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ABSTRACT. Using shadow systems, we provide a new proof of the Orlicz
Busemann-Petty centroid inequality, which was first obtained by Lutwak, Yang
and Zhang.

1. INTRODUCTION

Recently, in three remarkable papers [12] 23] 24], an Orlicz Brunn-Minkowski
theory which extends the L, Brunn-Minkowski theory emerged. This extension is
motivated by asymmetric concepts within the L, Brunn-Minkowski theory devel-
oped by Ludwig [14], Haberl and Schuster [9] [11], and Ludwig and Reitzner [I6].
As part of this new Orlicz Brunn-Minkowski theory, Lutwak, Yang and Zhang es-
tablished two beautiful inequalities, the Orlicz Busemann-Petty centroid inequality
[24] and the Orlicz Petty projection inequality [23]. It turns out that the objects
of the Orlicz Brunn-Minkowski theory are much more general than those of the L,
Brunn-Minkowski theory. Fortunately, basic results in the L, Brunn-Minkowski
theory, such as affine isoperimetric inequalities, carry over to the general situation.

In this paper, inspired by the work of Campi and Gronchi [2] [, [4], we will give
an alternative proof of the Orlicz Busemann-Petty centroid inequality.

For more information on the L, and Orlicz Brunn-Minkowski theory see, e.g.,
[M-[5], [7-[24], [29] and the references therein.

Let ¢ : R — [0,00) be an even strictly convex function such that ¢(0) = 0. The
class of such a ¢ will be denoted by C. Let K be a convex body (i.e., a compact,
convex set with non-empty interior) in R™ that contains the origin in its interior.
Denote by | K| the volume of K. The Orlicz centroid body I'4 K of K, as defined in
[24], is the convex body whose support function at € R™ is given by

th(x):mf{mo: %/qu(@f)dzg},
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where (x, z) denotes the standard inner product of x and z, and the integration is
with respect to Lebesgue measure in R™. In [24] it was shown that the function hr, x
is positively homogeneous and subadditive and hence a support function. Actually,
the Orlicz centroid body can be defined on star bodies. It is clear that | K|/|K]|
is not translation invariant. A natural restriction which makes |I', K |/| K| bounded
is to consider only convex bodies containing the origin in its interior.

Orlicz Busemann-Petty centroid inequality [24]. If ¢ € C and K is a convex
body in R™ that contains the origin in its interior, then the volume ratio

Ty K/|K]|
is manimized if and only if K is an ellipsoid centered at the origin.

The critical part of the proof in [24] is that the volume of the Orlicz centroid
body is not increased after a Steiner symmetrization. It is well known that ev-
ery convex body can be transformed into a ball by a sequence of suitable Steiner
symmetrizations. Therefore the ratio |I'yK|/|K| attains its minimum when K is a
ball.

In this paper, we also follow this principle. The technique we will use is that of
shadow systems developed by Rogers [26] and Shephard [28]. In fact, the technique
of shadow systems has been applied by Campi and Gronchi [2] to recover the L,
Busemann-Petty centroid inequality, which was first obtained by Lutwak, Yang and
Zhang [20]. So our work is a natural extension of the work of Campi and Gronchi
[2]. Tt would be impossible to overstate our reliance on their work.

A shadow system along the unit direction v is a family of convex hulls in R™,

K; = conv{z + a(2)tv: z € A C R"},
where A is an arbitrary bounded set of points, « is a real bounded function on A,
and the parameter ¢ runs in an interval of the real axis.

A parallel chord movement along the unit direction v, a particular type of a
shadow system, is a family of convex bodies K; in R™ defined by

(1.1) K ={z+ B Htv:z€ K,0<t <1},
where K is a convex body in R” and f3 is a continuous real function on v+ = {z €
R" : (v,2) = 0}. Notice that |K;| and the orthogonal projection K;|v of K; are
independent of ¢.

For a direction v, define a convex body by

K={z+y:zec Kt yeR, flx)<y<g(x)}

Then the parallel chord movement with speed function S(x) = —(f(x) + g(z)) is
such that Ky = K, K; = K", the reflection of K in the hyperplane is v, and Ky
is the Steiner symmetral of K with respect to vt.

Theorem 1.1. If {K; : 0 < ¢t < 1} is a parallel chord movement along the unit
direction v, then I'y K, is a shadow system along the same direction v.

In order to deduce the Orlicz Busemann-Petty centroid inequality from Theo-
rem [Tl the following facts will be needed.

