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�LOJASIEWICZ EXPONENT NEAR THE FIBRE OF A MAPPING

TOMASZ RODAK AND STANIS�LAW SPODZIEJA

(Communicated by Ted Chinburg)

Abstract. Let g : X → R
k and f : X → R

m, where X ⊂ R
n, be continuous

semi-algebraic mappings, and λ ∈ R
m. We describe the optimal exponent

θ =: L∞,f→λ(g) for which the �Lojasiewicz inequality |g(x)| � C|x|θ holds with
C > 0 as |x| → ∞ and f(x) → λ. We prove that there exists a semi-algebraic
stratification R

m = S1 ∪ · · · ∪ Sj such that the function λ �→ L∞,f→λ(g)
is constant on each stratum Si. We apply this result to describe the set of
generalized critical values of f .

Introduction

Let M, N, L be finite-dimensional real vector spaces, X ⊂ M be a closed semi-
algebraic set, g : X → N and f : X → L be continuous semi-algebraic mappings
(see [1]), and let λ ∈ L. The aim of this article is to describe the �Lojasiewicz
exponent at infinity of g near the fibre f−1(λ), i.e. the supremum of the exponents
θ for which the �Lojasiewicz inequality

(�L) |g(x)| � C|x|θ as x ∈ X, |x| → ∞ and f(x) → λ

holds with C > 0 (cf. [12], [18]), where | · | is a norm. We denote this exponent by
L∞,f→λ (g) (see Section 1 for details).

We prove that L∞,f→λ (g) ∈ Q ∪ {−∞,+∞} for λ ∈ L and that there exists a
semi-algebraic stratification L = S1∪· · ·∪Sj such that the function λ �→ L∞,f→λ (g)
is constant on each stratum Si (Theorem 1.2). If g and f are complex regular
mappings, the stratification is complex algebraic (Corollary 1.6). Note that if θ =
L∞,f→λ (g) ∈ Q, then (�L) holds (Corollary 3.7). The key points in the proofs are
Lipschitz stratifications ([13], [14], [20]) and properties of the set of points at which
a mapping is not proper ([8]; see also Section 2).

If f : M → L is a semi-algebraic mapping of class C 1, we define the �Lojasiewicz
exponent of df near the fibre f−1(λ) by

L∞,λ (f) = L∞,f→λ (ν(df)),

where ν is a function introduced by Rabier [17] (see Section 1). This notion was
introduced by Ha [7] in the case of complex polynomial functions in two variables
(see also [3], [5]).
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Let us recall that the exponent L∞,λ (f) is strongly related to the set of bifur-
cation points of f . Namely, one can define the set of generalized critical values of
f by

K∞(f) = {λ ∈ L : L∞,λ (f) < −1}.
It is a closed and semi-algebraic set. By Theorem 1.2, the mapping L � λ �→
L∞,λ (f) has a finite number of values (Corollary 1.5); hence there exists α > 0
such that

K∞(f) = {λ ∈ L : L∞,λ (f) < −1− α}.
If f is of class C 2, then for any λ ∈ L \K∞(f) there exist a neighbourhood U ⊂ L
of λ and a compact set Δ ⊂ M such that f : f−1(U) \Δ → U is a trivial bundle
(see [16], [17], [11]; see also [23], [21], [22], [7], [15] for polynomials and polynomial
mappings). The smallest set B ⊂ L such that L \ B has the above property is
called the bifurcation set at infinity of f and is denoted by B∞(f). Note that for a
complex polynomial f in two variables, B∞(f) = K∞(f) (see [7], [15]).

Cha̧dzyński and Krasiński ([3], Corollary 4.7) proved that for a complex poly-
nomial f in two variables with deg f > 0 there exists cf ∈ Q with cf � 0 such
that

L∞,λ (f) = cf for λ /∈ K∞(f) and L∞,λ (f) < −1 for λ ∈ K∞(f).

They also asked whether λ �→ L∞,λ (f) behaves similarly in the general case. Note
that in the multi-dimensional case we cannot require cf � 0. Indeed, for the
polynomial f(z1, z2, z3) = (z1z2 − 1)z2z3 ([17], Remark 9.1) we have cf = −1 (see
[3], Proposition 6.4).

As a corollary from Theorem 1.2 we give a partial answer to the above-mentioned
question. Namely, for a nonconstant polynomial f : Cn → C there exist a finite
set S ⊂ C with K∞(f) ⊂ S and cf � −1 such that L∞,λ (f) = cf for λ ∈ C \ S
and L∞,λ (f) < cf for λ ∈ S (Corollary 1.7). It is not clear to the authors whether
S = K∞(f) in Corollary 1.7.

Section 2 has an auxiliary character and contains some results on semi-algebraic
mappings, �Lojasiewicz exponent and stratifications. In Sections 3 and 4 we prove
Theorem 1.2 and Corollary 1.6, respectively.

