phi)\|,$$

where $A^*: L^* \to M^*$ is the adjoint operator and $\phi \in L^*$. For a semi-algebraic function $f: M \to \mathbb{R}$ (or a complex polynomial) we have $\nu(df) = |\nabla f|$, where ∇f is the gradient of f.

Definition 1.3. The Lojasiewicz exponent of df near a fibre $f^{-1}(\lambda)$ is defined to be $\mathcal{L}_{\infty,\lambda}(f) = \mathcal{L}_{\infty,f\to\lambda}(\nu(df))$.

Remark 1.4. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a semi-algebraic mapping of class \mathscr{C}^1 and let $\kappa(df): \mathbb{R}^n \ni x \mapsto \kappa(df(x)) \in \mathbb{R}$ be the Kuo function [10]; i.e., for $A = df(x) = (A_1, \ldots, A_m): \mathbb{R}^n \to \mathbb{R}^m$,

$$\kappa(A) = \min_{1 \leq i \leq m} \operatorname{dist}(\nabla A_i, \langle \nabla A_j \rangle_{j \neq i}),$$

where $\langle a_j \rangle_{j \neq i}$ is the vector space generated by the vectors $(a_j)_{j \neq i}$. As $\nu(A) \leqslant \kappa(A) \leqslant \sqrt{m\nu(A)}$ ([11], Proposition 2.6), for any $\lambda \in L$ we have

$$\mathcal{L}_{\infty,\lambda}(f) = \mathcal{L}_{\infty,f\to\lambda}(\kappa(df)).$$

An analogous result holds for the Gaffney function [4] (cf. [9], Proposition 2.3).

The function $\nu(df)$ is continuous and semi-algebraic ([11], Proposition 2.4), so Theorem 1.2 implies:

Corollary 1.5. Let $f: M \to L$ be a semi-algebraic mapping of class \mathscr{C}^1 . Then $\mathcal{L}_{\infty,\lambda}(f) \in \mathbb{Q} \cup \{-\infty, +\infty\}$ for any $\lambda \in L$, and the function $L \ni \lambda \mapsto \mathcal{L}_{\infty,\lambda}(f)$ is upper semi-continuous and has a finite number of values. In particular, there exists $\alpha > 0$ such that

$$K_{\infty}(f) = \{ \lambda \in L : \mathcal{L}_{\infty,\lambda}(f) < -1 - \alpha \}.$$

In the case of complex regular mappings, from Theorem 1.2 we obtain:

Corollary 1.6. Let $X \subset \mathbb{C}^n$ be a complex algebraic set, and let $g: X \to \mathbb{C}^m$ and $f: X \to \mathbb{C}^k$ be complex regular mappings. Then there exists a complex algebraic stratification $\mathbb{C}^k = S_1 \cup \cdots \cup S_j$ such that the function

$$\vartheta_{g/f}: \mathbb{C}^k \ni \lambda \mapsto \mathcal{L}_{\infty, f \to \lambda}(g) \in \mathbb{Q} \cup \{-\infty, +\infty\}$$

is constant on each stratum S_i , $i=1,\ldots,j$. Moreover, $\vartheta_{g/f}$ is upper semi-continuous.

The proof of the above corollary will be given in Section 4. The crucial fact in the proof is that $\vartheta_{g/f}(\mathbb{C}^n) = \vartheta_{g/f}(\mathbb{R}^{2n})$ and this set is finite (Theorem 1.2). For a complex polynomial $f: \mathbb{C}^n \to \mathbb{C}$ the set $K_{\infty}(f)$ is finite (Proposition 2.4;

see also [11], Theorem 3.1); hence Corollary 1.6 gives:

Corollary 1.7. Let $f: \mathbb{C}^n \to \mathbb{C}$ be a polynomial function with deg f > 0. Then there exist a finite set $S \subset \mathbb{C}$ with $K_{\infty}(f) \subset S$ and a constant $c_f \in \mathbb{Q}$ with $c_f \geqslant -1$ such that $\mathcal{L}_{\infty,\lambda}(f) = c_f$ for $\lambda \in \mathbb{C} \setminus S$, and $\mathcal{L}_{\infty,\lambda}(f) < c_f$ for $\lambda \in S$.

2. Auxiliary results

In what follows, L, M, N are finite-dimensional real vector spaces. We will use the Euclidean norm $|\cdot|$ in M (or in N, L). For $A \subset M$, let $\varrho(\cdot,A)$ denote the distance function to A, i.e. $\varrho(x,A)=\inf_{y\in A}|x-y|$ if $A\neq\emptyset$, and $\varrho(x,\emptyset)=1$.

2.1. Semi-algebraic mappings. A subset of M is called semi-algebraic if it is defined by a finite alternative of finite systems of inequalities P>0 or $P\geqslant 0$, where P are polynomials on M (see [1], [2]). A mapping $f: X \to N$, where $X \subset M$, is called *semi-algebraic* if the graph $\Gamma(f)$ of f is a semi-algebraic set. For instance, the distance to a semi-algebraic set is a semi-algebraic function (cf. [2]):

Proposition 2.1. Let $V \subset M$ be a semi-algebraic set. Then the function ρ_V : $M \ni x \mapsto \rho(x,V) \in \mathbb{R}$ is continuous and semi-algebraic.

Let $X \subset M$ and let $f: X \to N$ be any mapping. We say (cf. [8]) that f is proper at a point $y \in N$ if there exists an open neighbourhood U of y such that $f: f^{-1}(U) \to U$ is a proper map. The set of points at which f is not proper is denoted by \mathfrak{S}_f . It is obvious that the set \mathfrak{S}_f is closed. It is known that for a complex algebraic set $X \subset \mathbb{C}^n$ and a complex regular mapping $f: X \to \mathbb{C}^m$, the set \mathfrak{S}_f is complex algebraic.

Proposition 2.2. Let X be a closed semi-algebraic set. If the mapping $f: X \to N$ is semi-algebraic, then the set \mathfrak{S}_f is also semi-algebraic.

