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LOJASIEWICZ EXPONENT NEAR THE FIBRE OF A MAPPING

TOMASZ RODAK AND STANISLAW SPODZIEJA

(Communicated by Ted Chinburg)

ABSTRACT. Let g: X — R¥ and f: X — R™, where X C R™, be continuous
semi-algebraic mappings, and A € R™. We describe the optimal exponent
0 =: Loo, 2 (g) for which the Lojasiewicz inequality |g(z)| > C|z|? holds with
C >0 as |z| = oo and f(xz) — A\. We prove that there exists a semi-algebraic
stratification R”™ = S1 U --- U S; such that the function A — Lo r—x(g)
is constant on each stratum S;. We apply this result to describe the set of
generalized critical values of f.

INTRODUCTION

Let M, N, L be finite-dimensional real vector spaces, X C M be a closed semi-
algebraic set, g : X — N and f : X — L be continuous semi-algebraic mappings
(see [1]), and let A € L. The aim of this article is to describe the Lojasiewicz
exponent at infinity of g near the fibre f~*(\), i.e. the supremum of the exponents
0 for which the Lojasiewicz inequality

(L) lg(z)| > Clz|® as z€X, |z|—=o0 and f(z)— A

holds with C' > 0 (cf. [12], [18]), where | - | is a norm. We denote this exponent by
Loo,f—x (g) (see Section [] for details).

We prove that Lo s (9) € QU {—00,+00} for A € L and that there exists a
semi-algebraic stratification L = S1U- - -US; such that the function A = Loy (9)
is constant on each stratum S; (Theorem [[L2). If g and f are complex regular
mappings, the stratification is complex algebraic (Corollary [[L6]). Note that if § =
Lo f—x (g9) € Q, then () holds (Corollary B7). The key points in the proofs are
Lipschitz stratifications ([13], [I4], [20]) and properties of the set of points at which
a mapping is not proper ([8]; see also Section [2]).

If f: M — L is a semi-algebraic mapping of class €', we define the Lojasiewicz
exponent of df near the fibre f~1(\) by

Loon (f) = Loo, s (v(df)),

where v is a function introduced by Rabier [17] (see Section [I). This notion was
introduced by Ha [7] in the case of complex polynomial functions in two variables
(see also [3], [5]).
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Let us recall that the exponent Lo » (f) is strongly related to the set of bifur-
cation points of f. Namely, one can define the set of generalized critical values of
f by

Koo(f) = {/\ €L: ‘Coo,)\ (f) < _1}'
It is a closed and semi-algebraic set. By Theorem [[2] the mapping L > A —
Loox (f) has a finite number of values (Corollary [LH); hence there exists o > 0
such that
Ko(f)y={AeL: Lox(f)<—-1-a}.

If £ is of class €2, then for any A € L\ K. (f) there exist a neighbourhood U C L
of A and a compact set A C M such that f: f~1(U)\ A — U is a trivial bundle
(see [16], [17], [11]; see also [23], [21], [22], [7], [15] for polynomials and polynomial
mappings). The smallest set B C L such that L\ B has the above property is
called the bifurcation set at infinity of f and is denoted by B (f). Note that for a
complex polynomial f in two variables, B (f) = Koo (f) (see [7], [15]).

Chadzyniski and Krasinski ([3], Corollary 4.7) proved that for a complex poly-
nomial f in two variables with deg f > 0 there exists ¢y € Q with ¢ > 0 such
that

Looxr(f)=cy for A ¢ Koo(f) and Lo (f) < —1 for A € Ko(f).

They also asked whether A — Lo » (f) behaves similarly in the general case. Note
that in the multi-dimensional case we cannot require c; > 0. Indeed, for the
polynomial f(z1,22,23) = (2122 — 1)2223 ([I7], Remark 9.1) we have ¢y = —1 (see
[3], Proposition 6.4).