1. �Lojasiewicz exponent near the fibre of a mapping

Let M, N, L be finite-dimensional real vector spaces, X ⊂ M be a closed set,
let g : X → N and f : X → L, and let λ ∈ L.

Definition 1.1. By the �Lojasiewicz exponent at infinity of g near the fibre f−1(λ)
we mean

L∞,f→λ (g) := sup{L∞(g|f−1(U)) : U ⊂ L is a neighbourhood of λ},
where

L∞ (g|S) := sup{θ ∈ R : ∃C,R>0 ∀x∈S (x � R ⇒ |g(x)| � C|x|θ)}
is the �Lojasiewicz exponent at infinity of g on a set S ⊂ X.

Our main result is

Theorem 1.2. Let g : X → N and f : X → L be continuous semi-algebraic
mappings.

(i) For any λ ∈ L, L∞,f→λ (g) ∈ Q ∪ {−∞,+∞}.



�LOJASIEWICZ EXPONENT NEAR THE FIBRE OF A MAPPING 1203

(ii) The function

ϑg/f : L � λ �→ L∞,f→λ (g)

is upper semi-continuous, and there exists a semi-algebraic stratification

(1.1) L = S1 ∪ · · · ∪ Sj

such that ϑg/f is constant on each stratum Si, i = 1, . . . , j.

The proof of Theorem 1.2 is given in Section 3. Theorem 1.2(ii) was proved in
[18] for complex polynomials, under the assumption (i).

Now let f : M → L be a semi-algebraic mapping of class C 1 and let df be the
differential of f . Let

ν(df) : M � x �→ ν(df(x)) ∈ R,

be the Rabier function, i.e. for A = df(x) : M → L,

ν(A) = inf
‖φ‖=1

‖A∗(φ)‖,

where A∗ : L∗ → M∗ is the adjoint operator and φ ∈ L∗. For a semi-algebraic
function f : M → R (or a complex polynomial) we have ν(df) = |∇f |, where ∇f is
the gradient of f .

Definition 1.3. The �Lojasiewicz exponent of df near a fibre f−1(λ) is defned to
be L∞,λ (f) = L∞,f→λ (ν(df)).

Remark 1.4. Let f : Rn → R
m be a semi-algebraic mapping of class C 1 and let

κ(df) : Rn � x �→ κ(df(x)) ∈ R be the Kuo function [10]; i.e., for A = df(x) =
(A1, . . . , Am) : Rn → R

m,

κ(A) = min
1�i�m

dist (∇Ai, 〈∇Aj〉j �=i),

where 〈aj〉j �=i is the vector space generated by the vectors (aj)j �=i. As ν(A) �
κ(A) � √

mν(A) ([11], Proposition 2.6), for any λ ∈ L we have

L∞,λ (f) = L∞,f→λ (κ(df)).

An analogous result holds for the Gaffney function [4] (cf. [9], Proposition 2.3).

The function ν(df) is continuous and semi-algebraic ([11], Proposition 2.4), so
Theorem 1.2 implies:

Corollary 1.5. Let f : M → L be a semi-algebraic mapping of class C 1. Then
L∞,λ (f) ∈ Q ∪ {−∞,+∞} for any λ ∈ L, and the function L � λ �→ L∞,λ (f) is
upper semi-continuous and has a finite number of values. In particular, there exists
α > 0 such that

K∞(f) = {λ ∈ L : L∞,λ (f) < −1− α}.

In the case of complex regular mappings, from Theorem 1.2 we obtain:

Corollary 1.6. Let X ⊂ C
n be a complex algebraic set, and let g : X → C

m and
f : X → C

k be complex regular mappings. Then there exists a complex algebraic
stratification C

k = S1 ∪ · · · ∪ Sj such that the function

ϑg/f : Ck � λ �→ L∞,f→λ (g) ∈ Q ∪ {−∞,+∞}
is constant on each stratum Si, i = 1, . . . , j. Moreover, ϑg/f is upper semi-
continuous.
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The proof of the above corollary will be given in Section 4. The crucial fact in
the proof is that ϑg/f (C

n) = ϑg/f (R
2n) and this set is finite (Theorem 1.2).

For a complex polynomial f : Cn → C the set K∞(f) is finite (Proposition 2.4;
see also [11], Theorem 3.1); hence Corollary 1.6 gives:

Corollary 1.7. Let f : Cn → C be a polynomial function with deg f > 0. Then
there exist a finite set S ⊂ C with K∞(f) ⊂ S and a constant cf ∈ Q with cf � −1
such that L∞,λ (f) = cf for λ ∈ C \ S, and L∞,λ (f) < cf for λ ∈ S.

2. Auxiliary results

In what follows, L, M , N are finite-dimensional real vector spaces. We will use
the Euclidean norm | · | in M (or in N , L). For A ⊂ M , let 	( · , A) denote the
distance function to A, i.e. 	(x,A) = infy∈A |x− y| if A �= ∅, and 	(x, ∅) = 1.

