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GAUSS SUMS OVER FINITE FIELDS AND ROOTS OF UNITY

ROBERT J. LEMKE OLIVER

(Communicated by Matthew A. Papanikolas)

Abstract. Let χ be a non-trivial character of F×
q , and let g(χ) be its asso-

ciated Gauss sum. It is well known that g(χ) = ε(χ)
√
q, where |ε(χ)| = 1.

Using the p-adic gamma function, we give a new proof of a result of Evans
which gives necessary and sufficient conditions for ε(χ) to be a root of unity.

1. Introduction and statement of results

Let p > 2 be a prime, and let q = pf for some f ≥ 1. Let ψ : Fp → C
× be a

non-trivial additive character, and let χ : F×
q → C

× be a non-trivial multiplicative
character. The Gauss sum g(χ) = g(χ, ψ) associated to χ is given by

(1.1) g(χ) :=
∑

x∈F
×
q

χ(x)ψ(tr(x)),

where tr(x) := x + xp + . . . + xpf−1

. The determination of g(χ) is of central
importance in analytic number theory, as it reflects both the multiplicative and
additive structure of Fq. Classical arguments show that |g(χ)| = √

q. On the other
hand, the quantity ε(χ) := g(χ)/

√
q has only been determined for χ of certain

orders (see [1] for a comprehensive treatment of recent results). Motivated by
private communications with Zagier, we determine when ε(χ) is a root of unity.

Theorem 1.1. Let χ : F×
q → C

× be a multiplicative character of order m and let
r be the order of p modulo m. The quantity ε(χ) is a root of unity if and only if
for every integer t coprime to m we have that

(1.2)
r−1∑

i=0

tpi =
rm

2
,

where tpi denotes the canonical representative of tpi modulo m in [0, . . . ,m− 1].

Remark. After this work was done, the author learned that Theorem 1.1 was first
obtained by Evans [2]. Evans’s proof used Stickelberger’s relation on the decom-
position of g(χ) into prime ideals (see [4]). An equivalent condition, essentially
(2.5) below, was later obtained by Yang and Zheng [5], again using Stickelberger’s
relation. We give a different proof of Theorem 1.1, one based on a deep theorem of
Gross and Koblitz [3] relating Gauss sums to the p-adic gamma function.
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2. Proof of Theorem 1.1

In Section 2.1 we begin by defining the p-adic gamma function Γp(z). We then
state the Gross-Koblitz formula, which relates Gauss sums over a finite field to a
product of values of Γp(z). In Section 2.2 we apply the Gross-Koblitz formula to
prove Theorem 1.1.

2.1. The Gross-Koblitz formula. Let p > 2 be a prime and q = pf for some
f ≥ 1. The p-adic gamma function Γp(z) : Zp → Z

×
p is defined by

(2.1) Γp(z) := lim
m→z
m∈Z

(−1)m
∏

j<m
(j,p)=1

j.

Let ωf : F×
q → C

× be the Teichmüller character of Fq, ψ : Fp → C
× be a non-

trivial additive character, and ζp = ψ(1). Let π ∈ Qp(ζp) be the unique element
satisfying both πp−1 = −p and ζp ≡ 1 + π (mod π2). For integers 0 ≤ a < q − 1,
the Gauss sum g(ω−a

f ) is defined by

(2.2) g(ω−a
f ) := −

∑

x∈F
×
q

ω−a
f (x)ψ(tr(x)),

where tr(x) := x+ xp + . . .+ xpf−1

. The Gross-Koblitz formula [3] states that

(2.3) g(ω−a
f ) = πS(a)

f−1∏

j=0

Γp

({
apj

q − 1

})
,

where S(a) denotes the sum of digits in the base p expansion of a and, for any
x ∈ R, {x} := x− �x	 denotes the fractional part of x.

2.2. Proof of Theorem 1.1. Let χ be a multiplicative character of F×
q of order m.

There is a unique a such that 0 ≤ a < q−1 and χ = ω−a
f . Since g(χ) ∈ Q(ζp, ζq−1),

ε(χ) is a root of unity if and only if g(χ)2p(q−1) = qp(q−1). The Gross-Koblitz
formula (2.3) yields that

(2.4) g(χ)2p(q−1) = p2p(q−1)S(a)/(p−1)

⎛

⎝
f−1∏

j=0

Γp

({
apj

q − 1

})⎞

⎠
2p(q−1)

,

and by comparing the p-adic valuation of both sides, we see that a necessary con-

dition for ε(χ) to be a root of unity is S(a) = f(p−1)
2 . In fact, if χ′ is another

character of F×
q of order m, then there is an element of Gal(Q(ζp, ζm)) taking g(χ)

to g(χ′). Hence, ε(χ) is a root of unity if and only if ε(χ′) is as well. Thus, if ε(χ)
is a root of unity, for all t coprime to m we have that

(2.5) S(ta
(q−1)

) =
f(p− 1)

2
,

where ta
(q−1)

is the canonical reduction of ta modulo q − 1. This condition will
prove to be sufficient to guarantee that ε(χ) is a root of unity. To see this, we begin
by reinterpreting the sum of digits function S(a).
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Lemma 2.1. For any 0 ≤ b < q − 1, we have that

f−1∑

j=0

{
bpj

q − 1

}
=

S(b)

p− 1
.

Proof. Write b =
∑f−1

i=0 bip
i. For any 0 ≤ j ≤ f − 1, we observe that bpj ≡ b(j)

(mod q− 1), where 0 ≤ b(j) < q− 1 is the j-th iterate of the cyclic permutation on
the base p digits of b. Hence, we have that

f−1∑

j=0

{
bpj

q − 1

}
=

1

q − 1

f−1∑

j=0

b(j)

=
S(b)

p− 1
. �

Write a = t0 · (a, q − 1) for some t0 coprime to m. Since m = q−1
(a,q−1) , we have

that
{

apj

q − 1

}
=

{
t0p

j

m

}
=

t0pj

m
,

whence

(2.6)

f−1∑

j=0

{
apj

q − 1

}
=

f

r

r−1∑

j=0

t0pj

m
,

where tpj is the reduction of tpj modulo m and r is the multiplicative order of p
modulo m. Hence, by Lemma 2.1, (2.5) holds for t coprime to m if and only if we
have that

(2.7)

r−1∑

j=0

tpj =
rm

2
.

This establishes the necessity of (1.2) in the statement of Theorem 1.1. Sufficiency
follows immediately from a result of Gross and Koblitz [3]: If {a1, . . . , ak, n1, . . . , nk}
is a set of integers such that, for all u coprime to m,

∑k
i=1 ni · uai is an integer

independent of u, then the product
∏k

i=1

∏f−1
j=0 Γp

(
aipj

m

)ni

is a root of unity. We

apply this result with k = r, ai = pi, and ni = 2, showing that if (1.2) is satisfied,
then ε(χ) is a root of unity.
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