As a corollary from Theorem [[.2] we give a partial answer to the above-mentioned
question. Namely, for a nonconstant polynomial f : C* — C there exist a finite
set S C C with Ko(f) € S and ¢; > —1 such that Loz (f) = ¢y for A e C\ S
and Loo ) (f) < ¢y for A € S (Corollary [L7). It is not clear to the authors whether
S = K (f) in Corollary [T

Section Pl has an auxiliary character and contains some results on semi-algebraic
mappings, Lojasiewicz exponent and stratifications. In Sections [3] and d we prove
Theorem and Corollary [[L6 respectively.

1. LOJASIEWICZ EXPONENT NEAR THE FIBRE OF A MAPPING

Let M, N, L be finite-dimensional real vector spaces, X C M be a closed set,
let g: X - Nand f: X — L, and let A € L.

Definition 1.1. By the Lojasiewicz exponent at infinity of g near the fibre f~1(\)
we mean

Loo - (9) == sup{Le(g|f 1 (U)) : U C Lis a neighbourhood of A},
where

Lo (91S) :=sup{f € R: o rso Vaes (=R = |g(z)| > Cla|’)}
is the Lojasiewicz exponent at infinity of g on a set S C X.

Our main result is

Theorem 1.2. Let g : X — N and f : X — L be continuous semi-algebraic
mappings.
(i) For any A € L, Leo,s—x(g9) € QU {—00, +00}.
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(ii) The function
Dgrp i L3 A= Loojsn(9)

s upper semi-continuous, and there exists a semi-algebraic stratification
(1.1) L=SU---US;
such that V4,5 is constant on each stratum S;, i =1,..., 7.

The proof of Theorem is given in Section Bl Theorem [[ii) was proved in
[18] for complex polynomials, under the assumption (i).
Now let f : M — L be a semi-algebraic mapping of class ¢! and let df be the
differential of f. Let
v(df): M >z — v(df(z)) R,
be the Rabier function, i.e. for A =df(z): M — L,
v(A4) = inf 4O,
where A* : L* — M™ is the adjoint operator and ¢ € L*. For a semi-algebraic
function f: M — R (or a complex polynomial) we have v(df) = |V f|, where V[ is
the gradient of f.

Definition 1.3. The Lojasiewicz exponent of df nmear a fibre f~1()\) is defned to
be Looa (f) = Loo,f-x (v(df)).

Remark 1.4. Let f : R® — R™ be a semi-algebraic mapping of class ¢! and let
k(df) : R" 3 z — k(df(z)) € R be the Kuo function [I0]; i.e., for A = df(z) =
(A1,..., An) R - R™,

k(A) = min dist (VA;, (VA;)jz),

1<i<m
where (a;);»; is the vector space generated by the vectors (a;);-;. As v(A4) <
k(A) < v/mv(A) ([T], Proposition 2.6), for any A € L we have

Loor () = Loo,f-x ((df)).
An analogous result holds for the Gaffney function [4] (cf. [9], Proposition 2.3).

The function v(df) is continuous and semi-algebraic ([I1], Proposition 2.4), so
Theorem implies:

Corollary 1.5. Let f : M — L be a semi-algebraic mapping of class €. Then
Loox (f) € QU {—00,+0} for any X\ € L, and the function L 5 X\ — Loox (f) is
upper semi-continuous and has a finite number of values. In particular, there exists
a > 0 such that

Ko(f)y={ eL: Lox(f)<—-1-a}.
In the case of complex regular mappings, from Theorem we obtain:

Corollary 1.6. Let X C C™ be a complex algebraic set, and let g : X — C™ and
f: X — CF be complex reqular mappings. Then there exists a complex algebraic
stratification C* = S; U --- U S; such that the function

Dg/r 1 CF 2N Lo pa (9) € QU {—00, +00}

is constant on each stratum S;, i = 1,...,j. Moreover, U4/ is upper semi-
continuous.
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The proof of the above corollary will be given in Section @l The crucial fact in
the proof is that 9,,¢(C") = ¥,,;(R*") and this set is finite (Theorem 1.2).

For a complex polynomial f: C" — C the set K (f) is finite (Proposition 24t
see also [11], Theorem 3.1); hence Corollary gives:

Corollary 1.7. Let f : C" — C be a polynomial function with deg f > 0. Then
there exist o finite set S C C with Koo (f) C S and a constant ¢y € Q with ¢y > —1
such that Loo x (f) =cy for A€ C\'S, and Lo (f) < cy for A€ S.