2.1. Semi-algebraic mappings. A subset of M is called semi-algebraic if it is
defined by a finite alternative of finite systems of inequalities P > 0 or P � 0,
where P are polynomials on M (see [1], [2]). A mapping f : X → N , where
X ⊂ M , is called semi-algebraic if the graph Γ(f) of f is a semi-algebraic set. For
instance, the distance to a semi-algebraic set is a semi-algebraic function (cf. [2]):

Proposition 2.1. Let V ⊂ M be a semi-algebraic set. Then the function 	V :
M � x �→ 	(x, V ) ∈ R is continuous and semi-algebraic.

Let X ⊂ M and let f : X → N be any mapping. We say (cf. [8]) that f is
proper at a point y ∈ N if there exists an open neighbourhood U of y such that
f : f−1(U) → U is a proper map. The set of points at which f is not proper is
denoted by Sf . It is obvious that the set Sf is closed. It is known that for a
complex algebraic set X ⊂ C

n and a complex regular mapping f : X → C
m, the

set Sf is complex algebraic.

Proposition 2.2. Let X be a closed semi-algebraic set. If the mapping f : X → N
is semi-algebraic, then the set Sf is also semi-algebraic.

Proof. Since X is a closed set, we have

Sf = {y ∈ N : ∀A,ε>0 ∃x∈X |x| > A ∧ |f(x)− y| < ε}.
Then, by the Tarski-Seidenberg Theorem, we obtain the assertion. �

Let f : X → N with X ⊂ M . The degree of f is defined by

deg f = inf{θ ∈ R : ∃C,R>0 ∀x∈X (|x| � R ⇒ |f(x)| � C|x|θ)}.
Set supp f = {x ∈ X : f(x) �= 0}.

A curve ϕ : [r,+∞) → M is called meromorphic at +∞ if ϕ is the sum of a
Laurent series of the form

ϕ(t) = apt
p + ap−1t

p−1 + · · · , ai ∈ M, p ∈ Z.

In the case of a polynomial function and the Laurent series at infinity, the above
degree is the usual degree; that is, degϕ = p if ap �= 0, and degϕ = −∞ if ϕ ≡ 0.

Proposition 2.3. Let X be a closed semi-algebraic set and let f : X → N be a
semi-algebraic mapping. Then:

(i) deg f ∈ Q ∪ {−∞}.
(ii) deg f = −∞ if and only if supp f is bounded.
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(iii) If deg f ∈ Q, then there exist C,R > 0 such that

|f(x)| � C|x|deg f for x ∈ X, |x| � R.

(iv) Let β(f) = min{n ∈ Z : n > 0, n � deg f}. Then there exist R > 0 and
α < 0 such that

(2.1) |f(x)| � (1 + |x|2)β(f)|x|α for x ∈ X, |x| > R.

Proof. If supp f is bounded, then the assertion is obvious. Assume that supp f is
unbounded. Then the set

Y = {(y, f(y)) ∈ X ×N : ∀x∈X |x| = |y| ⇒ 2|f(y)| � |f(x)|}

is unbounded and semi-algebraic. So, by the Curve Selection Lemma at infinity,
there exists a curve ψ = (ϕ, η) : [r,+∞) → Y meromorphic at +∞ such that
η = f ◦ ϕ, deg η ∈ Z, and degϕ > 0. Let θ = deg η/degϕ. Then θ ∈ Q and for
some C,D,R > 0,

(2.2) C|ϕ(t)|θ � |f(ϕ(t))| � D|ϕ(t)|θ, t > R.

The definition of Y now implies that for x ∈ X, |x| = |ϕ(t)|, t > R,

|f(x)| � |f(ϕ(t))| � D|ϕ(t)|θ = D|x|θ.

So, deg f � θ. Since, by (2.2), deg f � θ, it follows that deg f = θ. This gives (i),
(ii) and (iii). Part (iv) follows immediately from (iii). �

2.2. C 1 semi-algebraic functions. Let f : Rn → R be a semi-algebraic function
of class C 1 in x = (x1, . . . , xn). Then the gradient ∇f = ( ∂f

∂x1
, . . . , ∂f

∂xn
) : Rn → R

n

is a semi-algebraic mapping.

Proposition 2.4. There exist C, δ,R > 0 such that

|f(x)| � R ⇒ |x| |∇f(x)| � C|f(x)|,(2.3)

|f(x)| � δ ⇒ |x| |∇f(x)| � C|f(x)|.(2.4)

In particular, the set K∞(f) is finite. The assertion also holds for complex polyno-
mials.