Proof. Since X is a closed set, we have

$$\mathfrak{S}_f = \{ y \in N : \forall_{A, \varepsilon > 0} \ \exists_{x \in X} \ |x| > A \ \land \ |f(x) - y| < \varepsilon \}.$$

Then, by the Tarski-Seidenberg Theorem, we obtain the assertion.

Let $f: X \to N$ with $X \subset M$. The degree of f is defined by

$$\deg f = \inf\{\theta \in \mathbb{R} : \exists_{C,R>0} \ \forall_{x \in X} \ (|x| \geqslant R \ \Rightarrow \ |f(x)| \leqslant C|x|^{\theta})\}.$$

Set supp $f = \{x \in X : f(x) \neq 0\}.$

A curve $\varphi:[r,+\infty)\to M$ is called meromorphic at $+\infty$ if φ is the sum of a Laurent series of the form

$$\varphi(t) = a_p t^p + a_{p-1} t^{p-1} + \cdots, \quad a_i \in M, \quad p \in \mathbb{Z}.$$

In the case of a polynomial function and the Laurent series at infinity, the above degree is the usual degree; that is, $\deg \varphi = p$ if $a_p \neq 0$, and $\deg \varphi = -\infty$ if $\varphi \equiv 0$.

Proposition 2.3. Let X be a closed semi-algebraic set and let $f: X \to N$ be a semi-algebraic mapping. Then:

- (i) $\deg f \in \mathbb{Q} \cup \{-\infty\}$.
- (ii) $\deg f = -\infty$ if and only if supp f is bounded.

(iii) If deg $f \in \mathbb{Q}$, then there exist C, R > 0 such that

$$|f(x)| \le C|x|^{\deg f}$$
 for $x \in X$, $|x| \ge R$.

(iv) Let $\beta(f) = \min\{n \in \mathbb{Z} : n > 0, n \geqslant \deg f\}$. Then there exist R > 0 and $\alpha < 0$ such that

$$(2.1) |f(x)| \leq (1+|x|^2)^{\beta(f)}|x|^{\alpha} for x \in X, |x| > R.$$

Proof. If supp f is bounded, then the assertion is obvious. Assume that supp f is unbounded. Then the set

$$Y = \{(y, f(y)) \in X \times N : \forall_{x \in X} |x| = |y| \Rightarrow 2|f(y)| \ge |f(x)|\}$$

is unbounded and semi-algebraic. So, by the Curve Selection Lemma at infinity, there exists a curve $\psi = (\varphi, \eta) : [r, +\infty) \to Y$ meromorphic at $+\infty$ such that $\eta = f \circ \varphi$, $\deg \eta \in \mathbb{Z}$, and $\deg \varphi > 0$. Let $\theta = \deg \eta / \deg \varphi$. Then $\theta \in \mathbb{Q}$ and for some C, D, R > 0,

(2.2)
$$C|\varphi(t)|^{\theta} \leqslant |f(\varphi(t))| \leqslant D|\varphi(t)|^{\theta}, \qquad t > R.$$

The definition of Y now implies that for $x \in X$, $|x| = |\varphi(t)|$, t > R,

$$|f(x)| \le |f(\varphi(t))| \le D|\varphi(t)|^{\theta} = D|x|^{\theta}.$$

So, $\deg f \leq \theta$. Since, by (2.2), $\deg f \geq \theta$, it follows that $\deg f = \theta$. This gives (i), (ii) and (iii). Part (iv) follows immediately from (iii).

2.2. \mathscr{C}^1 semi-algebraic functions. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a semi-algebraic function of class \mathscr{C}^1 in $x = (x_1, \dots, x_n)$. Then the gradient $\nabla f = (\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}) : \mathbb{R}^n \to \mathbb{R}^n$ is a semi-algebraic mapping.

Proposition 2.4. There exist $C, \delta, R > 0$ such that

$$(2.3) |f(x)| \geqslant R \Rightarrow |x| |\nabla f(x)| \geqslant C|f(x)|,$$

$$(2.4) |f(x)| \leq \delta \Rightarrow |x| |\nabla f(x)| \geq C|f(x)|.$$

In particular, the set $K_{\infty}(f)$ is finite. The assertion also holds for complex polynomials.

Proof. As in [19] and [6], we use Hörmander's method. To prove (2.3), assume the contrary. Then the semi-algebraic set

$$X = \{(x, y, z, \varepsilon) \in \mathbb{R}^{2n} \times \mathbb{R}^2 : y = \nabla f(x), z = f(x), |z| \geqslant \varepsilon, \varepsilon |y| |x| < |z| \}$$

has an accumulation point of the form $(x_0, y_0, z_0, +\infty)$. Thus, by the Curve Selection Lemma at infinity there exists a curve $\psi = (\varphi, \tau, \eta_1, \eta_2) : [r, +\infty) \to X$ meromorphic at infinity such that $\psi(t) \to (x_0, y_0, z_0, +\infty)$ as $t \to +\infty$. Then $\deg \eta_2 > 0$, $\deg \varphi > 0$, and

$$\deg \eta_2 + \deg \tau + \deg \varphi \leqslant \deg \eta_1.$$

On the other hand,

$$\deg \eta_1 = \deg \eta_1' + 1 = \deg(f \circ \varphi)' + 1 \leqslant \deg \tau + \deg \varphi,$$

and we obtain a contradiction. Analogously we prove (2.4) and the assertion in the complex case.

2.3. **Lojasiewicz exponent.** For three semi-algebraic sets $X, Y, Z \subset M$ such that $X \cap Y \subset Z$, we define a regular separation exponent of Y and Z on X at a point $x_0 \in X \cap Y$ to be any real positive θ such that

$$(\#) \qquad \varrho(x,Y) \geqslant C\varrho(x,Z)^{\theta} \quad \text{for } x \in X \cap \Omega,$$

where C > 0 and Ω is a neighbourhood of x_0 . The infimum of all such exponents θ will be denoted by $\mathcal{L}_{x_0}(X;Y,Z)$. By using the method of Lipschitz stratifications ([13], [14]), the following is proved in Theorem 1.5 of [20]:

Proposition 2.5. Let $X, Y, Z \subset M$ be closed semi-algebraic sets such that $X \cap Y \subset Z$, and let $x_0 \in X \cap Y$.