2. AUXILIARY RESULTS

In what follows, L, M, N are finite-dimensional real vector spaces. We will use
the Euclidean norm | - | in M (or in N, L). For A C M, let o(-,A) denote the
distance function to A, i.e. o(z, A) = infyecq |z —y| if A# 0, and o(z,0) = 1.

2.1. Semi-algebraic mappings. A subset of M is called semi-algebraic if it is
defined by a finite alternative of finite systems of inequalities P > 0 or P > 0,
where P are polynomials on M (see [I], [2]). A mapping f : X — N, where
X C M, is called semi-algebraic if the graph T'(f) of f is a semi-algebraic set. For
instance, the distance to a semi-algebraic set is a semi-algebraic function (cf. [2]):

Proposition 2.1. Let V. C M be a semi-algebraic set. Then the function oy :
M >z~ o(x,V) € R is continuous and semi-algebraic.

Let X € M and let f : X — N be any mapping. We say (cf. [8]) that f is
proper at a point y € N if there exists an open neighbourhood U of y such that
f: f~YU) — U is a proper map. The set of points at which f is not proper is
denoted by &y. It is obvious that the set & is closed. It is known that for a
complex algebraic set X C C™ and a complex regular mapping f : X — C™, the
set & is complex algebraic.

Proposition 2.2. Let X be a closed semi-algebraic set. If the mapping f: X — N
is semi-algebraic, then the set G is also semi-algebraic.

Proof. Since X is a closed set, we have
Sy ={y €N :Vaeso Joex 2] > A A [f(2) —y| <}
Then, by the Tarski-Seidenberg Theorem, we obtain the assertion. ([l
Let f: X — N with X C M. The degree of f is defined by
deg f =inf{6 € R : Ic.r>0 Vaex (j2| > R = [f(2)| < Claf)}.

Set supp f = {x € X : f(x) # 0}.
A curve ¢ : [r,+00) = M is called meromorphic at +o0o if ¢ is the sum of a
Laurent series of the form
o(t) = apt? + ap_ 1P+ a; €M, pel.
In the case of a polynomial function and the Laurent series at infinity, the above
degree is the usual degree; that is, degp = p if a, # 0, and degp = —oc0 if ¢ = 0.

Proposition 2.3. Let X be a closed semi-algebraic set and let f : X — N be a
semi-algebraic mapping. Then:

(i) deg f € QU {~o0}.

(ii) deg f = —oo if and only if supp f is bounded.
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(iii) If deg f € Q, then there exist C, R > 0 such that
|f(x)] < Cla|des’ forxe X, |x|>R.

(iv) Let f(f) = min{n € Z : n > 0, n > deg f}. Then there exist R > 0 and
a < 0 such that

(2.1) 1f(@)] <A +]22)PDz|® forzeX, |z|>R.

Proof. If supp f is bounded, then the assertion is obvious. Assume that supp f is
unbounded. Then the set

Y ={(y,f(y) € X x N: Voex |z| =[y| = 2|f(¥)] = |f(2)[}

is unbounded and semi-algebraic. So, by the Curve Selection Lemma at infinity,
there exists a curve ¢ = (p,n) : [r,+00) = Y meromorphic at +oco such that
n = fop, degn € Z, and degp > 0. Let § = degn/degp. Then § € Q and for
some C, D, R > 0,

(2.2) Cle@®)” < f(eM) < Dlp@)’,  ¢>R.
The definition of Y now implies that for « € X, |z| = |¢(¢)|, ¢t > R,
(@)l < 1f(p(t)] < Dlp(t)|” = Dlz|’.
So, deg f < 6. Since, by 22), deg f > 0, it follows that deg f = 6. This gives (i),

(ii) and (iii). Part (iv) follows immediately from (iii). O

2.2. ¢! semi-algebraic functions. Let f: R™ — R be a semi-algebraic function
of class €1 in x = (x1,...,2,). Then the gradient Vf = (g—wfl, cee ;Tf) :R" - R™
is a semi-algebraic mapping.