Proof. As in [19] and [6], we use Hörmander’s method. To prove (2.3), assume the
contrary. Then the semi-algebraic set

X = {(x, y, z, ε) ∈ R
2n × R

2 : y = ∇f(x), z = f(x), |z| � ε, ε|y||x| < |z|}

has an accumulation point of the form (x0, y0, z0,+∞). Thus, by the Curve Se-
lection Lemma at infinity there exists a curve ψ = (ϕ, τ, η1, η2) : [r,+∞) → X
meromorphic at infinity such that ψ(t) → (x0, y0, z0,+∞) as t → +∞. Then
deg η2 > 0, deg η1 > 0, degϕ > 0, and

deg η2 + deg τ + degϕ � deg η1.

On the other hand,

deg η1 = deg η′1 + 1 = deg(f ◦ ϕ)′ + 1 � deg τ + degϕ,

and we obtain a contradiction. Analogously we prove (2.4) and the assertion in the
complex case. �
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2.3. �Lojasiewicz exponent. For three semi-algebraic setsX, Y, Z ⊂ M such that
X ∩ Y ⊂ Z, we define a regular separation exponent of Y and Z on X at a point
x0 ∈ X ∩ Y to be any real positive θ such that

(#) 	(x, Y ) � C	(x, Z)θ for x ∈ X ∩ Ω,

where C > 0 and Ω is a neighbourhood of x0. The infimum of all such exponents θ
will be denoted by Lx0

(X;Y, Z). By using the method of Lipschitz stratifications
([13], [14]), the following is proved in Theorem 1.5 of [20]:

Proposition 2.5. Let X, Y, Z ⊂ M be closed semi-algebraic sets such that X∩Y ⊂
Z, and let x0 ∈ X ∩ Y .

(i) Then Lx0
(X;Y, Z) ∈ Q, and (#) holds for θ = Lx0

(X;Y, Z), some C > 0
and a neighbourhood Ω of x0, provided 00 = 0.

(ii) If x0 ∈ X \ Z, then Lx0
(X;Y, Z) is attained on an analytic curve, i.e. for

any neighbourhood Ω̃ of x0 there exists an analytic curve ϕ : [0, r) → X ∩ Ω̃ such
that ϕ((0, r)) ⊂ X \ Z and ϕ(0) ∈ X ∩ Y , and for some constant C1 > 0,

C	(ϕ(t), Z)Lx0
(X;Y,Z) � 	(ϕ(t), Y ) � C1	(ϕ(t), Z)Lx0

(X;Y,Z), t ∈ [0, r).

If Z = X ∩ Y and x0 ∈ X \ Y , then obviously Lx0
(X;Y, Z) is equal to the

�Lojasiewicz exponent Lx0
(X,Y ) of X and Y at x0, i.e. the optimum exponent θ

in the following separation condition:

(S) 	(x,X) + 	(x, Y ) � C	(x,X ∩ Y )θ for x ∈ Ω,

considered in a neighbourhood Ω ⊂ M of x0 for some constant C > 0. Note that
Proposition 2.5 also holds in the subanalytic case.

2.4. Stratification. By stratification of a subset X ⊂ M we mean a decomposition
of X into a locally finite disjoint union

(2.5) X =
⋃

Sα,

where the subsets Sα are called strata, such that each Sα is a connected embedded
submanifold of M , and each (Sα \Sα)∩X is the union of some strata of dimension
smaller than dimSα.

The i-th skeleton of the stratification (2.5) is

Xi =
⋃

dimSα�i

Sα.

The stratification (2.5) is called semi-algebraic if all the skeletons Xi are semi-
algebraic sets (or equivalently if the number of strata is finite and they are all
semi-algebraic). The stratification (2.5) of a complex algebraic subset X of a com-
plex linear space M is called complex algebraic if all the skeletons Xi are complex
algebraic subsets of M and the number of strata is finite.

By Corollaries 2.6 and 2.7 in [20] we have:

Proposition 2.6. Let X, Y, Z ⊂ M be closed semi-algebraic sets such that X∩Y ⊂
Z. Then there exists a stratification

(2.6) X ∩ Y = S1 ∪ · · · ∪ Sk

of X ∩ Y such that the function

(2.7) X ∩ Y � x �→ Lx (X;Y, Z)
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is constant on each stratum Si. In particular, the function (2.7) is upper semi-
continuous. If additionally X1, . . . , Xn ⊂ X ∩ Y are semi-algebraic sets, then one
can require that the stratification (2.6) is compatible with any Xj, i.e. any Xj is a
union of some strata Si.

3. Proof of Theorem 1.2

Let X ⊂ M be a closed semi-algebraic set, and let g : X → N and f : X → L
be continuous semi-algebraic mappings.

The values ϑg/f (λ) ∈ {−∞,+∞} are characterised by the following:

Remark 3.1. (i) By Proposition 2.3 and the definition of Sf we have:

(3.1) ϑg/f (λ) = +∞ ⇐⇒ λ ∈ L \Sf .

(ii) Let h = f |g−1(0). From the definition of L∞,f→λ (g) we have:

(3.2) ϑg/f (λ) = −∞ ⇔ λ ∈ Sh ⇔ L∞ (f − λ|g−1(0)) < 0.

