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ABOUT OPERATOR COMPRESSIONS

ELIZABETH S. MECKES AND MARK W. MECKES

(Communicated by Marius Junge)

Abstract. Let T be a self-adjoint operator on a finite dimensional Hilbert
space. It is shown that the distribution of the eigenvalues of a compression of T
to a subspace of a given dimension is almost the same for almost all subspaces.
This is a coordinate-free analogue of a recent result of Chatterjee and Ledoux
on principal submatrices. The proof is based on measure concentration and

entropy techniques, and the result improves on some aspects of the result of
Chatterjee and Ledoux.

1. Introduction

Let T be an operator on a (real or complex) n-dimensional Hilbert space H,
and let E ⊆ H be a subspace. The compression of T to E is the operator TE =
πET |E = πETπ

∗
E on E, where πE : H → E is the orthogonal projection. The

spectral distribution of a self-adjoint operator T is the probability measure

1

n

n∑

i=1

δλi(T ),

on R, where λ1(T ) ≥ · · · ≥ λn(T ) are the eigenvalues of T , counted with multiplic-
ity.

The following result shows that for 1 ≤ k ≤ n and a self-adjoint operator T
on an n-dimensional Hilbert space H, the empirical spectral distribution of the
compression TE is almost the same for almost every k-dimensional subspace E ⊆ H.
The notations σk and ρ are explained after the statement of the theorem; d1 denotes
the Kantorovich-Rubinstein metric on probability measures, also defined below.

Theorem 1. Let H be an n-dimensional Hilbert space, T a self-adjoint operator
on H, and 1 ≤ k ≤ n. Let E be a k-dimensional subspace of H chosen at random
with respect to the rotationally invariant probability measure on the Grassmann
manifold. Let μE be the empirical spectral distribution of the compression of T to
E, and let μ = EμE. Then

(1) Ed1(μE , μ) ≤ c1
σk(T )

4/7ρ(T )3/7

(kn)2/7
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and

(2) P

[
d1(μE , μ) ≥ c1

σk(T )
4/7ρ(T )3/7

(kn)2/7
+ t

]
≤ c2 exp

[
−c3

kn

σk(T )2
t2
]

for every t > 0, where c1, c2, c3 > 0 are absolute (computable) constants.

Here ρ(T ) = 1
2 (λ1 − λn) denotes one half the spectral diameter of T (which is

different in general from the classical spectral radius); it is easy to check that ρ(T )
is the distance of T from the space of real scalar operators with respect to the
operator norm. For 1 ≤ k ≤ n,

σk(T ) = inf
λ∈R

√√√√
k∑

i=1

si(T − λI)2,

where s1 ≥ · · · ≥ sn ≥ 0 denote singular values. That is, σk(T ) is the distance
of T from the space of real scalar operators with respect to the norm ‖T‖(k),2 =√∑k

i=1 si(T )
2.

The space of probability measures (with finite first moment) on R is equipped
with the Kantorovich-Rubinstein or L1-Wasserstein distance d1, which may be
equivalently defined in the following three ways:
(3)

d1(μ, ν) = inf
π

∫

R×R

|x− y| dπ(x, y) = sup
f

(∫
f dμ−

∫
f dν

)
= ‖Fμ − Fν‖L1(R) .

Here π varies over all probability measures on R × R with marginals μ and ν, f
varies over all Lipschitz continuous functions R → R with Lipschitz constant at
most 1, and Fμ, Fν are the cumulative distribution functions of μ, ν. All three
characterizations will be used in this note; for the equalities see [10, Chapter 1].

Theorem 1 is a coordinate-free analogue of a recent result of Chatterjee and
Ledoux [3], which considered the empirical spectral measure of a random k × k
principal submatrix of a fixed n× n Hermitian matrix. The approach taken in [3]
is rather different from the one taken here; the result of [3] is also given in terms of
the Kolmogorov distance between measures rather than Wasserstein distance. See
section 3 below for a more detailed comparison of the results.

2. Proof of Theorem 1

Throughout this section let H and T be fixed, and let μE and μ be as defined
in the statement of the theorem. For brevity we write σk = σk(T ) and ρ = ρ(T ).
The notation � B means ≤ cB, where c > 0 is some absolute constant.