Proposition 2.4. There exist C,§, R > 0 such that
(2.3) [f(@) 2 R = |2 [Vf(z)| = C|f(z)],
(2.4) @) <6 = |2 [Vf(2)] = C|f(z)]-

In particular, the set Koo (f) is finite. The assertion also holds for complex polyno-
mials.

Proof. As in [19] and [6], we use Hormander’s method. To prove ([23)), assume the
contrary. Then the semi-algebraic set

X ={(z,y,2,¢) eR*" xR? : y = V[f(2), 2 = f(2), 2] > ¢, elylla| < |2}

has an accumulation point of the form (xg,yo, 20, +00). Thus, by the Curve Se-
lection Lemma at infinity there exists a curve ¢ = (¢, 7,m1,72) : [, +o0) — X
meromorphic at infinity such that ¥(¢) — (zo, 0,20, +00) as ¢ — +oo. Then
degno > 0, degmy > 0, deg ¢ > 0, and

degno 4+ deg T + degp < degn; .
On the other hand,
degny = degn; +1 =deg(fop) +1<degt +degp,

and we obtain a contradiction. Analogously we prove (Z4) and the assertion in the
complex case. ([
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2.3. Lojasiewicz exponent. For three semi-algebraic sets X, Y, Z C M such that
XNY C Z, we define a reqular separation exponent of Y and Z on X at a point
xp € X NY to be any real positive 6 such that

(#) o(@,Y) > Co(x,2)  forzeXNQ,

where C' > 0 and € is a neighbourhood of zy. The infimum of all such exponents 6
will be denoted by L., (X;Y,Z). By using the method of Lipschitz stratifications
([13], [14]), the following is proved in Theorem 1.5 of [20]:

Proposition 2.5. Let X, Y, Z C M be closed semi-algebraic sets such that XNY C
Z, and let xg € XNY.

(i) Then L, (X;Y,Z) € Q, and () holds for 6 = L., (X;Y,Z), some C >0
and a neighbourhood Q of xy, provided 0° = 0.

(i) If xzo € X\ Z, then L., (X;Y,Z) is attained on an analytic curve, i.e. for
any neighbourhood Q of xq there exists an analytic curve ¢ : [0,r) — X N Q such
that ¢((0,7)) C X \ Z and ¢(0) € X NY, and for some constant Cy > 0,

Colp(t), 2) “r0 XD L o(p(t),Y) < Cro(p(t), Z) T X2t e [0,7).

If Z=XnNnY and zp € X \Y, then obviously Ly, (X;Y,Z) is equal to the
Lojasiewicz exponent L, (X,Y) of X and Y at xp, i.e. the optimum exponent ¢
in the following separation condition:

(S) o(z, X) 4+ o(x,Y) = Co(x, X NY)? forz €Q,

considered in a neighbourhood ©Q C M of zy for some constant C' > 0. Note that
Proposition also holds in the subanalytic case.

2.4. Stratification. By stratification of a subset X C M we mean a decomposition
of X into a locally finite disjoint union

(2.5) X =JSa,

where the subsets S, are called strata, such that each S, is a connected embedded
submanifold of M, and each (S, \ S,) N X is the union of some strata of dimension
smaller than dim S,.

The i-th skeleton of the stratification (2.3)) is

X'= J Sa
dim S, <i

The stratification (23] is called semi-algebraic if all the skeletons X' are semi-
algebraic sets (or equivalently if the number of strata is finite and they are all
semi-algebraic). The stratification (23] of a complex algebraic subset X of a com-
plex linear space M is called complex algebraic if all the skeletons X*? are complex
algebraic subsets of M and the number of strata is finite.

By Corollaries 2.6 and 2.7 in [20] we have:

Proposition 2.6. Let X, Y, Z C M be closed semi-algebraic sets such that XNY C
Z. Then there exists a stratification

(2.6) XNY =5U---US
of X NY such that the function
(2.7) XNYszw— L, (X;Y,2)
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is constant on each stratum S;. In particular, the function ) is upper semi-
continuous. If additionally X1,..., X, C X NY are semi-algebraic sets, then one
can require that the stratification (Z.0) is compatible with any X, i.e. any X; is a
union of some strata S;.