Before the proof of Theorems 1.2 we give four lemmas and a proposition. Let
B = {z ∈ M : |z| < 1} and let H : B → M be of the form

H(z) =
z

1− |z|2 .

Lemma 3.2. The mapping H is semi-algebraic and invertible with inverse

H−1(x) =
2x

1 +
√
1 + 4|x|2

.

Moreover, for any R > 0,

(3.3) |H(z)| � R ⇐⇒ 2R

1 +
√
1 + 4R2

� |z| < 1.

Proof. H is a semi-algebraic mapping as the restriction of a rational mapping to
the semi-algebraic set B. By an easy calculation we obtain (3.3) and the formula
for H−1. �

By Lemma 3.2 we may define the following semi-algebraic sets:

Y = {(x, λ, δ) ∈ X × L× R : |f(x)− λ| � δ},
Z1 = {(z, λ, δ) ∈ B × L× R : (H(z), λ, δ) ∈ Y },
Z2 = ∂B × L× R,

Z = Z1 ∪ Z2.

Let V = g−1(0), and let

W = {(z, λ, δ) ∈ Z1 : H(z) ∈ V }.
Define a mapping F : Z → R by

F (z, λ, δ) = (1− |z|2)	((z, λ, δ),W ).

Since W is a semi-algebraic set, Proposition 2.1 implies that F is a semi-algebraic
mapping.

For any λ ∈ L, δ � 0 and S ⊂ X we set

Sλ,δ = {x ∈ S : |f(x)− λ| � δ}.
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Lemma 3.3. Let λ0 ∈ L and δ0 > 0 be such that the set Vλ0,δ0 is bounded, and
suppose Xλ0,δ is unbounded for any δ > 0. Then there exist C,D,R > 0 such that

for any (x, λ, δ) ∈ Y , where 0 < δ � δ0
2 and |λ− λ0| � δ, we have

(3.4) C|x|−1 � F (H−1(x), λ, δ) � D|x|−1, x ∈ Xλ0,δ, |x| � R.

Proof. Let Zδ = {(z, λ, δ) ∈ Z1 : |λ− λ0| � δ}. Then Zδ′ ⊂ Zδ′′ if δ′ � δ′′. By the
definition of F we have

F (z, λ, δ) = |H(z)|−1|z|	((z, λ, δ),W ) for (z, λ, δ) ∈ Z1, z �= 0.

Hence, by (3.3), it suffices to prove that for some c, d, r > 0, with r < 1, and
δ1 = δ0

2 ,

(3.5) c � |z|	((z, λ, δ),W ) � d for (z, λ, δ) ∈ Zδ1 , r � |z| < 1.

Because Zδ1 is bounded, the set {|z|	((z, λ, δ),W ) : (z, λ, δ) ∈ Zλ0,δ1} is also
bounded. Hence the right-hand estimate in (3.5) holds. By (3.3) and the as-
sumptions on Vλ0,δ0 and Xλ0,δ, there exists 0 < r < 1 for which the set W has no
accumulation points in A = {(z, λ, δ) ∈ Zδ1 : r � |z|}. Moreover, A is bounded, so
c = inf{|z|	((z, λ, δ),W ) : (z, λ, δ) ∈ A} > 0. This gives the left-hand estimate in
(3.5). �

Let XH = H−1(X) ∪ ∂B and VH = H−1(V ). Since g and H are semi-algebraic
mappings the sets V , XH , VH are semi-algebraic. Moreover, XH is closed and
VH = (g ◦H)−1(0). Define gH : XH → N by

gH(z) =

⎧
⎨

⎩

g ◦H(z)

(1 + |H(z)|2)β(g) for z ∈ XH ∩B,

0 for z ∈ ∂B,

where β(g) is defined in Proposition 2.3 (iv).

Lemma 3.4. The mapping gH is continuous, semi-algebraic and

(3.6) (gH)−1(0) = VH ∪ ∂B.

Proof. By (2.1) in Proposition 2.3, gH is continuous. Since the mapping g is semi-
algebraic, so is B � x �→ g ◦H(x), and hence also h : (XH ∩ B) � z �→ (g(z), (1 +
|H(z)|2)β(g)) ∈ N×R. The graph of gH is the union of ∂B×{0} and the image of the
graphh under the semi-algebraic mapping M ×N × (0,+∞) � (z, y, t) �→ (z, 1

t y) ∈
M ×N , so the graph of gH is semi-algebraic. The equality (3.6) is obvious. �

The set Z is semi-algebraic and XH is its image under the projection map Z �
(z, λ, δ) �→ z ∈ M . Hence, we may define a semi-algebraic mapping G : Z → N by

G(z, λ, δ) = gH(z).

Let Γ be the graph of the semi-algebraic mapping (G,F ) : Z → N ×R. Since Z
is a closed set, so is Γ.