- (i) Then $\mathcal{L}_{x_0}(X;Y,Z) \in \mathbb{Q}$, and (#) holds for $\theta = \mathcal{L}_{x_0}(X;Y,Z)$, some C > 0 and a neighbourhood Ω of x_0 , provided $0^0 = 0$.
- (ii) If $x_0 \in \overline{X \setminus Z}$, then $\mathcal{L}_{x_0}(X; Y, Z)$ is attained on an analytic curve, i.e. for any neighbourhood $\tilde{\Omega}$ of x_0 there exists an analytic curve $\varphi : [0, r) \to X \cap \tilde{\Omega}$ such that $\varphi((0, r)) \subset X \setminus Z$ and $\varphi(0) \in X \cap Y$, and for some constant $C_1 > 0$,

$$C\varrho(\varphi(t),Z)^{\mathcal{L}_{x_0}\left(X;Y,Z\right)}\leqslant \varrho(\varphi(t),Y)\leqslant C_1\varrho(\varphi(t),Z)^{\mathcal{L}_{x_0}\left(X;Y,Z\right)},\ t\in[0,r).$$

If $Z = X \cap Y$ and $x_0 \in \overline{X \setminus Y}$, then obviously $\mathcal{L}_{x_0}(X; Y, Z)$ is equal to the *Lojasiewicz exponent* $\mathcal{L}_{x_0}(X, Y)$ of X and Y at x_0 , i.e. the optimum exponent θ in the following separation condition:

(S)
$$\varrho(x,X) + \varrho(x,Y) \geqslant C\varrho(x,X \cap Y)^{\theta}$$
 for $x \in \Omega$,

considered in a neighbourhood $\Omega \subset M$ of x_0 for some constant C > 0. Note that Proposition 2.5 also holds in the subanalytic case.

2.4. **Stratification.** By stratification of a subset $X \subset M$ we mean a decomposition of X into a locally finite disjoint union

$$(2.5) X = \bigcup S_{\alpha},$$

where the subsets S_{α} are called *strata*, such that each S_{α} is a connected embedded submanifold of M, and each $(\overline{S_{\alpha}} \setminus S_{\alpha}) \cap X$ is the union of some strata of dimension smaller than dim S_{α} .

The *i-th skeleton* of the stratification (2.5) is

$$X^i = \bigcup_{\dim S_\alpha \leqslant i} S_\alpha.$$

The stratification (2.5) is called *semi-algebraic* if all the skeletons X^i are semi-algebraic sets (or equivalently if the number of strata is finite and they are all semi-algebraic). The stratification (2.5) of a complex algebraic subset X of a complex linear space M is called *complex algebraic* if all the skeletons X^i are complex algebraic subsets of M and the number of strata is finite.

By Corollaries 2.6 and 2.7 in [20] we have:

Proposition 2.6. Let $X, Y, Z \subset M$ be closed semi-algebraic sets such that $X \cap Y \subset Z$. Then there exists a stratification

$$(2.6) X \cap Y = S_1 \cup \dots \cup S_k$$

of $X \cap Y$ such that the function

$$(2.7) X \cap Y \ni x \mapsto \mathcal{L}_x(X;Y,Z)$$

is constant on each stratum S_i . In particular, the function (2.7) is upper semi-continuous. If additionally $X_1, \ldots, X_n \subset X \cap Y$ are semi-algebraic sets, then one can require that the stratification (2.6) is compatible with any X_j , i.e. any X_j is a union of some strata S_i .

3. Proof of Theorem 1.2

Let $X\subset M$ be a closed semi-algebraic set, and let $g:X\to N$ and $f:X\to L$ be continuous semi-algebraic mappings.

The values $\vartheta_{g/f}(\lambda) \in \{-\infty, +\infty\}$ are characterised by the following:

Remark 3.1. (i) By Proposition 2.3 and the definition of \mathfrak{S}_f we have:

(3.1)
$$\vartheta_{a/f}(\lambda) = +\infty \iff \lambda \in L \setminus \mathfrak{S}_f.$$

(ii) Let $h = f|_{g^{-1}(0)}$. From the definition of $\mathcal{L}_{\infty, f \to \lambda}(g)$ we have:

(3.2)
$$\vartheta_{q/f}(\lambda) = -\infty \iff \lambda \in \mathfrak{S}_h \iff \mathcal{L}_{\infty}(f - \lambda|g^{-1}(0)) < 0.$$

Before the proof of Theorems 1.2 we give four lemmas and a proposition. Let $B=\{z\in M:|z|<1\}$ and let $H:B\to M$ be of the form

$$H(z) = \frac{z}{1 - |z|^2}.$$

Lemma 3.2. The mapping H is semi-algebraic and invertible with inverse

$$H^{-1}(x) = \frac{2x}{1 + \sqrt{1 + 4|x|^2}}.$$

Moreover, for any R > 0,

$$(3.3) |H(z)| \geqslant R \iff \frac{2R}{1 + \sqrt{1 + 4R^2}} \leqslant |z| < 1.$$

Proof. H is a semi-algebraic mapping as the restriction of a rational mapping to the semi-algebraic set B. By an easy calculation we obtain (3.3) and the formula for H^{-1} .

By Lemma 3.2 we may define the following semi-algebraic sets:

$$Y = \{(x, \lambda, \delta) \in X \times L \times \mathbb{R} : |f(x) - \lambda| \leq \delta\},\$$

$$Z_1 = \{(z, \lambda, \delta) \in B \times L \times \mathbb{R} : (H(z), \lambda, \delta) \in Y\},\$$

$$Z_2 = \partial B \times L \times \mathbb{R},\$$

$$Z = Z_1 \cup Z_2.$$

Let $V = g^{-1}(0)$, and let

$$W = \{(z, \lambda, \delta) \in Z_1 : H(z) \in V\}.$$

Define a mapping $F: Z \to \mathbb{R}$ by

$$F(z, \lambda, \delta) = (1 - |z|^2) \varrho((z, \lambda, \delta), W).$$

Since W is a semi-algebraic set, Proposition 2.1 implies that F is a semi-algebraic mapping.