3. PROOF OF THEOREM

Let X C M be a closed semi-algebraic set, and let g : X — N and f: X — L
be continuous semi-algebraic mappings.
The values 94,()\) € {—00, +00} are characterised by the following:

Remark 3.1. (i) By Proposition 233 and the definition of & we have:

(3.1) Vg/p(A) =400 <= AcL\Gy.
(ii) Let h = f|g-1(0). From the definition of L. s (g) we have:
(3.2) Ug/p(A) =—00 & ANE€B), & Lo (f—Ag '(0)) <O0.

Before the proof of Theorems we give four lemmas and a proposition. Let
B={ze€ M :|z| <1} and let H : B — M be of the form

z
H(z) = =

Lemma 3.2. The mapping H is semi-algebraic and invertible with inverse
2z

Hl (2)= ————.
(=) 14+ /14 4|z|?
Moreover, for any R > 0,
2R
(3.3) |[Hz)| >R +— ——<|2|<1.

1++v1+4R?
Proof. H is a semi-algebraic mapping as the restriction of a rational mapping to
the semi-algebraic set B. By an easy calculation we obtain ([3.3]) and the formula
for H—1. O
By Lemma we may define the following semi-algebraic sets:

Y={(x,\,d) e X xLxR: |f(z) =\ <0},

Z1 ={(z,\,0) e BXxLxR:(H(z),\0) €Y},

Zy=0B x L xR,

Z = 71U Zs.
Let V = ¢g~1(0), and let

W ={(z,\,0)€ Z,: H(z) e V}.
Define a mapping F : Z — R by
F(z,\,0) = (1—2[%o((z,),6), W).

Since W is a semi-algebraic set, Proposition 2] implies that F' is a semi-algebraic

mapping.
Forany A€ L, § > 0 and S C X we set

Sys={z €S :|f(z) -\ <o}
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Lemma 3.3. Let A\g € L and 6y > 0 be such that the set Vy, s, is bounded, and
suppose Xy, s is unbounded for any 6 > 0. Then there exist C,D, R > 0 such that
for any (x,\,0) €Y, where 0 < § < %‘) and |\ — Mol < &, we have

(3.4) Cle|™* < F(H *(z),\,0) < Dlz|™*, =z € Xy,s, |z|>R.

Proof. Let Z° = {(2,\,0) € Zy : |\ = \o| < d}. Then Z% c 2% if ¢’ < §". By the
definition of F' we have

F(z,\,06) = |H(2)| 7 zlo((2,\,0),W) for (z,\,0) € Z1, z#0.
Hence, by B3), it suffices to prove that for some ¢,d,r > 0, with » < 1, and
5 =%,
(3.5) c < |zlo((z,\,0),W) <d for (z,\0) € Z%, r<|z|<1.

Because Z% is bounded, the set {|z[o((z,\,8), W) : (2,A\,8) € Zy,5,} is also
bounded. Hence the right-hand estimate in ([B3) holds. By B3) and the as-
sumptions on V5, and X, s, there exists 0 < r < 1 for which the set W has no
accumulation points in A = {(z,\,6) € Z% :r < |z|}. Moreover, A is bounded, so
¢ = inf{|z]|o((z, A, 6), W) : (2,A,0) € A} > 0. This gives the left-hand estimate in

. (]

Let Xy = H }(X)UOB and Vi = H-1(V). Since g and H are semi-algebraic
mappings the sets V, Xy, Vg are semi-algebraic. Moreover, Xy is closed and
Vi = (go H)71(0). Define gz : X — N by

goH(z)
gu(z) = § (L+ [H(2)?)PW)
0 for z € 0B,

where (g) is defined in Proposition 23 (iv).

for z € XgNB,

Lemma 3.4. The mapping gu s continuous, semi-algebraic and
(3.6) (9z1) 1 (0) = Viy UOB.