Lemma 3.5. There exists a stratification

(3.7) G−1(0) = S1 ∪ · · · ∪ Sj

such that the function

(3.8) L : G−1(0) � v �→ L(v,0,0) (Γ;Z × {0} × R, Z ×N × {0})
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is constant on each stratum Si. In particular, the set of values of L is a finite subset
of Q.

Proof. By (3.6), G−1(0) = F−1(0), so

G−1(0)× {0} × {0} = Γ ∩ (Z × {0} × R) ⊂ Z ×N × {0}.
Proposition 2.5 now shows that the values of L are rational numbers. Moreover,
from Proposition 2.6 we obtain a stratification (3.7) satisfying the assertion. �

Take any λ0 ∈ L and define

lλ0
(g) = max{L(z, λ0, 0) : (z, λ0, 0) ∈ Z2}.

By Lemma 3.5, lλ0
(g) ∈ Q.

Proposition 3.6. Let δ0 > 0 be such that the set Vλ0,δ0 is bounded, and suppose
the set Xλ0,δ is unbounded for any δ > 0. Then

(3.9) L∞,f→λ0
(g) = 2β(g)− lλ0

(g)

and for any sufficiently small 0 < δ � δ0
2 there exist C,C ′, R > 0 such that

(3.10) |g(x)| � C|x|2β(g)−lλ0
(g) for x ∈ Xλ0,δ, |x| � R

and

(3.11) C ′|ϕ(t)|2β(g)−lλ0
(g) � |g(ϕ(t))| � C|ϕ(t)|2β(g)−lλ0

(g), t ∈ [r,+∞),

for some curve ϕ : [r,+∞) → Xλ0,δ meromorphic at +∞, with degϕ > 0.

Proof. Let E = {(z, λ, δ) ∈ Z2 : λ = λ0, δ = 0} and α = lλ0
(g). By the definition

of lλ0
(g), for any (z, λ0, 0) ∈ E there exist a neighbourhood Ωz ⊂ M × L × R of

(z, λ0, 0) and Cz > 0 such that

|G(y, λ, δ)| � Cz|F (y, λ, δ)|α, (y, λ, δ) ∈ Ωz ∩ Z.

Since the set E is compact, there exists C̃ > 0 such that Cz � C̃ for (z, λ0, 0) ∈ E,
and there exist 0 < r1 < 1 and 0 < δ1 � δ0

2 such that

|G(y, λ, δ1)| � C̃|F (y, λ, δ1)|α, |λ− λ0| � δ1, r1 � |y| < 1,

where (y, λ, δ1) ∈ Z. Consequently,

|g(x)|
(1 + |x|2)β(g) � C̃|F (H−1(x), λ0, δ1)|α, x ∈ Xλ0,δ1 , |x| � R,

where R > 0 is the unique solution of the equation r1 = 2R
1+

√
1+4R2 . Together with

(3.4) this gives

|g(x)| � C̃C(1 + |x|2)β(g)|x|−α for x ∈ Xλ0,δ1 , |x| � R.

Hence for any 0 < δ � δ1, (3.10) follows.
Take any 0 < δ � δ1. Let (z0, λ0, 0) ∈ Z2 be a point such that L(z0, λ0, 0) =

lλ0
(g). By the assumption on Vλ0,δ0 we have

(3.12) (z0, λ0, 0, 0, 0) ∈ Γ \ (Z ×N × {0}), (z0, λ0, 0) /∈ W,

and L(z0, λ0, 0) > 0. Thus, by Proposition 2.5, for any sufficiently small neighbour-

hood Ω̃ of ω = (z0, λ0, 0, G(z0, λ0, 0), F (z0, λ0, 0)) = (z0, λ0, 0, 0, 0) there exists an
analytic curve

ψ = (ψ1, ψ2, ψ3) : [0, r) → Γ ∩ Ω̃,
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where ψ1 : [0, r) → Z, ψ2 = G ◦ ψ1 : [0, r) → N , ψ3 = F ◦ ψ1 : [0, r) → R,
ψ((0, r)) ⊂ Γ \ (Z × N × {0}) and ψ(0) ∈ Γ ∩ (Z × {0} × R), such that for some
constant C1 > 0,

(3.13) 	(ψ(t), Z × {0} × R) � C1	(ψ(t), Z ×M × {0})α for t ∈ [0, r).

Let ϕ1 : [0, r) → M , ϕ2 : [0, r) → L, ϕ3 : [0, r) → R, and let ψ1 = (ϕ1, ϕ2, ϕ3). By
the choice of ψ we have ϕ1(t) ∈ B for t ∈ (0, r), and ϕ(0) ∈ ∂B by (3.12). Hence,

(3.14) |H(ϕ1(t))| → ∞ as t → 0.

