PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 139, Number 4, April 2011, Pages 1409–1410 S 0002-9939(2010)10668-8 Article electronically published on August 30, 2010

A NON-RESIDUALLY SOLVABLE HYPERLINEAR ONE-RELATOR GROUP

JON P. BANNON

(Communicated by Marius Junge)

ABSTRACT. In this short paper, we prove that the group $\langle a,b|a=[a,a^b]\rangle$ is hyperlinear. Unlike the nonresidually finite Baumslag-Solitar groups, this group is not residually solvable.

1. Introduction

Let Γ denote the one-relator group $\langle a,b|a^{-1}[a,a^b]\rangle$, where $a^b=bab^{-1}$ and $[a, a^b] = a^{-1}(a^b)^{-1}aa^b$. This group was introduced by G. Baumslag in [Baum69] as an example of a noncyclic one-relator group with the property that all of its finite index quotients are cyclic. It follows that the group Γ is not residually finite. Also, Γ is not residually solvable, since a lies in every one of the derived subgroups of Γ . A countable discrete group G is hyperlinear if it can be embedded as a subgroup of the unitary group $U(\mathcal{R}^{\omega})$ of an ultrapower \mathcal{R}^{ω} of the hyperfinite type II_1 factor \mathcal{R} (cf. [Pest08]). Equivalently, G is hyperlinear if the group von Neumann algebra L(G) is embeddable into \mathcal{R}^{ω} (cf. [Pest08]). Proposition 4.14 of [Ueda09] establishes that every HNN extension of an \mathcal{R}^{ω} -embeddable type II_1 factor over a hyperfinite von Neumann subalgebra is also \mathcal{R}^{ω} -embeddable. We use this fact along with a now standard trick of McCool and Schupp for one-relator groups to prove that the group Γ above is hyperlinear. The main interest in this example is that it is an example of a nonresidually solvable hyperlinear one-relator group, and thus our result sheds a little light on the question of Nate Brown asking whether every onerelator group is hyperlinear. In [Rad00], Radulescu proved that the nonresidually finite Baumslag-Solitar group $\langle a, b | ab^3a^{-1}b^{-2} \rangle$ is hyperlinear. Radulescu's result is shown in [Pest08] to follow more simply from the fact that these Baumslag-Solitar groups are residually solvable, and hence sofic.

2. Main result

Theorem 2.1. The group $\Gamma = \langle a, b | a^{-1}[a, a^b] \rangle$ is hyperlinear.

Proof. We apply a rewriting process due to McCool and Schupp (cf. [McCSch73]). Let $a_0 = a$ and $a_{-1} = bab^{-1}$. Note that the word

$$a^{-1}[a, a^b] = a^{-2}ba^{-1}b^{-1}abab^{-1}$$

Received by the editors February 17, 2010 and, in revised form, April 26, 2010. 2010 Mathematics Subject Classification. Primary 46L10; Secondary 20F65. Key words and phrases. Sofic group, hyperlinear group, one-relator group.

when rewritten in terms of a_0 and a_{-1} becomes

$$a_0^{-2}(a_{-1})^{-1}a_0(a_{-1}).$$

The group $H = \langle a_0, a_{-1} | a_0^{-2} (a_{-1})^{-1} a_0 (a_{-1}) \rangle$ is amenable, essentially by the Tits alternative. Or, we may appeal to Theorem 1.2 of [CeGrig97] and note that $a_0^{-2}(a_{-1})^{-1}a_0(a_{-1})$ has exponent sum zero on a_{-1} and can be obtained from $(a_{-1})a_0(a_{-1})^{-1}a_0^{-2}$ by inverting a_{-1} and cyclically shifting, and hence H is amenable. We then note that the group Γ is isomorphic to the HNN extension

$$H*_{\varphi} = \langle t, H | t^{-1}a_{-1}t = a_0 \rangle.$$

Now, consider the group von Neumann algebra $L(H*_{\varphi})$. By Corollary 3.5 of [Ueda05], this is isomorphic to a reduced HNN extension of the hyperfinite II_1 factor \mathcal{R} over $L(\mathbb{Z})$. Therefore, by Proposition 4.14 of [Ueda09], $L(H*_{\varphi})$ is embeddable into an \mathcal{R}^{ω} , and therefore Γ is hyperlinear.

Remark 2.2. We wish to thank the referee for pointing out that recently it has been shown that any HNN extension of a sofic group over an amenable subgroup is sofic. Precisely, this is Corollary 3.4 of [DykCol10]. We may, in the above proof, replace Ueda's result by this one and obtain that Γ is, in fact, a sofic group.

References

[Baum69] G. Baumslag, A non-cyclic one-relator group all of whose finite quotients are cyclic, J. Austral. Math. Soc. 10 (1969), 497-498. MR0254127 (40:7337)

[CeGrig97] T.G. Ceccherini-Silberstein and R. I. Grigorchuk, Amenability and growth in onerelator groups, L'Enseignement Mathématique (2) 43 (1997), 337-354. MR1489891 (99b:20057)

[DykCol10] K. Dykema and B. Collins, Free products of sofic groups with amalgamation over amenable groups, arXiv:math/1003.1675v1, 2010.

[McCSch73] J. McCool and P. Schupp, On one relator groups and HNN extensions, J. of the Austral. Math. Soc. 16 (1973), 249-256. MR0338186 (49:2952)

[Pest08] V. Pestov, Hyperlinear and sofic groups: a brief guide, Bull. Symbolic Logic 14, no. 4 (2008), 449-480. MR2460675 (2009k:20103)

[Rad00] F. Rădulescu, The von Neumann algebra of the non-residually finite Baumslag group $\langle a,b|ab^3a^{-1}=b^2\rangle$ embeds into R^ω . Theta Ser. Adv. Math., vol. 9, Theta, Bucharest, 2008. MR2436761 (2009k:46110)

[Ueda05] Y. Ueda, HNN extensions of von Neumann algebras, Journal of Functional Analysis 225, no. 2 (2005), 383–426. MR2152505 (2006k:46100)

[Ueda09] Y. Ueda, Remarks on HNN extensions in operator algebras, Illinois J. Math. 52, no. 3 (2008), 705-725. MR2546003 (2010h:46093)

Department of Mathematics, Siena College, Loudonville, New York 12211 $E\text{-}mail\ address:}$ jbannon@siena.edu