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A NEW PROOF OF THE ORLICZ BUSEMANN-PETTY

CENTROID INEQUALITY

AI-JUN LI AND GANGSONG LENG

(Communicated by Mario Bonk)

Abstract. Using shadow systems, we provide a new proof of the Orlicz
Busemann-Petty centroid inequality, which was first obtained by Lutwak, Yang
and Zhang.

1. Introduction

Recently, in three remarkable papers [12, 23, 24], an Orlicz Brunn-Minkowski
theory which extends the Lp Brunn-Minkowski theory emerged. This extension is
motivated by asymmetric concepts within the Lp Brunn-Minkowski theory devel-
oped by Ludwig [14], Haberl and Schuster [9, 11], and Ludwig and Reitzner [16].
As part of this new Orlicz Brunn-Minkowski theory, Lutwak, Yang and Zhang es-
tablished two beautiful inequalities, the Orlicz Busemann-Petty centroid inequality
[24] and the Orlicz Petty projection inequality [23]. It turns out that the objects
of the Orlicz Brunn-Minkowski theory are much more general than those of the Lp

Brunn-Minkowski theory. Fortunately, basic results in the Lp Brunn-Minkowski
theory, such as affine isoperimetric inequalities, carry over to the general situation.

In this paper, inspired by the work of Campi and Gronchi [2, 3, 4], we will give
an alternative proof of the Orlicz Busemann-Petty centroid inequality.

For more information on the Lp and Orlicz Brunn-Minkowski theory see, e.g.,
[1]–[5], [7]–[24], [29] and the references therein.

Let φ : R → [0,∞) be an even strictly convex function such that φ(0) = 0. The
class of such a φ will be denoted by C. Let K be a convex body (i.e., a compact,
convex set with non-empty interior) in R

n that contains the origin in its interior.
Denote by |K| the volume of K. The Orlicz centroid body ΓφK of K, as defined in
[24], is the convex body whose support function at x ∈ R

n is given by

hΓφK(x) = inf
{
λ > 0 :

1

|K|

∫

K

φ
( 〈x, z〉

λ

)
dz ≤ 1

}
,
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where 〈x, z〉 denotes the standard inner product of x and z, and the integration is
with respect to Lebesgue measure in R

n. In [24] it was shown that the function hΓφK

is positively homogeneous and subadditive and hence a support function. Actually,
the Orlicz centroid body can be defined on star bodies. It is clear that |ΓφK|/|K|
is not translation invariant. A natural restriction which makes |ΓφK|/|K| bounded
is to consider only convex bodies containing the origin in its interior.

Orlicz Busemann-Petty centroid inequality [24]. If φ ∈ C and K is a convex
body in R

n that contains the origin in its interior, then the volume ratio

|ΓφK|/|K|
is minimized if and only if K is an ellipsoid centered at the origin.

The critical part of the proof in [24] is that the volume of the Orlicz centroid
body is not increased after a Steiner symmetrization. It is well known that ev-
ery convex body can be transformed into a ball by a sequence of suitable Steiner
symmetrizations. Therefore the ratio |ΓφK|/|K| attains its minimum when K is a
ball.

In this paper, we also follow this principle. The technique we will use is that of
shadow systems developed by Rogers [26] and Shephard [28]. In fact, the technique
of shadow systems has been applied by Campi and Gronchi [2] to recover the Lp

Busemann-Petty centroid inequality, which was first obtained by Lutwak, Yang and
Zhang [20]. So our work is a natural extension of the work of Campi and Gronchi
[2]. It would be impossible to overstate our reliance on their work.

A shadow system along the unit direction v is a family of convex hulls in R
n,

Kt = conv{z + α(z)tv : z ∈ A ⊂ R
n},

where A is an arbitrary bounded set of points, α is a real bounded function on A,
and the parameter t runs in an interval of the real axis.

A parallel chord movement along the unit direction v, a particular type of a
shadow system, is a family of convex bodies Kt in R

n defined by

(1.1) Kt = {z + β(z|v⊥)tv : z ∈ K, 0 ≤ t ≤ 1},
where K is a convex body in R

n and β is a continuous real function on v⊥ = {z ∈
R

n : 〈v, z〉 = 0}. Notice that |Kt| and the orthogonal projection Kt|v⊥ of Kt are
independent of t.