Since the neighbourhood Ω̃ of ω can be small, one can assume that 0 � ϕ3(t) < δ
for t ∈ [0, r). Then, by the definition of Z, we have |H(ϕ1(t))− λ0| � ϕ3(t) < δ for
t ∈ (0, r), and so

(3.15) H(ϕ1(t)) ∈ Xλ0,δ for t ∈ (0, r).

By (3.13),

|G(ψ1(t))| � C1|F (ψ1(t))|α for t ∈ [0, r].

Hence, from (3.4) and (3.14), for some 0 < r1 < r,

|g(H(ϕ1(t)))|
(1 + |H(ϕ1(t))|2)β(g)

� C1D
lλ0

(g)|H(ϕ1(t))|−α, t ∈ (0, r1].

Together with (3.14) and (3.15), this gives

|g(H(ϕ1(t)))| � C ′|H(ϕ1(t))|2β(g)−α, t ∈ (0, r1]

for some C ′ > 0. Now setting ϕ(t) = H(ϕ1(
1
t )) for t ∈ [ 1

r1
,+∞) we obtain (3.11).

Finally, (3.11) and (3.10) yield (3.9). �

Proof of Theorem 1.2. Fix λ0 ∈ L. First we prove (i). If for any δ > 0 the set
Vλ0,δ is unbounded, then L∞,f→λ0

(g) = −∞. If for some δ > 0 the set Xλ0,δ is
bounded, then L∞,f→λ0

(g) = +∞. The remaining case in (i) follows from the fact
that β(g) ∈ Z (see Proposition 2.3) and from (3.9) in Proposition 3.6.

To prove (ii), we adopt the method of the proof of Theorem 3.2.2 in [18]. By
Lemma 3.5, let

ϑg/f (L) = {r1, . . . , rs} ⊂ Q ∪ {−∞,+∞}, where r1 � · · · � rs.

Define Λξ = {λ ∈ L : L∞,f→λ (g) � ξ} for ξ ∈ R.
Fix ri. We now prove that the set Λri is closed and semi-algebraic. If ri ∈

{−∞,+∞} this follows from Remark 3.1 and Proposition 2.2. So, let ri = a
b ,

where a, b ∈ Z and b > 0. Define

T = {(x, c) ∈ X × R : |g(x)|b = c|x|a},
and let p : T � (x, c) �→ (f(x), c) ∈ L × R. Since the mapping p is semi-algebraic,
Proposition 2.2 shows that the set Sp is also semi-algebraic.

Let π : L× R � (y, c) �→ y ∈ L and observe that

(3.16) Λri = π(Sp).

Indeed, let λ ∈ Λri , and let U ⊂ L be a neighbourhood of λ. Take a neighbour-
hood U1 ⊂ L of λ such that U1 ⊂ U . Then, by Proposition 3.6, there exist C ′ > 0
such that the set

{(x, y) ∈ f−1(U1)×N : y = g(x), |y|b � C ′|x|a}
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is unbounded. Since it is semi-algebraic, there exists a curve ψ = (ϕ, η) : [r,+∞) →
f−1(U1)×N meromorphic at infinity such that degϕ > 0, η = g ◦ ϕ and

|g(ϕ(t)|b � C ′|ϕ(t)|a, t ∈ [r,+∞).

Then, for some λ′ ∈ U1 ⊂ U and 0 � c � C ′,

f ◦ ϕ(t) → λ′ and
|g(ϕ(t))|b
|ϕ(t)|a → c as t → ∞.

Hence, λ′ ∈ π(Sp) ∩ U , and so λ ∈ π(Sp).

Now let λ ∈ π(Sp). Take any neighbourhood U ⊂ L of λ, and let λ′ ∈ U and
c ∈ R be such that (λ′, c) ∈ Sp. Then for some sequence (xn, cn) ∈ T , where
xn ∈ f−1(U) and cn ∈ R for n ∈ N, we have

|xn| → ∞, f(xn) → λ′ and cn → c as n → ∞.

Hence, there exists C > 0 such that |cn| � C for n ∈ N, and so

|g(xn)|b � C|xn|a, n ∈ N.

This gives L∞(g|f−1(U)) � ri, and henceL∞,f→λ (g) � ri. Summing up, λ ∈ Λri

and (3.16) is proved.
By Proposition 2.2, the set Sp is semi-algebraic, so, by (3.16), Λri is closed and

semi-algebraic. In particular, the function ϑg/f is upper semi-continuous. From
the definition of Λri we have Λr1 � . . . � Λrs = L. Hence, Λξ is semi-algebraic for

any ξ ∈ R. Therefore there exists a semi-algebraic stratification of the form (1.1)
compatible with any intersection X1∩ · · ·∩Xj , where X1, . . . , Xj ∈ {Λr1 , . . . ,Λrs}.
Thus, the function ϑg/f is constant on each stratum Si, and Theorem 1.2 is proved.