Proof. By [21) in Proposition 23] gg is continuous. Since the mapping g is semi-
algebraic, so is B 5  + go H(x), and hence also h : (Xg N B) 3 z+— (g9(z), (1 +
|H(2)|?)#9)) € NxR. The graph of gy is the union of B x {0} and the image of the
graph h under the semi-algebraic mapping M x N x (0, +00) 3 (z,y,t) — (z, %y) €
M x N, so the graph of gy is semi-algebraic. The equality ([3.6]) is obvious. ]

The set Z is semi-algebraic and Xy is its image under the projection map Z >
(z,A,0) = z € M. Hence, we may define a semi-algebraic mapping G : Z — N by

G(z,\,0) = gu(z).

Let T be the graph of the semi-algebraic mapping (G, F) : Z — N x R. Since Z
is a closed set, so is IT.

Lemma 3.5. There exists a stratification

(3.7) G0)=SU---US;

such that the function

(3.8) £:G7H0)3v > Lo (T5Z2 x {0} xR, Z x N x {0})
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is constant on each stratum S;. In particular, the set of values of £ is a finite subset

of Q.
Proof. By ([B.8), G=1(0) = F~1(0), so
G7H0) x {0} x {0} =T N(Z x {0} xR) C Z x N x {0}.

Proposition now shows that the values of £ are rational numbers. Moreover,
from Proposition 2.6 we obtain a stratification ([B.7)) satisfying the assertion. O

Take any Ag € L and define
Ix,(9) = max{£(z, Ao, 0) : (2,A0,0) € Za}.
By Lemma 35l 15, (g9) € Q.

Proposition 3.6. Let 69 > 0 be such that the set V), 5, is bounded, and suppose
the set Xy,,s5 is unbounded for any 6 > 0. Then

(3.9) Los,f—x0 (9) =2B(g) — Ix,(9)

and for any sufficiently small 0 < § < %0 there exist C,C’, R > 0 such that
(3.10) lg(@)| > Clz[P 9D~ forze X\ 5 |z/>R

and

(3.11) Cp@)PPO =20 > g(p(1))] = Clo(@)[PP @09, ¢ € [r, +-00),

for some curve @ : [r,+00) = X, s meromorphic at +oo, with degy > 0.

Proof. Let E = {(2,\,0) € Za : A = Ao, 6 = 0} and a = [),(g). By the definition
of Ix,(g), for any (z,A,0) € E there exist a neighbourhood Q, C M x L x R of
(2, X0,0) and C, > 0 such that

|Gy, A, 6)| = C.|F(y, A\ 0)|“, (y,\,0) e, NZ.

Since the set F is compact, there exists C > 0 such that C, > C for (2,20,0) € E,

and there exist 0 <7y <1 and 0 < §; < %0 such that

|G(y7A561)‘ 2 é|F(ya Aa(51)|a7 |)‘ - )‘0‘ < 61’ 1 < |y‘ < 17
where (y, A, 01) € Z. Consequently,

g\ ~ — a
W 2 C|F(H 1(1‘), A0,61)| 5 T € X)\0751, |J)| 2 R,
2R

where R > 0 is the unique solution of the equation r; = TV Together with
B4 this gives
9(@)| > CCO+ o) Da] = forz € Xpps,, 2] > R

Hence for any 0 < ¢ < 61, (B10) follows.

Take any 0 < 6 < 1. Let (z0,A0,0) € Z2 be a point such that £(zg, Ag,0) =
Ixo(9)- By the assumption on V), s, we have
(3.12) (20, 20,0,0,0) €T\ (Z x N x {0}), (20, X0,0) ¢ W,
and S(Nzo, A0, 0) > 0. Thus, by Proposition 2] for any sufficiently small neighbour-
hood Q of w = (20, \o, 0, G(20, Ao, 0), F(z0, A0,0)) = (20, Ao, 0,0,0) there exists an
analytic curve

¢ = (101,7/12,1/13) : [OaT) - FOQ7
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where ¢; : [0,7) = Z, tps = Goy : [0,7r) = N, p3 = Fopy : [0,7r) = R,
P((0,7)) C T\ (Z x N x{0}) and ¥(0) € I' N (Z x {0} x R), such that for some
constant Cy > 0,

(3.13) o(¥(t), Z x {0} xR) < Cro(v(t), Z x M x {0})* for te€[0,r).