Fact 1 (Shephard [28]): The volume of a shadow system is a convex function of
the parameter t.

Fact 2 (Lutwak, Yang and Zhang [24]): Let ¢ € C. For a convex body K in R™
and T € GL(n), T4(TK) = T(T,K).
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Fact 3 (Lutwak, Yang and Zhang [24]): The Orlicz centroid operator T'y is
continuous in the Hausdorff metric.

Theorem [[J] and Fact 1 imply that the volume of I'; K, is a convex function of
t. From Fact 2 we get that I'y(KV) = (I'4K)". Thus

1 1
Ty Ky )o| < §|F¢K0| + §|F¢K1| = |TpK;

that is, the volume of the Orlicz centroid body is not increased after a Steiner sym-
metrization. The continuity of the Orlicz centroid operator implies the continuity
of the ratio |I',K|/|K| in the Hausdorff metric. It follows that the ratio attains its
minimum value when K is a ball.

Theorem 1.2. If{K;:0 <t <1} is a parallel chord movement with speed function
B, then the volume of I'yK; is a strictly convex function of t unless 3 is linear.

If the speed function B of the parallel chord movement is linear, then it is easy
to see that K is a linear image of K, for every ¢ in the range of the movement. It
is well known, see [25], that if K is not an origin symmetric ellipsoid, then there
exists a direction v such that for the Steiner symmetral S, K of K,

S, K # AK,
for all A € GL(n). Therefore, |I'xK|/|K| is minimized if and only if K is an
ellipsoid centered at the origin. The Orlicz Busemann-Petty centroid inequality is
established.

2. PROOFS OF THE MAIN RESULTS

Since ¢ is strictly convex on R such that ¢(0) = 0, it follows that the function

A /qu(<x’;>)dz

is strictly decreasing in (0, 00). It is also continuous. Thus, we have for z € R™\ {0},

(2.1) hr,k(z) =X |_11{|/K¢(<:c,;>)dz_1.

Lemma 2.1. If {K; : 0 <t < 1} is a parallel chord movement along the unit
direction v, then the orthogonal projection of I'¢ K; onto vt is independent of t.

Proof. By ([I.1l) we have

hp¢Kt(x)—inf{A>O:@/Ktqb(<x;\z>)dz< 1}
T,z zlvh)tw
—inf{A>O:ﬁ/Ko¢(< + 8] )t>)dz§1}

A
. 1 (z,2) + B(zlvH)t{z,v)
—1nf{)\>0.m/K¢( 3 )dzgl}.
Then fOI‘l‘GUl, hF¢Kt(I):hF¢K(I)- O

The following lemma shows that hr,x, () is a Lipschitz function of ¢, hence is
continuous with respect to t.
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Lemma 2.2. If ¢ € C, then for t1,t2 € [0,1] and x € R™ \ {0},

e, k., () — by, (2)] <t — ol || B(-lv) (2, 0)]]4,

where || - ||¢ is defined for f : K — R which is continuous and not constant to 0 as

||f\|¢_1nf{/\>0 |K|/ d <1}

Proof. Let f,g : K — R be continuous and not constant to 0. Then the strict
convexity of ¢ on R implies that

(22) flo=x & e [ o(E)az =1
and
_ 1 9(2)\ , _

The convexity of the function ¢ shows that
f(z) +9(2) A1 f(2) A2 9(2)
< .
(Sn ) <m0 F ()
Integrating both sides with respect to the Lebesgue measure of K and using (2.2]),

Z3) give

9(2)
dz < 1.
‘K|/ )\1+>\2 )

From the definition of || - ||, we get
1f+glle <A+ A2 = [IFllo + llglls-
Thus
e = lgllol < 1f = gllo-
The facts that ¢ is even and
hr, . (2) = (@, ) + BTtz 0)l
conclude the proof. (|

Since I'y K is a convex body for every 0 <t < 1, it can be represented by
(2.4) TyK; = {z+yv:a € (TyKo)|vt, filz) <y < gi(z)},
where f; and —g; are convex functions defined on (I'yKo)|v=.

Lemma 2.3. If {K; : 0 < t < 1} is a parallel chord movement along the unit
direction v, then for every x € (T4 Ko)|vt,

(25) gu(w) = inf {hrc,(u-+v) = (o,0)}
and
(2.6) fi(@) = sup {(z,u) — hr,k, (v —v)}.

u€vt
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Proof. Let u € vt. For x € (I'yKo)|vt we have
z+ gi(zx)v €TyKy, x+ fi(x)v € TyK,y.
The definition of the support function shows that

<£E + gt(x)vv U+ ’U> < hF¢Kt (u + U)a

(x + fe(z)v,u —v) < hr, g, (u—v).
Thus,
(z,u) + ge(z) < hryr, (u+v), (z,u) — fi(z) < hp(pKt(u — )

for all u € vt.