For a direction v, define a convex body by

K = {x+ yv : x ∈ K|v⊥, y ∈ R, f(x) ≤ y ≤ g(x)}.
Then the parallel chord movement with speed function β(x) = −(f(x) + g(x)) is
such that K0 = K, K1 = Kv, the reflection of K in the hyperplane is v⊥, and K1/2

is the Steiner symmetral of K with respect to v⊥.

Theorem 1.1. If {Kt : 0 ≤ t ≤ 1} is a parallel chord movement along the unit
direction v, then ΓφKt is a shadow system along the same direction v.

In order to deduce the Orlicz Busemann-Petty centroid inequality from Theo-
rem 1.1, the following facts will be needed.

Fact 1 (Shephard [28]): The volume of a shadow system is a convex function of
the parameter t.

Fact 2 (Lutwak, Yang and Zhang [24]): Let φ ∈ C. For a convex body K in R
n

and T ∈ GL(n), Γφ(TK) = T (ΓφK).
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Fact 3 (Lutwak, Yang and Zhang [24]): The Orlicz centroid operator Γφ is
continuous in the Hausdorff metric.

Theorem 1.1 and Fact 1 imply that the volume of ΓφKt is a convex function of
t. From Fact 2 we get that Γφ(K

v) = (ΓφK)v. Thus

|ΓφK1/2| ≤
1

2
|ΓφK0|+

1

2
|ΓφK1| = |ΓφK|;

that is, the volume of the Orlicz centroid body is not increased after a Steiner sym-
metrization. The continuity of the Orlicz centroid operator implies the continuity
of the ratio |ΓφK|/|K| in the Hausdorff metric. It follows that the ratio attains its
minimum value when K is a ball.

Theorem 1.2. If {Kt : 0 ≤ t ≤ 1} is a parallel chord movement with speed function
β, then the volume of ΓφKt is a strictly convex function of t unless β is linear.

If the speed function β of the parallel chord movement is linear, then it is easy
to see that Kt is a linear image of K, for every t in the range of the movement. It
is well known, see [25], that if K is not an origin symmetric ellipsoid, then there
exists a direction v such that for the Steiner symmetral SvK of K,

SvK 	= AK,

for all A ∈ GL(n). Therefore, |ΓφK|/|K| is minimized if and only if K is an
ellipsoid centered at the origin. The Orlicz Busemann-Petty centroid inequality is
established.

2. Proofs of the main results

Since φ is strictly convex on R such that φ(0) = 0, it follows that the function

λ 
→
∫

K

φ
( 〈x, z〉

λ

)
dz

is strictly decreasing in (0,∞). It is also continuous. Thus, we have for x ∈ R
n\{0},

(2.1) hΓφK(x) = λ ⇔ 1

|K|

∫

K

φ
( 〈x, z〉

λ

)
dz = 1.

Lemma 2.1. If {Kt : 0 ≤ t ≤ 1} is a parallel chord movement along the unit
direction v, then the orthogonal projection of ΓφKt onto v⊥ is independent of t.

Proof. By (1.1) we have

hΓφKt
(x) = inf

{
λ > 0 :

1

|Kt|

∫

Kt

φ
( 〈x, z〉

λ

)
dz ≤ 1

}

= inf
{
λ > 0 :

1

|K0|

∫

K0

φ
( 〈x, z + β(z|v⊥)tv〉

λ

)
dz ≤ 1

}

= inf
{
λ > 0 :

1

|K|

∫

K

φ
( 〈x, z〉+ β(z|v⊥)t〈x, v〉

λ

)
dz ≤ 1

}
.

Then for x ∈ v⊥, hΓφKt
(x) = hΓφK(x). �

The following lemma shows that hΓφKt
(x) is a Lipschitz function of t, hence is

continuous with respect to t.
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Lemma 2.2. If φ ∈ C, then for t1, t2 ∈ [0, 1] and x ∈ R
n \ {0},

|hΓφKt1
(x)− hΓφKt2

(x)| ≤ |t1 − t2|‖β(·|v⊥)〈x, v〉‖φ,

where ‖ · ‖φ is defined for f : K → R which is continuous and not constant to 0 as

‖f‖φ = inf
{
λ > 0 :

1

|K|

∫

K

φ
(f(z)

λ

)
dz ≤ 1

}
.

Proof. Let f, g : K → R be continuous and not constant to 0. Then the strict
convexity of φ on R implies that

(2.2) ‖f‖φ = λ1 ⇔ 1

|K|

∫

K

φ
(f(z)

λ1

)
dz = 1

and

(2.3) ‖g‖φ = λ2 ⇔ 1

|K|

∫

K

φ
(g(z)

λ2

)
dz = 1.