�

Corollary 3.7. If θ = L∞,f→λ (g) ∈ Q, then for some C,C ′, R, δ > 0,

|g(x)| � C|x|θ for x ∈ X, |x| � R, |f(x)− λ| < δ,(3.17)

C ′|ϕ(t)|θ � |g(ϕ(t))| � C|ϕ(t)|θ for t ∈ [r,+∞),(3.18)

where ϕ : [r,+∞) → X is a curve meromorphic at infinity such that degϕ > 0 and
|f(ϕ(t))− λ| < δ for t ∈ [r,+∞).

Proof. The assertion follows immediately from (3.10), (3.11) and Theorem 1.2. �

4. Proof of Corollary 1.6

Let (z1, . . . , zn), (y1, . . . , ym) be the coordinates of z ∈ C
n, y ∈ C

m, respectively.
As in the proof of Theorem 1.2 we now show that for any ξ ∈ Q ∪ {−∞,+∞},

the set Λξ = {λ ∈ C
k : L∞,f→λ (g) � ξ} is complex algebraic. For ξ ∈ {−∞,+∞},

this is obvious. Fix ξ = a
b , where a, b ∈ Z, b > 0, (a, b) = 1.

Let g = (g1, . . . , gm). For any i = 1 . . . , n we define algebraic sets

T i
ξ = {(z, y, u) ∈ X × C

m × C : ziu = 1, gbj(z) = yjz
a
i , j = 1, . . . ,m}

if ξ � 0,

T i
ξ = {(z, y, u) ∈ X × C

m × C : ziu = 1, gbj(z)z
−a
i = yj , j = 1, . . . ,m}

if ξ < 0, and mappings

pi : T
i
ξ � (z, y, u) �→ (f(z), y, u) ∈ C

k × C
m × C.
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Denote by Si the set of points at which pi is not proper, and

Ai = Si ∩ {(λ, y, u) ∈ C
k × C

m × C : u = 0}, i = 1, . . . , n.

Since each Si is algebraic, so is Ai.
Let π : Ck × C

m × C � (λ, y, u) �→ λ ∈ C
k and observe that

(4.1) Λξ =
n⋃

i=1

π(Ai).

Indeed, let λ ∈ C
k satisfy L∞,f→λ (g) � ξ. Take any neighbourhoods U,W ⊂

C
k of λ such that W ⊂ U . By Corollary 3.7, there exist C > 0 and a curve

ϕ = (ϕ1, . . . , ϕn) : [r,+∞) → f−1(W ) meromorphic at infinity with degϕ > 0 such
that

(4.2) |g(ϕ(t))| � C|ϕ(t)|ξ, t ∈ [r,∞).

Let degϕi = degϕ. Then degϕi > 0. By the definition of ϕ, there exists λ′ ∈ W
such that

(4.3) f(ϕ(t)) → λ′ as t → ∞.

By (4.2), there exists y ∈ C
m such that

η(t) :=

(
gb1(ϕ(t))

ϕa
i (t)

, . . . ,
gbm(ϕ(t))

ϕa
i (t)

)
→ y as t → ∞.

Since degϕi > 0, we may assume that ϕi(t) �= 0 for t ∈ [r,+∞). Putting u(t) =
1

ϕi(t)
for t ∈ [r,+∞), we easily see that

pi(ϕ(t), η(t), u(t)) → (λ′, y, 0) as t → ∞.

Hence (λ′, y, 0) ∈ Si, so λ′ ∈ U ∩ π(Ai), and thus λ ∈ π(Ai). This gives the
inclusion “⊂” in (4.1).

We now prove “⊃”. Let λ ∈ π(Ai). Take any neighbourhood U of λ. Then there
exists λ′ ∈ U ∩ π(Ai), and so (λ′, y, 0) ∈ Si for some y = (y1, . . . , ym) ∈ C

m. The
definitions of Ai and T i

ξ now yield a sequence xl = (x1,l, . . . , xn,l) ∈ f−1(U), l ∈ N,

such that f(xl) → λ′ and

|xi,l| → ∞,
gbj(xl)

xa
i,l

→ yj as l → ∞, j = 1, . . . ,m.

Consequently, there exists C > |y| such that

|g(xl)| � C|xl|ξ for l ∈ N.

Hence, L∞(g|f−1(U)) � ξ. This gives L∞,f→λ (g) � ξ, and the inclusion “⊃” in
(4.1) is proved.

By Theorem 1.2, the set ϑg/f (C
k) ⊂ Q ∪ {−∞,+∞} is finite, say {r1, . . . , rs}

with r1 < · · · < rs. By (4.1), the sets Λri , i = 1, . . . , s, are algebraic, and Λr1 �

· · · � Λrs = C
k. Then the function ϑg/f is upper semi-continuous. Hence the usual

complex stratification of Cn compatible with complex constructible sets Λri \Λri−1

is a desired stratification. This ends the proof. �
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E-mail address: rodakt@math.uni.lodz.pl

Faculty of Mathematics and Computer Science, University of �Lódź, S. Banacha 22,
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