For any $\lambda \in L$, $\delta \geqslant 0$ and $S \subset X$ we set

$$S_{\lambda,\delta} = \{ x \in S : |f(x) - \lambda| \le \delta \}.$$

Lemma 3.3. Let $\lambda_0 \in L$ and $\delta_0 > 0$ be such that the set V_{λ_0,δ_0} is bounded, and suppose $X_{\lambda_0,\delta}$ is unbounded for any $\delta > 0$. Then there exist C, D, R > 0 such that for any $(x,\lambda,\delta) \in Y$, where $0 < \delta \leqslant \frac{\delta_0}{2}$ and $|\lambda - \lambda_0| \leqslant \delta$, we have

(3.4)
$$C|x|^{-1} \leqslant F(H^{-1}(x), \lambda, \delta) \leqslant D|x|^{-1}, \quad x \in X_{\lambda_0, \delta}, \quad |x| \geqslant R.$$

Proof. Let $Z^{\delta} = \{(z, \lambda, \delta) \in Z_1 : |\lambda - \lambda_0| \leq \delta\}$. Then $Z^{\delta'} \subset Z^{\delta''}$ if $\delta' \leq \delta''$. By the definition of F we have

$$F(z,\lambda,\delta) = |H(z)|^{-1}|z|\varrho((z,\lambda,\delta),W)$$
 for $(z,\lambda,\delta) \in Z_1$, $z \neq 0$.

Hence, by (3.3), it suffices to prove that for some c,d,r>0, with r<1, and $\delta_1=\frac{\delta_0}{2}$,

$$(3.5) c \leqslant |z|\varrho((z,\lambda,\delta),W) \leqslant d \text{for} (z,\lambda,\delta) \in Z^{\delta_1}, r \leqslant |z| < 1.$$

Because Z^{δ_1} is bounded, the set $\{|z|\varrho((z,\lambda,\delta),W):(z,\lambda,\delta)\in Z_{\lambda_0,\delta_1}\}$ is also bounded. Hence the right-hand estimate in (3.5) holds. By (3.3) and the assumptions on V_{λ_0,δ_0} and $X_{\lambda_0,\delta}$, there exists 0< r<1 for which the set W has no accumulation points in $A=\{(z,\lambda,\delta)\in Z^{\delta_1}:r\leqslant |z|\}$. Moreover, A is bounded, so $c=\inf\{|z|\varrho((z,\lambda,\delta),W):(z,\lambda,\delta)\in A\}>0$. This gives the left-hand estimate in (3.5).

Let $X_H = H^{-1}(X) \cup \partial B$ and $V_H = H^{-1}(V)$. Since g and H are semi-algebraic mappings the sets V, X_H , V_H are semi-algebraic. Moreover, X_H is closed and $V_H = (g \circ H)^{-1}(0)$. Define $g_H : X_H \to N$ by

$$g_H(z) = \begin{cases} \frac{g \circ H(z)}{(1 + |H(z)|^2)^{\beta(g)}} & \text{for } z \in X_H \cap B, \\ 0 & \text{for } z \in \partial B, \end{cases}$$

where $\beta(g)$ is defined in Proposition 2.3 (iv).

Lemma 3.4. The mapping g_H is continuous, semi-algebraic and

$$(3.6) (q_H)^{-1}(0) = V_H \cup \partial B.$$

Proof. By (2.1) in Proposition 2.3, g_H is continuous. Since the mapping g is semi-algebraic, so is $B \ni x \mapsto g \circ H(x)$, and hence also $h: (X_H \cap B) \ni z \mapsto (g(z), (1+|H(z)|^2)^{\beta(g)}) \in N \times \mathbb{R}$. The graph of g_H is the union of $\partial B \times \{0\}$ and the image of the graph h under the semi-algebraic mapping $M \times N \times (0, +\infty) \ni (z, y, t) \mapsto (z, \frac{1}{t}y) \in M \times N$, so the graph of g_H is semi-algebraic. The equality (3.6) is obvious.

The set Z is semi-algebraic and X_H is its image under the projection map $Z \ni (z, \lambda, \delta) \mapsto z \in M$. Hence, we may define a semi-algebraic mapping $G: Z \to N$ by

$$G(z, \lambda, \delta) = g_H(z).$$

Let Γ be the graph of the semi-algebraic mapping $(G, F): Z \to N \times \mathbb{R}$. Since Z is a closed set, so is Γ .

Lemma 3.5. There exists a stratification

$$(3.7) G^{-1}(0) = S_1 \cup \dots \cup S_i$$

such that the function

$$\mathfrak{L}: G^{-1}(0) \ni v \mapsto \mathcal{L}_{(v,0,0)}\left(\Gamma; Z \times \{0\} \times \mathbb{R}, Z \times N \times \{0\}\right)$$

is constant on each stratum S_i . In particular, the set of values of \mathfrak{L} is a finite subset of \mathbb{Q} .

Proof. By (3.6), $G^{-1}(0) = F^{-1}(0)$, so

$$G^{-1}(0) \times \{0\} \times \{0\} = \Gamma \cap (Z \times \{0\} \times \mathbb{R}) \subset Z \times N \times \{0\}.$$

Proposition 2.5 now shows that the values of \mathfrak{L} are rational numbers. Moreover, from Proposition 2.6 we obtain a stratification (3.7) satisfying the assertion.

Take any $\lambda_0 \in L$ and define

$$l_{\lambda_0}(g) = \max\{\mathfrak{L}(z, \lambda_0, 0) : (z, \lambda_0, 0) \in Z_2\}.$$

By Lemma 3.5, $l_{\lambda_0}(g) \in \mathbb{Q}$.