Let @1 : [0,7) = M, @3 :[0,7) = L, p3: [0,7) = R, and let 1 = (p1, p2, ¥3). By
the choice of ¢ we have ¢1(t) € B for ¢t € (0,r), and ¢(0) € 9B by (B12). Hence,

(3.14) |H(p1(t))] — o0 as t—0.

Since the neighbourhood Q of w can be small, one can assume that 0 < @3(t) < &
for t € [0,7). Then, by the definition of Z, we have |H (¢1(t)) — Ao| < p3(t) < d for
t € (0,7), and so

(3.15) H(p1(t)) € Xng,o for ¢ € (0,r).
By B.13),

G(1(D)] < CLIF (¢u ()" for ¢ € [0,7].
Hence, from (34) and BI4), for some 0 < r; <7,

oH )] _
W+ [H (g )2)F@

Together with (814) and ([BIH), this gives
9(H(p1(0)))] < C'[H(p1(0))PO=, t e (0,m]
for some C’ > 0. Now setting ¢(t) = H(y1(4)) for t € [%, +00) we obtain (BIT]).

C1D™ D H(py ()7, te (0,r].

Finally, BII) and BI0Q) yield (B.9). O
Proof of Theorem [[2 Fix A\g € L. First we prove (i). If for any § > 0 the set
Vio,s is unbounded, then Lo -, (9) = —oo. If for some § > 0 the set Xy, s is

bounded, then Lo -, (9) = +00. The remaining case in (i) follows from the fact
that 5(g) € Z (see Proposition 223) and from (39) in Proposition

To prove (ii), we adopt the method of the proof of Theorem 3.2.2 in [18]. By
Lemma [3.5] let

Vgyp(L) = {r1,..., 75} CQU{—o00, 400}, where 73 <---<rs.

Define A¢ = {AN€ L: Loy (g) <&} for £ €R.

Fix r;. We now prove that the set A,, is closed and semi-algebraic. If r; €
{—00,+00} this follows from Remark Bl and Proposition So, let r; = %,
where a,b € Z and b > 0. Define

T={(z.c) € X x R: |g(x)|" = clal},

and let p: T 3 (z,¢) = (f(x),c) € L x R. Since the mapping p is semi-algebraic,
Proposition shows that the set &, is also semi-algebraic.
Let 7: L x R 3 (y,¢) = y € L and observe that

(3.16) A, =7(8,).

Indeed, let A € A,,, and let U C L be a neighbourhood of A. Take a neighbour-
hood Uy C L of X such that U; C U. Then, by Proposition B.6] there exist C' > 0
such that the set

{(z,y) € fHU) x Ny =g(2), |y’ < C'|z|"}
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is unbounded. Since it is semi-algebraic, there exists a curve ¢ = (¢, ) : [r, +00) —
f71(U1) x N meromorphic at infinity such that degy > 0, n = g o  and

lg(e®)|” < C'lp®)]*,  t € [r,+00).
Then, for some N € U; CU and 0 < ¢ < ',

fop(t)— XN  and M—)c as t— o00.

p()]

Hence, N € 7(6,)NU, and so X € 7(&)).
Now let A € m(&,). Take any neighbourhood U C L of A, and let A’ € U and
¢ € R be such that (M,¢) € &,. Then for some sequence (x,,c,) € T, where

z, € f7H(U) and ¢, € R for n € N, we have
|2n| — o0, flzn) = N and cp = C as n — 0o.
Hence, there exists C' > 0 such that |c,| < C for n € N, and so
lg(z)|° < Clzn|®,  neN.

This gives Loo(g|f~1(U)) < r;, and hence Lo f—x (9) < 7. Summing up, A € A,
and (B.I0) is proved.

By Proposition 22] the set &, is semi-algebraic, so, by B10), A, is closed and
semi-algebraic. In particular, the function 9y, is upper semi-continuous. From
the definition of A,, we have A,, & ... & A, = L. Hence, A¢ is semi-algebraic for
any & € R. Therefore there exists a semi-algebraic stratification of the form (I.I])
compatible with any intersection X1 N---NX,, where Xi,..., X; € {A,,..., AL}
Thus, the function ¥,/ is constant on each stratum S;, and Theorem [[.2lis proved.