The convexity of the function φ shows that

φ
(f(z) + g(z)

λ1 + λ2

)
≤ λ1

λ1 + λ2
φ
(f(z)

λ1

)
+

λ2

λ1 + λ2
φ
(g(z)

λ2

)
.

Integrating both sides with respect to the Lebesgue measure of K and using (2.2),
(2.3) give

1

|K|

∫

K

φ
(f(z) + g(z)

λ1 + λ2

)
dz ≤ 1.

From the definition of ‖ · ‖φ we get

‖f + g‖φ ≤ λ1 + λ2 = ‖f‖φ + ‖g‖φ.

Thus

|‖f‖φ − ‖g‖φ| ≤ ‖f − g‖φ.
The facts that φ is even and

hΓφKt
(x) = ‖〈x, ·〉+ β(·|v⊥)t〈x, v〉‖φ

conclude the proof. �

Since ΓφKt is a convex body for every 0 ≤ t ≤ 1, it can be represented by

(2.4) ΓφKt = {x+ yv : x ∈ (ΓφK0)|v⊥, ft(x) ≤ y ≤ gt(x)},

where ft and −gt are convex functions defined on (ΓφK0)|v⊥.

Lemma 2.3. If {Kt : 0 ≤ t ≤ 1} is a parallel chord movement along the unit
direction v, then for every x ∈ (ΓφK0)|v⊥,

(2.5) gt(x) = inf
u∈v⊥

{hΓφKt
(u+ v)− 〈x, u〉}

and

(2.6) ft(x) = sup
u∈v⊥

{〈x, u〉 − hΓφKt
(u− v)}.
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Proof. Let u ∈ v⊥. For x ∈ (ΓφK0)|v⊥ we have

x+ gt(x)v ∈ ΓφKt, x+ ft(x)v ∈ ΓφKt.

The definition of the support function shows that

〈x+ gt(x)v, u+ v〉 ≤ hΓφKt
(u+ v),

〈x+ ft(x)v, u− v〉 ≤ hΓφKt
(u− v).

Thus,

〈x, u〉+ gt(x) ≤ hΓφKt
(u+ v), 〈x, u〉 − ft(x) ≤ hΓφKt

(u− v)

for all u ∈ v⊥.
Since ΓφKt has support hyperplanes at the two points x+ gt(x)v, x+ ft(x)v ∈

∂(ΓφKt), for x ∈ relint
(
(ΓφK0)|v⊥

)
, there exist two vectors u′ + v and u′′ − v with

u′, u′′ ∈ v⊥ such that

〈x+ gt(x)v, u
′ + v〉 = hΓφKt

(u′ + v),

〈x+ ft(x)v, u
′′ − v〉 = hΓφKt

(u′′ − v).

If x /∈ relint
(
(ΓφK0)|v⊥

)
, it is possible that gt(x) = 0, ft(x) = 0. Then we cannot

find u′, u′′ ∈ v⊥ such that

〈x+ gt(x)v, u
′ + v〉 = 〈x, u′〉 = hΓφKt

(u′ + v),

〈x+ ft(x)v, u
′′ − v〉 = 〈x, u′′〉 = hΓφKt

(u′′ − v).

The continuity of support functions ensures that we can take the infimum and
supremum for all u ∈ v⊥. Therefore, we get

gt(x) = inf
u∈v⊥

{hΓφKt
(u+ v)− 〈x, u〉}

and

ft(x) = sup
u∈v⊥

{〈x, u〉 − hΓφKt
(u− v)}

for every x ∈ (ΓφK0)|v⊥. �

Since hΓφKt
(x) is a Lipschitz function of t, with Lipschitz constant

‖β(·|v⊥)〈x, v〉‖φ, from Lemma 2.3 we deduce that gt(x) and ft(x) are Lipschitz
functions of t too. Hence gt(x) and ft(x) are continuous with respect to t. More-
over, the convexity of gt(x) and −ft(x) with respect to t can be stated as follows.

Lemma 2.4. If {Kt : 0 ≤ t ≤ 1} is a parallel chord movement along the unit
direction v, then for every x ∈ (ΓφK0)|v⊥, gt(x) and −ft(x) are convex functions
of the parameter t in [0, 1].