Proposition 3.6. Let $\delta_0 > 0$ be such that the set V_{λ_0,δ_0} is bounded, and suppose the set $X_{\lambda_0,\delta}$ is unbounded for any $\delta > 0$. Then

(3.9)
$$\mathcal{L}_{\infty, f \to \lambda_0}(g) = 2\beta(g) - l_{\lambda_0}(g)$$

and for any sufficiently small $0 < \delta \leqslant \frac{\delta_0}{2}$ there exist C, C', R > 0 such that

$$(3.10) |g(x)| \geqslant C|x|^{2\beta(g)-l_{\lambda_0}(g)} for x \in X_{\lambda_0,\delta}, |x| \geqslant R$$

and

(3.11)
$$C'|\varphi(t)|^{2\beta(g)-l_{\lambda_0}(g)} \ge |g(\varphi(t))| \ge C|\varphi(t)|^{2\beta(g)-l_{\lambda_0}(g)}, t \in [r, +\infty),$$

for some curve $\varphi: [r, +\infty) \to X_{\lambda_0, \delta}$ meromorphic at $+\infty$, with $\deg \varphi > 0$.

Proof. Let $E = \{(z, \lambda, \delta) \in Z_2 : \lambda = \lambda_0, \delta = 0\}$ and $\alpha = l_{\lambda_0}(g)$. By the definition of $l_{\lambda_0}(g)$, for any $(z, \lambda_0, 0) \in E$ there exist a neighbourhood $\Omega_z \subset M \times L \times \mathbb{R}$ of $(z, \lambda_0, 0)$ and $C_z > 0$ such that

$$|G(y,\lambda,\delta)| \geqslant C_z |F(y,\lambda,\delta)|^{\alpha}, \qquad (y,\lambda,\delta) \in \Omega_z \cap Z.$$

Since the set E is compact, there exists $\tilde{C} > 0$ such that $C_z \geqslant \tilde{C}$ for $(z, \lambda_0, 0) \in E$, and there exist $0 < r_1 < 1$ and $0 < \delta_1 \leqslant \frac{\delta_0}{2}$ such that

$$|G(y,\lambda,\delta_1)| \geqslant \tilde{C}|F(y,\lambda,\delta_1)|^{\alpha}, \quad |\lambda-\lambda_0| \leqslant \delta_1, \quad r_1 \leqslant |y| < 1,$$

where $(y, \lambda, \delta_1) \in Z$. Consequently,

$$\frac{|g(x)|}{(1+|x|^2)^{\beta(g)}} \geqslant \tilde{C}|F(H^{-1}(x), \lambda_0, \delta_1)|^{\alpha}, \quad x \in X_{\lambda_0, \delta_1}, \quad |x| \geqslant R,$$

where R > 0 is the unique solution of the equation $r_1 = \frac{2R}{1+\sqrt{1+4R^2}}$. Together with (3.4) this gives

$$|g(x)|\geqslant \tilde{C}C(1+|x|^2)^{\beta(g)}|x|^{-\alpha}\quad\text{for }x\in X_{\lambda_0,\delta_1},\quad |x|\geqslant R.$$

Hence for any $0 < \delta \leq \delta_1$, (3.10) follows.

Take any $0 < \delta \leq \delta_1$. Let $(z_0, \lambda_0, 0) \in Z_2$ be a point such that $\mathfrak{L}(z_0, \lambda_0, 0) = l_{\lambda_0}(g)$. By the assumption on V_{λ_0, δ_0} we have

$$(3.12) (z_0, \lambda_0, 0, 0, 0) \in \overline{\Gamma \setminus (Z \times N \times \{0\})}, (z_0, \lambda_0, 0) \notin \overline{W},$$

and $\mathfrak{L}(z_0, \lambda_0, 0) > 0$. Thus, by Proposition 2.5, for any sufficiently small neighbourhood $\tilde{\Omega}$ of $\omega = (z_0, \lambda_0, 0, G(z_0, \lambda_0, 0), F(z_0, \lambda_0, 0)) = (z_0, \lambda_0, 0, 0, 0, 0)$ there exists an analytic curve

$$\psi = (\psi_1, \psi_2, \psi_3) : [0, r) \to \Gamma \cap \tilde{\Omega},$$

where $\psi_1:[0,r)\to Z,\ \psi_2=G\circ\psi_1:[0,r)\to N,\ \psi_3=F\circ\psi_1:[0,r)\to\mathbb{R},\ \psi((0,r))\subset\Gamma\setminus(Z\times N\times\{0\})$ and $\psi(0)\in\Gamma\cap(Z\times\{0\}\times\mathbb{R}),$ such that for some constant $C_1>0$,

$$(3.13) \varrho(\psi(t), Z \times \{0\} \times \mathbb{R}) \leqslant C_1 \varrho(\psi(t), Z \times M \times \{0\})^{\alpha} \text{for } t \in [0, r).$$

Let $\varphi_1: [0,r) \to M$, $\varphi_2: [0,r) \to L$, $\varphi_3: [0,r) \to \mathbb{R}$, and let $\psi_1 = (\varphi_1, \varphi_2, \varphi_3)$. By the choice of ψ we have $\varphi_1(t) \in B$ for $t \in (0,r)$, and $\varphi(0) \in \partial B$ by (3.12). Hence,

(3.14)
$$|H(\varphi_1(t))| \to \infty$$
 as $t \to 0$.

Since the neighbourhood $\tilde{\Omega}$ of ω can be small, one can assume that $0 \leqslant \varphi_3(t) < \delta$ for $t \in [0, r)$. Then, by the definition of Z, we have $|H(\varphi_1(t)) - \lambda_0| \leqslant \varphi_3(t) < \delta$ for $t \in (0, r)$, and so

(3.15)
$$H(\varphi_1(t)) \in X_{\lambda_0,\delta} \quad \text{for } t \in (0,r).$$

By (3.13),

$$|G(\psi_1(t))| \le C_1 |F(\psi_1(t))|^{\alpha}$$
 for $t \in [0, r]$.