Recall that the Grassmann manifold Gk(H) of k-dimensional subspaces of H is
equipped with the metric

d(E,F ) = inf

√√√√
k∑

i=1

‖ei − fi‖2,

where the infimum is over all orthonormal bases {e1, . . . , ek} and {f1, . . . , fk} of E
and F respectively.

Lemma 2. For any E,F ∈ Gk(H), d1(μE , μF ) ≤ 2σk√
k
d(E,F ).
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Proof. Define a coupling π of μE and μF by π = 1
k

∑k
i=1 δ(λi(TE),λi(TF )). Then

d1(μE , μF ) ≤
1

k

k∑

i=1

|λi(TE)− λi(TF )| ≤

√√√√1

k

k∑

i=1

|λi(TE)− λi(TF )|2.

Now if {e1, . . . , ek} and {f1, . . . , fk} are orthonormal bases of E and F , then

the matrices of TE and TF with respect to these bases are
[
〈T (ej), ei〉

]k
i,j=1

and
[
〈T (fj), fi〉

]k
i,j=1

respectively. As a consequence of Lidskii’s theorem (see [1, §III.4]),
for any k × k Hermitian matrices A and B,

√√√√
k∑

i=1

|λi(A)− λi(B)|2 ≤ ‖A−B‖HS =

√√√√
k∑

i,j=1

|aij − bij |2.

Thus by the self-adjointness of T and the Cauchy-Schwarz inequality,

d1(μE , μF ) ≤

√√√√1

k

k∑

i,j=1

|〈T (ej), ei〉 − 〈T (fj), fi〉|2

=

√√√√1

k

k∑

i,j=1

|〈T (ej), ei − fi〉+ 〈ej − fj , T (fi)〉|2

≤

√√√√1

k

k∑

i,j=1

[‖T (ej)‖ ‖ei − fi‖+ ‖T (fi)‖ ‖ej − fj‖]2

≤ d(E,F )√
k

⎛

⎝

√√√√
k∑

j=1

‖T (ej)‖2 +

√√√√
k∑

i=1

‖T (fi)‖2
⎞

⎠ ≤ 2d(E,F )√
k

‖T‖(k),2 .

Observing that d1(μE , μF ) is invariant under the addition of a real scalar matrix
to T , the lemma is proved. �

The same proof as above can be carried out (and is slightly simpler) with the
Kantorovich-Rubinstein distance replaced by the L2-Wasserstein distance, although
this observation will not be used here.

The following concentration inequality goes back to Gromov and Milman [5]; see
also section 2.1 of [6], where it is pointed out explicitly that the same result applies
in the complex case.

Theorem 3. Let f : Gk(H) → R be 1-Lipschitz with respect to the metric d on
Gk(H), and let E ∈ Gk(H) be distributed according to the rotationally invariant
probability measure on Gk(H). Then

P
[
|f(E)− Ef(E)| ≥ t

]
� exp

[
− cnt2

]

for t > 0, where c > 0 is an absolute constant.

Observe that (1), Lemma 2, and Theorem 3 together imply (2), so it suffices now
to prove (1).

Let E ∈ Gk(H) be distributed according to the rotationally invariant probability
measure on Gk(H). For a given function f : R → R, define the random variable
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Xf =
∫
fdμE −

∫
fdμ. By Lemma 2 and Theorem 3, for functions f, g,

(4) P
[
|Xf −Xg| ≥ t

]
= P

[
|Xf−g| ≥ t] � exp

[
−c

kn

σ2
k |f − g|2L

]

for t ≥ 0, where |f |L denotes the Lipschitz constant of f .
The inequality (4) shows that the random process Xf , indexed by some family F

of Lipschitz continuous test functions (to be determined), satisfies a sub-Gaussian
increment condition with respect to the norm ‖·‖′ = σk√

kn
‖·‖C1 on F (here, ‖f‖C1 :=

max{‖f‖∞, ‖f ′‖∞}, so that for f ∈ C1, |f |L ≤ ‖f‖C1). This raises the possibility
to estimate its expected supremum by Dudley’s entropy bound [4] (see also [8]):

(5) E sup
f∈F

Xf �
∫ ∞

0

√
logN(F, ‖·‖′ , ε) dε,

where N(F, ‖·‖′ , ε) is the minimum number of sets of diameter ε with respect to
‖·‖′ needed to cover F. Since μE and μ are supported on [λn, λ1],

d1(μE , μ) = sup
{
Xf : |f |L ≤ 1

}
= sup

{
Xf : |f |L ≤ 1, ‖f‖∞ ≤ 2ρ

}
.