Proof. We first show that if u1, u2 ∈ v⊥, then

(2.7) hΓφK t1+t2
2

(u1 + u2 + 2v) ≤ hΓφKt1
(u1 + v) + hΓφKt2

(u2 + v).
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In fact, let hΓφKt1
(u1+v) = λ1, hΓφKt2

(u2+v) = λ2. The convexity of φ gives that

φ
( 〈u1 + u2 + 2v, z〉+ β(z|v⊥) t1+t2

2 〈u1 + u2 + 2v, v〉
λ1 + λ2

)

= φ
( 〈u1 + v, z〉+ β(z|v⊥)t1 + 〈u2 + v, z〉+ β(z|v⊥)t2

λ1 + λ2

)

= φ
( 〈u1 + v, z〉+ β(z|v⊥)t1〈u1 + v, v〉+ 〈u2 + v, z〉+ β(z|v⊥)t2〈u2 + v, v〉

λ1 + λ2

)

≤ λ1

λ1 + λ2
φ
( 〈u1 + v, z〉+ β(z|v⊥)t1〈u1 + v, v〉

λ1

)

+
λ2

λ1 + λ2
φ
( 〈u2 + v, z〉+ β(z|v⊥)t2〈u2 + v, v〉

λ2

)
.

(2.8)

Integrating both sides and using (2.1), we obtain (2.7).
By Lemma 2.3 and (2.7), we obtain

2g t1+t2
2

(x) = inf
u∈v⊥

{hΓφK t1+t2
2

(2(u+ v))− 〈x, 2u〉}

= inf
u1,u2∈v⊥

{hΓφK t1+t2
2

(u1 + u2 + 2v)− 〈x, u1 + u2〉}

≤ inf
u1,u2∈v⊥

{hΓφKt1
(u1 + v) + hΓφKt2

(u2 + v)− 〈x, u1 + u2〉}

= inf
u1∈v⊥

{hΓφKt1
(u1 + v)− 〈x, u1〉}+ inf

u2∈v⊥
{hΓφKt1

(u2 + v)− 〈x, u2〉}

= gt1(x) + gt2(x).

The convexity of the function −ft of t can be proved in the same way. �

Lemma 2.5. If {Kt : 0 ≤ t ≤ 1} is a parallel chord movement along the unit
direction v, then for every x ∈ (ΓφK0)|v⊥ and t1, t2, θ ∈ [0, 1],

fθt1+(1−θ)t2(x) ≤ θgt1(x) + (1− θ)ft2(x) ≤ gθt1+(1−θ)t2(x).

Proof. Let u1, u2 ∈ v⊥ and

hΓφKt1
(−θu1 + θv) = λ1, hΓφKθt1+(1−θ)t2

(u2 − v) = λ2.

Then we have

φ
( 〈u2 − θu1 − (1− θ)v, z〉+ β(z|v⊥)t2〈u2 − θu1 − (1− θ)v, v〉

λ1 + λ2

)

= φ
( 〈u2 − v, z〉+ 〈−θu1 + θv, z〉 − β(z|v⊥)((1− θ)t2 + θt1 − θt1)

λ1 + λ2

)

≤ λ2

λ1 + λ2
φ
( 〈u2 − v, z〉+ β(z|v⊥)((1− θ)t2 + θt1)〈u2 − v, v〉

λ2

)

+
λ1

λ1 + λ2
φ
( 〈−θu1 + θv, z〉+ β(z|v⊥)t1〈−θu1 + θv, v〉

λ1

)
.

Integrating both sides and using (2.1) give

(2.9) hΓφKt2
(u2 − θu1 − (1− θ)v) ≤ hΓφKt1

(−θu1 + θv) + hΓφKθt1+(1−θ)t2
(u2 − v).
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Thus, from (2.9), we get

(1− θ)ft2(x)

= sup
u∈v⊥

{〈x, (1− θ)u〉 − hΓφKt2
((1− θ)(u− v))}

= sup
−u1,u2∈v⊥

{〈x, u2 − θu1〉 − hΓφKt2
(u2 − θu1 − (1− θ)v)}

≥ sup
−u1,u2∈v⊥

{〈x, u2 − θu1〉 − hΓφKt1
(−θu1 + θv)− hΓφKθt1+(1−θ)t2

(u2 − v)}

= sup
−u1∈v⊥

{〈x,−θu1〉 − hΓφKt1
(−θu1 + θv)}

+ sup
u2∈v⊥

{〈x, u2〉 − hΓφKθt1+(1−θ)t2
(u2 − v)}

= −θgt1(x) + fθt1+(1−θ)t2(x).