Hence, from (3.4) and (3.14), for some $0 < r_1 < r$,

$$\frac{|g(H(\varphi_1(t)))|}{(1+|H(\varphi_1(t))|^2)^{\beta(g)}} \leqslant C_1 D^{l_{\lambda_0}(g)} |H(\varphi_1(t))|^{-\alpha}, \quad t \in (0,r_1].$$

Together with (3.14) and (3.15), this gives

$$|g(H(\varphi_1(t)))| \leqslant C' |H(\varphi_1(t))|^{2\beta(g)-\alpha}, \qquad t \in (0, r_1]$$

for some C' > 0. Now setting $\varphi(t) = H(\varphi_1(\frac{1}{t}))$ for $t \in [\frac{1}{r_1}, +\infty)$ we obtain (3.11). Finally, (3.11) and (3.10) yield (3.9).

Proof of Theorem 1.2. Fix $\lambda_0 \in L$. First we prove (i). If for any $\delta > 0$ the set $V_{\lambda_0,\delta}$ is unbounded, then $\mathcal{L}_{\infty,f\to\lambda_0}(g) = -\infty$. If for some $\delta > 0$ the set $X_{\lambda_0,\delta}$ is bounded, then $\mathcal{L}_{\infty,f\to\lambda_0}(g) = +\infty$. The remaining case in (i) follows from the fact that $\beta(q) \in \mathbb{Z}$ (see Proposition 2.3) and from (3.9) in Proposition 3.6.

To prove (ii), we adopt the method of the proof of Theorem 3.2.2 in [18]. By Lemma 3.5, let

$$\vartheta_{g/f}(L) = \{r_1, \dots, r_s\} \subset \mathbb{Q} \cup \{-\infty, +\infty\}, \text{ where } r_1 \leqslant \dots \leqslant r_s.$$

Define $\Lambda_{\xi} = \{\lambda \in L : \mathcal{L}_{\infty, f \to \lambda}(g) \leq \xi\}$ for $\xi \in \overline{\mathbb{R}}$.

Fix r_i . We now prove that the set Λ_{r_i} is closed and semi-algebraic. If $r_i \in \{-\infty, +\infty\}$ this follows from Remark 3.1 and Proposition 2.2. So, let $r_i = \frac{a}{b}$, where $a, b \in \mathbb{Z}$ and b > 0. Define

$$T = \{(x, c) \in X \times \mathbb{R} : |g(x)|^b = c|x|^a\},\$$

and let $p: T \ni (x,c) \mapsto (f(x),c) \in L \times \mathbb{R}$. Since the mapping p is semi-algebraic, Proposition 2.2 shows that the set \mathfrak{S}_p is also semi-algebraic.

Let $\pi: L \times \mathbb{R} \ni (y,c) \mapsto y \in L$ and observe that

(3.16)
$$\Lambda_{r_i} = \overline{\pi(\mathfrak{S}_p)}.$$

Indeed, let $\lambda \in \Lambda_{r_i}$, and let $U \subset L$ be a neighbourhood of λ . Take a neighbourhood $U_1 \subset L$ of λ such that $\overline{U_1} \subset U$. Then, by Proposition 3.6, there exist C' > 0 such that the set

$$\{(x,y) \in f^{-1}(U_1) \times N : y = g(x), |y|^b \leqslant C'|x|^a\}$$

is unbounded. Since it is semi-algebraic, there exists a curve $\psi = (\varphi, \eta) : [r, +\infty) \to f^{-1}(U_1) \times N$ meromorphic at infinity such that $\deg \varphi > 0$, $\eta = g \circ \varphi$ and

$$|g(\varphi(t))|^b \leqslant C'|\varphi(t)|^a, \qquad t \in [r, +\infty).$$

Then, for some $\lambda' \in \overline{U_1} \subset U$ and $0 \leqslant c \leqslant C'$,

$$f \circ \varphi(t) \to \lambda'$$
 and $\frac{|g(\varphi(t))|^b}{|\varphi(t)|^a} \to c$ as $t \to \infty$.

Hence, $\lambda' \in \pi(\mathfrak{S}_p) \cap U$, and so $\lambda \in \overline{\pi(\mathfrak{S}_p)}$.

Now let $\lambda \in \overline{\pi(\mathfrak{S}_p)}$. Take any neighbourhood $U \subset L$ of λ , and let $\lambda' \in U$ and $c \in \mathbb{R}$ be such that $(\lambda', c) \in \mathfrak{S}_p$. Then for some sequence $(x_n, c_n) \in T$, where $x_n \in f^{-1}(U)$ and $c_n \in \mathbb{R}$ for $n \in \mathbb{N}$, we have

$$|x_n| \to \infty$$
, $f(x_n) \to \lambda'$ and $c_n \to c$ as $n \to \infty$.

Hence, there exists C > 0 such that $|c_n| \leq C$ for $n \in \mathbb{N}$, and so

$$|g(x_n)|^b \leqslant C|x_n|^a, \quad n \in \mathbb{N}.$$

This gives $\mathcal{L}_{\infty}(g|f^{-1}(U)) \leqslant r_i$, and hence $\mathcal{L}_{\infty,f\to\lambda}(g) \leqslant r_i$. Summing up, $\lambda \in \Lambda_{r_i}$ and (3.16) is proved.

By Proposition 2.2, the set \mathfrak{S}_p is semi-algebraic, so, by (3.16), Λ_{r_i} is closed and semi-algebraic. In particular, the function $\vartheta_{g/f}$ is upper semi-continuous. From the definition of Λ_{r_i} we have $\Lambda_{r_1} \subsetneq \ldots \subsetneq \Lambda_{r_s} = L$. Hence, Λ_{ξ} is semi-algebraic for any $\xi \in \overline{\mathbb{R}}$. Therefore there exists a semi-algebraic stratification of the form (1.1) compatible with any intersection $X_1 \cap \cdots \cap X_j$, where $X_1, \ldots, X_j \in \{\Lambda_{r_1}, \ldots, \Lambda_{r_s}\}$. Thus, the function $\vartheta_{g/f}$ is constant on each stratum S_i , and Theorem 1.2 is proved.