Since I'y K has support hyperplanes at the two points z + g¢(x)v,z + fi(z)v €
O[T yKy), for z € relint ((Iy Ko)|v), there exist two vectors v’ +v and u” — v with
', v € vl such that

(z + ge(x)v,u' +v) = hr K, (0 +v),
(x + fulz)v,u” —v) = hp, K, (W' —v).

If = ¢ relint (('yKo)|v"), it is possible that g;(x) = 0, f;(z) = 0. Then we cannot
find «’, u” € v' such that

(z+ gi(@)v,u' +v) = (z,0') = hr,k, (u' +v),

(x + fu()v,u” —v) = (z,0") = hr k(" —v).

The continuity of support functions ensures that we can take the infimum and
supremum for all u € v-. Therefore, we get

gi(z) = infL{hquKt (u+v) = (z,u)}

ugv
and
fi(x) = sup {(z,u) - hr K, (v —v)}
u€vt
for every z € (T'yKo)|vt. O

Since hr,k,(r) is a Lipschitz function of ¢, with Lipschitz constant
1B(¢-|v){(z,v)| 4, from Lemma we deduce that g¢(x) and fi(x) are Lipschitz
functions of ¢ too. Hence g¢(x) and fi(x) are continuous with respect to t. More-
over, the convexity of g¢(x) and — f;(x) with respect to ¢ can be stated as follows.

Lemma 2.4. If {K; : 0 < t < 1} is a parallel chord movement along the unit
direction v, then for every x € (TyKo)lvt, gi(z) and —fi(x) are convex functions
of the parameter t in [0, 1].

Proof. We first show that if w1, us € v+, then

(2.7) hr K, 4, (W1 +u2 +20) < hryk, (U1 +v) + b,k (u2 +v).
2
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In fact, let Ar,k,, (u1 +v) = Ay, hr,k,, (uz +v) = A2. The convexity of ¢ gives that

¢( (u +uz + 2v, 2) + B(zlvt) BE2 (ug + ug + 2v, v>)

A1+ A2
((ul +v,2) + B(zlvD)ty + (uz + v, 2) + B(z\vl)m)

A1+ Ag
(<u1 +v,2) + B(zlvH )t (ug + v, v) + (ug + v, 2) + B(z|vh)ta{us + v,v))
A1+ A2
A1 ¢(<u1 +v,2) + B(zloH)t (ug + v,v))

T A+ A A1
(2.8)

I
-

¢

N

N Ao ((uz +v,2) + B(zlvh)ta(ug + v,v})
AL+ A2 A2 '

Integrating both sides and using (21]), we obtain (27]).
By Lemma 23 and [27), we obtain

29%(%) = uiersz{huK% (2(u+v)) — (2, 2u)}
} “hggw{hul(%z (u1 +ug +2v) — (z,u1 + uz)}

< inf A{hr,k, (u1 +0)+ hr,k,, (U2 +v) = (T,u1 +u2)}

w1, uz €Vt

= infL{hpq)Kt1 (ur +v) — {z,u1)} + infL{hpq)Kt1 (ug +v) — (z,u2)}
u1 €V U2€v

=9t (:E) + Gto (JJ)

The convexity of the function — f; of ¢t can be proved in the same way. O

Lemma 2.5. If {K; : 0 < t < 1} is a parallel chord movement along the unit
direction v, then for every x € (LyKo)lvt and t1,t2,0 € [0,1],

Jor+-0y, () <01, (2) + (1= 0) f1,(2) < gor, +-(1-0)1, (2)-
Proof. Let uy,us € v and
hr, i, (—0u1 +0v) = Aty Ar, i, gy, (U2 — V) = Ao
Then we have

¢(<u2 —Ouy — (1 —0)v, 2) + B(z|v)ta(ug — Ouy — (1 — 9)1},1}))

A1+ A
_ ¢( (ug — v, 2) + (—=0uy + v, 2) — B(zlvH)((1 — )ty + Ot; — 0t1))
A1+ A2
SR ((ug — v, 2) + B(z|vH) (1 — )ty + 0t1) (us — v, v))
T AL+ A A2
A (=Ouy + 0v, 2) + B(z|lvH)t (—Ouy + Ov, v)
+ A+ )\2¢( A1 )