Thus to prove (1), it suffices to estimate E supf∈F Xf for F = {f : ‖f‖C1 ≤ 1+2ρ}.
However, since C1 is an infinite dimensional function space, for this choice of F the
covering numbers N(F, ‖·‖′ , ε) in (5) will always be infinite for small ε.

Instead, define F = {f : ‖f‖C2 ≤ 1}, where ‖f‖C2 := max{‖f‖∞, ‖f ′‖∞,
‖f ′′‖∞}. The covering numbers N(F, ‖·‖C1 , ε) can be estimated using the meth-
ods of [9, §2.7]; see [7] for explicit estimates which, combined with (5) and a linear
change of variables, yield

(6) E sup
{
Xf : ‖f‖C2 ≤ 1

}
� σk√

kn

∫ 1

0

√
1 + log

1

ε
+

1

ε
(ρ+ 1) dε � σk

√
ρ+ 1√
kn

.

The bound (1) is now derived from (6) via a smoothing and scaling argument.
Fix f : R → R with |f |L ≤ 1 and ‖f‖∞ ≤ 2ρ. Let ϕ : R → R be a smooth
probability density with finite first absolute moment and ϕ′ ∈ L1(R). For t > 0
define ϕt(x) =

1
tϕ(

x
t ), and let gt = f ∗ ϕt. Then

(7)

‖gt‖∞ ≤ ‖f‖∞ ‖ϕt‖1 ≤ 2ρ, ‖g′t‖∞ ≤ |f |L ‖ϕt‖1 ≤ 1, ‖g′′t ‖∞ ≤ |f |L ‖ϕ′
t‖1 � 1

t
.

Now for any probability measure ν on R,
∣∣∣∣
∫

f dν −
∫

gt dν

∣∣∣∣ =
∣∣∣∣
∫ ∫

[f(x)− f(x− y)]ϕ(y) dy dν(x)

∣∣∣∣ � t.

Thus

|Xf | ≤
∣∣∣∣
∫

f dμE −
∫

gt dμE

∣∣∣∣+
∣∣∣∣
∫

gt dμE −
∫

gt dμ

∣∣∣∣+
∣∣∣∣
∫

gt dμ−
∫

f dμ

∣∣∣∣

� t+ ‖gt‖C2 sup
{
Xh : ‖h‖C2 ≤ 1

}
,

and so by (6) and (7),

Ed1(μE , μ) � t+

(
1 + 2ρ+

1

t

)
σk

√
ρ+ 1√
kn

.
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Picking t of the order
√
σk(ρ+1)1/4

(kn)1/4
yields

(8) Ed1(μE, μ) �
√
σk(ρ+ 1)1/4

(kn)1/4
+

σk(ρ+ 1)3/2√
kn

.

Now apply (8) with the operator T replaced by sT for s > 0. It is easy to check
that the Kantorovich-Rubinstein distance d1(μE , μ) is homogeneous with respect
to this rescaling, as are σk and ρ. Thus one obtains

Ed1(μE , μ) � 1

s

(√
sσk(sρ+ 1)1/4

(kn)1/4
+

sσk(sρ+ 1)3/2√
kn

)
.

Picking s of the order (kn)1/7

σ
2/7
k ρ5/7

now yields (1). �

3. Discussion

In [3], Chatterjee and Ledoux proved a version of Theorem 1 for principal sub-
matrices. Namely, let H = C

n, and suppose that E is now uniformly distributed
among k-dimensional coordinate subspaces of Cn. Then [3] shows that

(9) P
[
d∞(μE , μ) ≥ k−1/2 + t

]
≤ 12

√
ke−t

√
k/8

for t > 0, and consequently,

(10) Ed∞(μE, μ) ≤
13 +

√
8 log k√
k

.