Corollary 3.7. If $\theta = \mathcal{L}_{\infty,f \to \lambda}(g) \in \mathbb{Q}$, then for some $C, C', R, \delta > 0$,

$$(3.17) |g(x)| \geqslant C|x|^{\theta} for x \in X, |x| \geqslant R, |f(x) - \lambda| < \delta,$$

(3.18)
$$C'|\varphi(t)|^{\theta} \geqslant |g(\varphi(t))| \geqslant C|\varphi(t)|^{\theta} \quad \text{for } t \in [r, +\infty),$$

where $\varphi: [r, +\infty) \to X$ is a curve meromorphic at infinity such that $\deg \varphi > 0$ and $|f(\varphi(t)) - \lambda| < \delta$ for $t \in [r, +\infty)$.

Proof. The assertion follows immediately from (3.10), (3.11) and Theorem 1.2. \square

4. Proof of Corollary 1.6

Let $(z_1,\ldots,z_n), (y_1,\ldots,y_m)$ be the coordinates of $z\in\mathbb{C}^n, y\in\mathbb{C}^m$, respectively. As in the proof of Theorem 1.2 we now show that for any $\xi\in\mathbb{Q}\cup\{-\infty,+\infty\}$, the set $\Lambda_\xi=\{\lambda\in\mathbb{C}^k:\mathcal{L}_{\infty,f\to\lambda}(g)\leqslant\xi\}$ is complex algebraic. For $\xi\in\{-\infty,+\infty\}$, this is obvious. Fix $\xi=\frac{a}{b}$, where $a,b\in\mathbb{Z},\ b>0,\ (a,b)=1$.

Let $g = (g_1, \ldots, g_m)$. For any $i = 1, \ldots, n$ we define algebraic sets

$$T_{\xi}^{i} = \{(z, y, u) \in X \times \mathbb{C}^{m} \times \mathbb{C} : z_{i}u = 1, \ g_{j}^{b}(z) = y_{j}z_{i}^{a}, \ j = 1, \dots, m\}$$

if $\xi \geqslant 0$,

$$T_{\xi}^{i} = \{(z, y, u) \in X \times \mathbb{C}^{m} \times \mathbb{C} : z_{i}u = 1, g_{j}^{b}(z)z_{i}^{-a} = y_{j}, j = 1, \dots, m\}$$

if $\xi < 0$, and mappings

$$p_i: T^i_{\xi} \ni (z, y, u) \mapsto (f(z), y, u) \in \mathbb{C}^k \times \mathbb{C}^m \times \mathbb{C}.$$

٠. ٦ Denote by \mathfrak{S}_i the set of points at which p_i is not proper, and

$$A_i = \mathfrak{S}_i \cap \{(\lambda, y, u) \in \mathbb{C}^k \times \mathbb{C}^m \times \mathbb{C} : u = 0\}, \qquad i = 1, \dots, n$$

Since each \mathfrak{S}_i is algebraic, so is A_i .

Let $\pi: \mathbb{C}^k \times \mathbb{C}^m \times \mathbb{C} \ni (\lambda, y, u) \mapsto \lambda \in \mathbb{C}^k$ and observe that

(4.1)
$$\Lambda_{\xi} = \bigcup_{i=1}^{n} \overline{\pi(A_i)}.$$

Indeed, let $\lambda \in \mathbb{C}^k$ satisfy $\mathcal{L}_{\infty,f\to\lambda}\left(g\right) \leqslant \xi$. Take any neighbourhoods $U,W\subset\mathbb{C}^k$ of λ such that $\overline{W}\subset U$. By Corollary 3.7, there exist C>0 and a curve $\varphi=(\varphi_1,\ldots,\varphi_n):[r,+\infty)\to f^{-1}(W)$ meromorphic at infinity with $\deg \varphi>0$ such that

$$(4.2) |g(\varphi(t))| \leqslant C|\varphi(t)|^{\xi}, t \in [r, \infty).$$

Let deg $\varphi_i = \deg \varphi$. Then deg $\varphi_i > 0$. By the definition of φ , there exists $\lambda' \in \overline{W}$ such that

(4.3)
$$f(\varphi(t)) \to \lambda'$$
 as $t \to \infty$.

By (4.2), there exists $y \in \mathbb{C}^m$ such that

$$\eta(t) := \left(\frac{g_1^b(\varphi(t))}{\varphi_i^a(t)}, \dots, \frac{g_m^b(\varphi(t))}{\varphi_i^a(t)}\right) \to y \quad \text{as} \quad t \to \infty.$$

Since $\deg \varphi_i > 0$, we may assume that $\varphi_i(t) \neq 0$ for $t \in [r, +\infty)$. Putting $u(t) = \frac{1}{\varphi_i(t)}$ for $t \in [r, +\infty)$, we easily see that

$$p_i(\varphi(t), \eta(t), u(t)) \to (\lambda', y, 0)$$
 as $t \to \infty$.

Hence $(\lambda', y, 0) \in \mathfrak{S}_i$, so $\lambda' \in U \cap \pi(A_i)$, and thus $\lambda \in \overline{\pi(A_i)}$. This gives the inclusion " \subset " in (4.1).

We now prove " \supset ". Let $\lambda \in \overline{\pi(A_i)}$. Take any neighbourhood U of λ . Then there exists $\lambda' \in U \cap \pi(A_i)$, and so $(\lambda', y, 0) \in \mathfrak{S}_i$ for some $y = (y_1, \dots, y_m) \in \mathbb{C}^m$. The definitions of A_i and T_{ξ}^i now yield a sequence $x_l = (x_{1,l}, \dots, x_{n,l}) \in f^{-1}(U), l \in \mathbb{N}$, such that $f(x_l) \to \lambda'$ and

$$|x_{i,l}| \to \infty$$
, $\frac{g_j^b(x_l)}{x_{i,l}^a} \to y_j$ as $l \to \infty$, $j = 1, \dots, m$.