This gives the first inequality. The second inequality follows by interchanging t1
with t2 and x with −x. �

In order to prove Theorem 1.1 we shall require the following crucial lemma,
which was proved by Campi and Gronchi [2].

Lemma 2.6. Let {Ht : 0 ≤ t ≤ 1} be a one-parameter family of convex bodies such
that Ht|v⊥ is independent of t. Assume that the bodies Ht are defined by

Ht = {x+ yv : x ∈ Ht|v⊥, y ∈ R, ft(x) ≤ y ≤ gt(x)}, 0 ≤ t ≤ 1,

for suitable functions gt, ft. Then {Ht : 0 ≤ t ≤ 1} is a shadow system along the
direction v if and only if for every x ∈ H0|v⊥,

(1) gt(x) and −ft(x) are convex functions of the parameter t in [0, 1],
(2) fλt1+(1−λ)t2(x) ≤ λgt1(x) + (1 − λ)ft2(x) ≤ gλt1+(1−λ)t2(x), for every

t1, t2, λ ∈ [0, 1].

Proof of Theorem 1.1. Let {Kt : 0 ≤ t ≤ 1} be a parallel chord movement along the
unit direction v. By Lemma 2.1 we obtain that the orthogonal projection of ΓφKt

onto v⊥ is independent of t. Then from Lemma 2.6 it is sufficient to show that the
family ΓφKt satisfies conditions (1) and (2) of Lemma 2.6. Actually, Lemma 2.4
and Lemma 2.5 demonstrate these two conditions for ΓφKt. Therefore, we deduce
that ΓφKt is a shadow system along the direction v. �

Proof of Theorem 1.2. By Fubini’s theorem it is easy to see that

(2.10) |ΓφKt| =
∫

(ΓφK0)|v⊥

(
gt(x)− ft(x)

)
dx.

That the volume of ΓφKt is a convex function of t therefore follows from the con-
vexity of gt(x) and −ft(x) with respect to t.

Suppose that
∣∣ΓφK t1+t2

2

∣∣ = 1

2
|ΓφKt1 |+

1

2
|ΓφKt1 |

for some t1, t2 ∈ [0, 1]. From (2.10) and the continuity of gt, ft with respect to x,
we obtain that

(2.11) g t1+t2
2

(x)− f t1+t2
2

(x) =
1

2

(
gt1(x) + gt2(x)

)
− 1

2

(
ft1(x) + ft2(x)

)
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for almost every x ∈ (ΓφK0)|v⊥. Let x ∈ relint
(
(ΓφK0)|v⊥

)
. Then there exist

u1, u2, u3, u4 ∈ v⊥ such that

1

2

(
gt1(x) + gt2(x)

)
− 1

2

(
ft1(x) + ft2(x)

)

=
1

2

(
hΓφKt1

(u1 + v) + hΓφKt2
(u2 + v) + hΓφKt1

(u3 − v) + hΓφKt2
(u4 − v)

− 〈x, u1〉 − 〈x, u2〉 − 〈x, u3〉 − 〈x, u4〉
)
.

By (2.7) we get

1

2

(
gt1(x) + gt2(x)

)
− 1

2

(
ft1(x) + ft2(x)

)

≥ hΓφK t1+t2
2

(u1 + u2

2
+ v

)
−

〈
x,

u1 + u2

2

〉

+ hΓφK t1+t2
2

(u3 + u4

2
− v

)
−

〈
x,

u3 + u4

2

〉

≥ g t1+t2
2

(x)− f t1+t2
2

(x).(2.12)

The equality of (2.11) forces equality in (2.12) and equality in (2.8). Since φ is
strictly convex, we have

(2.13)
〈u1 + v, z〉+ β(z|v⊥)t1

λ1
=

〈u2 + v, z〉+ β(z|v⊥)t2
λ2

for every z ∈ K0, owing to the continuity of β.
Setting z = z′ + sv, z′ ∈ K0|v⊥, in (2.13) and differentiating with respect to the

parameter s, it turns out that λ1/λ2 = 1, that is,

〈u1 + v, z〉+ β(z|v⊥)t1 = 〈u2 + v, z〉+ β(z|v⊥)t2.
So we conclude that β(x) = 〈x, u〉 for some vector u. This completes the proof. �
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