(I
Corollary 3.7. If 0 = Lo s (g) € Q, then for some C,C',R,0 > 0,
(3.17) lg(z)| > C|z|’ forze X, |z| = R, |f(x) — Al <,
(3.18) C'le®)]” = lg(p))] = Clo®)|®  fort € [r,+00),

where ¢ : [r,+00) = X is a curve meromorphic at infinity such that degp > 0 and
[f(p(t)) = Al <0 fort € [r,+00).

Proof. The assertion follows immediately from ([B.I0), (.11 and Theorem O

4. PROOF OF COROLLARY

Let (21,...,2n), (Y1,.-.,Ym) be the coordinates of z € C", y € C™, respectively.

As in the proof of Theorem we now show that for any £ € Q U {—o0, o0},
the set Ae = {\ € C*: L ;- (g9) < &} is complex algebraic. For ¢ € {—o0, +00},
this is obvious. Fix { = ¢, where a,b € Z, b > 0, (a,b) = 1.

Let g = (g1,...,9m). For any i = 1... n we define algebraic sets

Tg:{(z,y,u) EXXxC"xC:zu=1, g?(z)zyjzf, j=1,...,m}
i€ >0,
Tg:{(z,y,u)€X><Cmx(C:ziuzl,gé?(z)z;a:yj,jzl,...,m}
if £ < 0, and mappings
pi:Tg9(z,y,u)t—)(f(z),y,u)E(Ckx(me(C.
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Denote by &; the set of points at which p; is not proper, and
Ai=6;n{(\y,u) eCFxC™ x C:u=0}, i=1,...,n.

Since each &; is algebraic, so is A;.
Let 7: C* x C™ x C 3 (A, y,u) = A € C* and observe that

(4.1) Ae = U T(Ay).

Indeed, let A € C* satisfy Lo - (9) < €. Take any neighbourhoods U, W C
C* of X such that W C U. By Corollary 7 there exist C' > 0 and a curve
©=(P1,-.-,pn) : [r,+00) = f~1(W) meromorphic at infinity with deg ¢ > 0 such
that

(4.2) l9(o(t)] < Clo(t)]s, € [r,00).

Let deg p; = degp. Then degp; > 0. By the definition of ¢, there exists X' € W
such that

(4.3) flp(t) =X as t— oo.
By ({2), there exists y € C™ such that
_ (9ile(®)) Im (1))
0= (S

Since degp; > 0, we may assume that ;(t) # 0 for ¢t € [r,+00). Putting u(t) =

O] .l(t) for ¢ € [r,+00), we easily see that

>—>y as ¢ — oo.

pi(@(t)a n(t)a u(t)) — ()‘/aya 0) as t— oo.

Hence (X,y,0) € &;, so N € UnNm(A;), and thus A € w(4;). This gives the
inclusion “C” in (@I)).

We now prove “D”. Let A € w(4;). Take any neighbourhood U of A\. Then there
exists A € U Nw(4;), and so (N,y,0) € &; for some y = (y1,...,Ym) € C™. The
definitions of A; and Tg now yield a sequence z; = (z1,,...,2,,) € f1(U), L €N,
such that f(z;) = A and

95 (1) .
|zi | — oo, —a Y a8 l—=o0, j=1,...,m.
il

Consequently, there exists C' > |y| such that
lg(z1)] < Clay|¢ for I € N.

Hence, Loo(g|f~1(U)) < & This gives Loo s (9) < &, and the inclusion “>” in
(&) is proved.

By Theorem [[2] the set 9,,;(C*) C QU {—o0, 400} is finite, say {ri,...,7s}
with r1 < -+ < rs. By (@), the sets A, i = 1,...,s, are algebraic, and A,, &
.-+ G A,, = CF. Then the function 4,5 is upper semi-continuous. Hence the usual
complex stratification of C™ compatible with complex constructible sets A, \ A,,_,
is a desired stratification. This ends the proof. (I
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