Consequently, there exists C > |y| such that

$$|g(x_l)| \leqslant C|x_l|^{\xi}$$
 for $l \in \mathbb{N}$.

Hence, $\mathcal{L}_{\infty}(g|f^{-1}(U)) \leqslant \xi$. This gives $\mathcal{L}_{\infty,f\to\lambda}(g) \leqslant \xi$, and the inclusion " \supset " in (4.1) is proved.

By Theorem 1.2, the set $\vartheta_{g/f}(\mathbb{C}^k) \subset \mathbb{Q} \cup \{-\infty, +\infty\}$ is finite, say $\{r_1, \dots, r_s\}$ with $r_1 < \dots < r_s$. By (4.1), the sets Λ_{r_i} , $i = 1, \dots, s$, are algebraic, and $\Lambda_{r_1} \subsetneq \dots \subsetneq \Lambda_{r_s} = \mathbb{C}^k$. Then the function $\vartheta_{g/f}$ is upper semi-continuous. Hence the usual complex stratification of \mathbb{C}^n compatible with complex constructible sets $\Lambda_{r_i} \setminus \Lambda_{r_{i-1}}$ is a desired stratification. This ends the proof.

References

- R. Benedetti, J.-J. Risler, Real algebraic and semi-algebraic sets, Actualités Mathématiques, Hermann, Paris, 1990. MR1070358 (91j:14045)
- [2] J. Bochnak, M. Coste, M.-F. Roy, Real algebraic geometry, Ergeb. Math. Grenzgeb., vol. 36, Springer-Verlag, Berlin, 1998. MR1659509 (2000a:14067)
- [3] J. Chądzyński, T. Krasiński, The gradient of a polynomial at infinity, Kodai Math. J. 26 (2003), 317-339. MR2018725 (2004j:32026)
- [4] T. Gaffney, Fibers of polynomial mappings at infinity and a generalized Malgrange condition. Compositio Math. 119 (1999), no. 2, 157–167. MR1723126 (2001b:32054)
- [5] J. Gwoździewicz, A. Płoski, Lojasiewicz exponents and singularities at infinity of polynomials in two complex variables. Colloq. Math. 103 (2005), no. 1, 47–60. MR2148949 (2006b:32038)
- [6] J. Gwoździewicz, S. Spodzieja, The Lojasiewicz gradient inequality in a neighbourhood of the fibre, Ann. Polon. Math. 87 (2005), no. 1, 151–163. MR2208542 (2007b:14137)
- [7] H. V. Ha, Nombres de Lojasiewicz et singularités à l'infini des polynômes de deux variables complexes, C. R. Acad. Sci. Paris 311 (1990), 429-432. MR1075664 (91i:32033)
- [8] Z. Jelonek, The set of points at which a polynomial map is not proper, Ann. Polon. Math. 58 (1993), no. 3, 259–266. MR1244397 (94i:14018)
- [9] Z. Jelonek, On the generalized critical values of a polynomial mapping, Manuscripta Math. 110 (2003), no. 2, 145–157. MR1962530 (2004c:58082)
- [10] T. C. Kuo, Characterizations of v-sufficiency of jets, Topology 11 (1972) 115–131. MR0288775 (44:5971)
- [11] K. Kurdyka, P. Orro, S. Simon, Semialgebraic Sard theorem for generalized critical values,
 J. Differential Geom. 56 (2000), no. 1, 67–92. MR1863021 (2003c:58008)
- [12] S. Lojasiewicz, Sur le problème de la division, Studia Math. 18 (1959), 87-136; Rozprawy Matem. 22 (1961). MR0107168 (21:5893); MR0126072 (23:A3369)
- [13] T. Mostowski, Lipschitz equisingularity, Dissertationes Math. 243 (1985), 46 pp. MR808226 (87e:32008)
- [14] A. Parusiński, Lipschitz stratification of subanalytic sets, Ann. Sci. École Norm. Sup. 27 (1994), 661-696. MR1307677 (96g:32017)
- [15] A. Parusiński, On the bifurcation set of complex polynomial with isolated singularities at infinity, Compositio Math. 97 (1995), 369-384. MR1353280 (96i:32038)
- [16] F. Pham, Vanishing homologies and the n-variables saddlepoint method, Proc. Symposia Pure Math. 40, Part 2, Amer. Math. Soc., Providence, RI, 1983, 319-333. MR713258 (85d:32026)
- [17] P. J. Rabier, Ehresmann fibrations and Palais-Smale conditions for morphisms of Finsler manifolds. Ann. of Math. (2) 146 (1997), no. 3, 647–691. MR1491449 (98m:58020)
- [18] T. Rodak, Wykładnik Lojasiewicza w pobliżu poziomicy. Ph.D. thesis, University of Łódź, 2005 (in Polish).
- [19] S. Spodzieja, Lojasiewicz inequality at infinity for the gradient of a polynomial, Bull. Acad. Polon. Sci. Math. 50 (2002), 273–281. MR1948075 (2003k:14080)
- [20] S. Spodzieja, The Lojasiewicz exponent of subanalytic sets, Ann. Polon. Math. 87 (2005), no. 1, 247–263. MR2208551 (2006k:32011)
- [21] A. N. Varchenko, Theorems on the topological equisingularity of families of algebraic varieties and families of polynomial mappings, Math. USSR Izv. 6 (1972), 949–1008. MR0337956 (49:2725)
- [22] J. L. Verdier, Stratifications de Whitney et théorème de Bertini-Sard. Invent. Math. 36 (1976), 295–312. MR0481096 (58:1242)
- [23] A. H. Wallace, Linear sections of algebraic varieties. Indiana Univ. Math. J. 20 (1970/1971), 1153–1162. MR0285534 (44:2752)

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF ŁÓDŹ, S. BANACHA 22, 90-238 ŁÓDŹ, POLAND

 $E ext{-}mail\ address: rodakt@math.uni.lodz.pl}$

Faculty of Mathematics and Computer Science, University of Łódź, S. Banacha 22, 90-238 Łódź, Poland

 $E ext{-}mail\ address: spodziej@math.uni.lodz.pl}$