Here d∞(μ, ν) = ‖Fμ − Fν‖∞ is the Kolmogorov distance between probability mea-
sures μ and ν on R.

It is likely that the methods of this paper could be used to prove a result in the
setting of [3], by replacing Theorem 3, which follows from concentration inequali-
ties on the unitary or special orthogonal group, with an appropriate concentration
inequality on the symmetric group Sn. Furthermore, it may be possible to prove
a result in the setting of this paper using methods related to those of [3], such as
adapting the approach of Chatterjee in [2]. Below some quantitative comparison
will be offered between Theorem 1 and the result of [3], ignoring the fact that the
random subspace E has a different distribution in each setting. In particular, the
distribution of E is probably responsible for the difference between the subexpo-
nential tail decay in (9) and the sub-Gaussian tail decay in (2).

Before discussing more specific quantitative comparisons, we note that the clear-
est difference between the two results is that ours is coordinate-free. While there are
settings in which coordinates have meaning and thus coordinate-oriented results are
natural, there are many settings in which there would be no clearly preferred basis
in which to view an operator. Take, for example, the Laplacian Δ on the sphere
S
n−1. It has eigenvalues (up to sign convention) 0 > −λ1 > −λ2 > · · · → −∞, and

the corresponding eigenspaces are multidimensional. If H is the span of the first m
eigenspaces, with T = Δ|H, then there is no canonical choice of basis within each
eigenspace, and so it would seem more natural to consider compressions of T to all
subspaces of a given dimension, rather than only to the coordinate subspaces for
some choice of basis.

Comparisons of the results are made somewhat difficult as the Kantorovich-
Rubinstein distance d1 and the Kolmogorov distance d∞ are not comparable in
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general. However, since the measures here are all supported in the interval [λn(T ),
λ1(T )], from the third representation of d1 in (3) one obtains the estimate

(11) d1(μE , μ) ≤ 2ρ(T )d∞(μE , μ)

in the present context. This estimate is related to a qualitative difference between
d1 and d∞: whereas d1 is homogeneous with respect to a rescaling of the supports
of measures (a fact which was exploited in the proof of Theorem 1), d∞ is invariant
under rescaling. Which behavior is more convenient may vary by the context.

Inequality (11) makes some quantitative comparisons between the results of [3]
and Theorem 1 possible. Observe that (9) and (10) only yield nontrivial information
if k 
 1 (which of course requires n 
 1), whereas under appropriate scaling,
Theorem 1 is nontrivial for n 
 1 even if k is small. In particular, (9) and (11) imply
that the fluctuations of d1(μE , μ) above its mean are of order (ignoring logarithmic
factors) at most k−1/2ρ(T ), whereas (2) together with the general estimate σk(T ) ≤√
kρ(T ) yields fluctuations of order at most (kn)−1/2σk(T ) ≤ n−1/2ρ(T ).
The issue of the expected distance is more complicated. The general estimate

ρ(T ) ≤ σk(T ) and inequalities (10) and (11) imply that

(12) Ed1(μE , μ) ≤ c
ρ(T ) log k√

k
≤ c

σk(T )
4/7ρ(T )3/7 log k√

k
,

which is slightly weaker than (1) for k large (in which case the lossy estimates
used to arrive at (12) mean that the comparison should probably not be taken too
seriously) and significantly weaker for k small. Since the different distributions of
E are being ignored here there is little point in making the comparison very precise.

Finally, the comparison of fluctuations highlights that the methods of this paper
are more sensitive to the proximity of T to the space of scalar operators. If T is a
(real) scalar operator then μE is a constant point mass, so it is natural to expect
that if T is nearly scalar in some sense then μE will be more tightly concentrated
than in general. The results of [3] do not directly reflect this at all, although
the estimate (11) allows one to insert this effect by hand when changing metrics.
However, σk(T ) provides a sharper measure than ρ(T ) of how close T is to scalar,
and in some cases the bound (kn)−1/2σk(T ) on the order of the fluctuations may
be even much smaller than n−1/2ρ(T ). This is the case, for example, if T has a
large number of tightly clustered eigenvalues with a small number of outliers.
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