Integrating both sides and using ([Z1)) give

(2.9) hr, Kk, (u2 —Our — (1 = 0)v) < hr,k, (—0ui +60v) + hr i, gy, (U2 — V).
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Thus, from Z3]), we get

(1= 0)fr, (@)
sup {2, (1= 0)u) = hryxe,, (1= 0)(u —v))}

= sup {(z,u2 — Ou1) — hr,k,, (u2 — Ous — (1 — 0)v)}

—up,up€vt

> sup {{z,uz2 = Our) — hryk,, (—0ur + 0v) — hr i, 4 ooy, (U2 — 0)}
—u1,uz€vt

= sup {(z,—0u1) — hr, K, (—0u1i +60v)}

—upEvt

+ sup {(m,u2> - hF¢K9t1+(1—9)t2 (uz — v)}
ug Evt

= _Hgt1 (‘T") + f9t1+(170)t2 (‘T")

This gives the first inequality. The second inequality follows by interchanging t;
with ¢35 and x with —z. O

In order to prove Theorem [[.I] we shall require the following crucial lemma,
which was proved by Campi and Gronchi [2].

Lemma 2.6. Let {H; : 0 <t < 1} be a one-parameter family of convex bodies such
that Hy|v* is independent of t. Assume that the bodies Hy are defined by

Hy={zx+yv:zc HptyeR, fi(z) <y<gx)}, 0<t<1,
for suitable functions g, fr. Then {Hy : 0 <t < 1} is a shadow system along the
direction v if and only if for every x € Hy|v*,

(1) gi(z) and —fi(x) are convex functions of the parameter t in [0,1],
(2) frr+a—ne(@) < Agh () + (1 = N fe,(®) < gaey+1-nt (), for every
ty,t2, A €[0,1].

Proof of Theorem [Tl Let {K; : 0 <t < 1} be a parallel chord movement along the
unit direction v. By Lemma 2] we obtain that the orthogonal projection of 'K
onto v' is independent of t. Then from Lemma 2.6 it is sufficient to show that the
family T'y K satisfies conditions (1) and (2) of Lemma 261 Actually, Lemma [27]
and Lemma demonstrate these two conditions for I'y K;. Therefore, we deduce
that 'y K, is a shadow system along the direction v. O

Proof of Theorem [L2. By Fubini’s theorem it is easy to see that
(2.10) T K| :/ (9¢(z) = fi(z))da.
(TyKo)|v+

That the volume of I'y K} is a convex function of ¢ therefore follows from the con-
vexity of g:(x) and — f;(z) with respect to t.
Suppose that

1 1
ToK e | = 506Ky | + 5T K|

for some t1,to € [0,1]. From (2J0) and the continuity of g;, f; with respect to z,
we obtain that

(211) g (@)~ Fusa (@) = 3 (90, () + 90, ()) — 5 (fun(2) + iy ()

| =
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for almost every # € (I'yKo)[v. Let & € relint((T'¢Ko)[v'). Then there exist
U1, Uz, U3, Us € v such that

2 (900 + 90, (@) = 3 (fu (@) + £ (@)

2
1
— §(hF¢Kt1 (u1 +U) —+ thbKtz(u? —|—U) + hF¢Kt1 (U3 — ’U) =+ hF¢Kt2(U4 — U)
—(z,u1) — (z,u2) — (x,uz) — (JJ,U4>).
By (7)) we get

1(9151 (JJ) + gty (‘T)) - %(ftl (JJ) + ftQ (LL'))

2
> hF¢Kt » (M +U> . <x, U1+UQ>
1}tp 2 2
U3 + Uy uz + ug
+hF¢K$< 2 —v)—<x, 2 >
(2.12) 2 g () = frze (7).
2 2

The equality of ([ZIT)) forces equality in ([ZI2) and equality in (2.8]). Since ¢ is
strictly convex, we have

(2 13) <u1 —|—’U,Z> —|—ﬂ(z|vj-)t1 _ <’LL2 +U,Z> +B(Z|UJ_)t2
' A1 A2
for every z € Ky, owing to the continuity of 3.
Setting z = 2/ + sv, 2’ € Kolvt, in (ZI3) and differentiating with respect to the
parameter s, it turns out that A; /Ay = 1, that is,

(uy 4 v, 2) + B(zloD)ty = (ug + v, 2) + B(z[vh)ta.

So we conclude that 5(z) = (x, u) for some vector w. This completes the proof. O
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