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SETS OF INTEGERS AS SUPERDEGREES

AND SUPERCLASS SIZES

BENJAMIN ALLEN OTTO

(Communicated by Jonathan I. Hall)

Abstract. Supercharacters have recently been proposed as a sort of stand-in
for the characters of p-groups. If q > 1 is a prime power, then every set of
q-powers that contains 1 is both a set of superdegrees and a set of superclass
sizes. Moreover, if r and s are integers that are greater than 1, then there is
an algebra with exactly r superdegrees and exactly s superclass sizes. These
results are direct analogs of results from the theory of p-groups.

1. Introduction

In [2], Diaconis and Isaacs introduce supercharacters of algebra groups, which
mimic the irreducible characters of p-groups. This article explores the structure of
sets of superdegrees and superclass sizes. Specifically, it shows that a set of p-powers
is the set of superdegrees of some algebra if and only if it is the set of superclass
sizes of some algebra if and only if it contains 1. Also, if r and s are integers that
are greater than 1, then there is an algebra with exactly r superdegrees and exactly
s superclass sizes. These results are direct analogs of results in [4], [1], and [3],
respectively, concerning the theory of p-groups.

Throughout, let F be a finite field of characteristic p, and let q = |F |.
If J is a finite-dimensional, nilpotent F -algebra, then the set

1 + J = {1 + x | x ∈ J}

is a group with multiplication defined by

(1 + x)(1 + y) = 1 + (x+ y + xy).

It is easy to see that

(1 + x)−1 = 1 +

∞∑

i=1

(−x)i,

where this expression is well-defined because J is nilpotent. A group of this form
is called an algebra group. Note that the nilpotence of the underlying algebra is
part of the definition of an algebra group, so this feature is always present when
algebra groups are being considered, regardless of whether the word “nilpotent” is
explicitly used.
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The group G = 1+ J acts on the right and on the left of J in the expected way;
for x and y in J , let

x(1 + y) = x+ xy

and

(1 + y)x = x+ yx,

noting that these actions commute with each other. Write GxG for the two-sided
orbit of x. The subset 1 +GxG of G is called the superclass of 1 + x. The second
main result, Theorem 3.1, implies that a set S of q-powers is the set of superclass
sizes of an F -algebra if and only if 1 ∈ S.

Write J∗ for the dual space of J . The actions of the previous paragraph induce
right and left actions of G on J∗; for λ ∈ J∗, g ∈ G, and x ∈ J , let

(λ · g)(x) = λ(xg−1)

and

(g · λ)(x) = λ(g−1x).

Again, note that these actions commute with each other. Write λG and GλG
for the right and two-sided orbits, respectively, of λ. The number |λG| is called
a superdegree of J . The first main result, Theorem 2.1, implies that a set S of
q-powers is the set of superdegrees of an F -algebra if and only if 1 ∈ S.

In order to justify the names superdegree and superclass, consider the following.
Fix a nontrivial group homomorphism ˜ from the additive group of F to the group
of nonzero complex numbers. Given any λ ∈ J∗, the supercharacter χλ : G → C is
defined by

χλ(1 + x) =
|λG|
|GλG|

∑

μ∈GλG

μ̃(x).

As it turns out, χλ is a character. Plainly, the degree of the supercharacter χλ is
χλ(1) = |λG|. Superclasses are the supercharacter analog of conjugacy classes.

For λ in J∗, define

Rλ = {y ∈ J | Jy ⊆ kerλ}

and

Lλ = {y ∈ J | yJ ⊆ kerλ}.

Note that Rλ is a left ideal and Lλ is a right ideal. In particular, 1 + Rλ and
1+Lλ are algebra subgroups of G, and, as described in [2], they are the respective
stabilizers of λ in G for the right and left actions.

By Theorem 5.10 of [2], the supercharacter χλ is irreducible if Rλ + Lλ = J . If
this condition holds for all λ ∈ J∗, then the supercharacters of J are precisely the
irreducible characters of 1+ J . Thus, the subalgebra Rλ +Lλ will be referenced in
several of the constructions below.

Because the calculations needed to explore the constructions are straightforward,
the details are often suppressed. A summary of each is included, however, so the
patient reader should be able to reproduce the omitted computations with minimal
thought.
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2. Superdegrees

Since 1 +Rλ is the right stabilizer of λ, one sees that

|λG| = |G|/|1 +Rλ| = |J |/|Rλ|.
Since Rλ is a subspace of J , it is clear that |λG| is an |F |-power.

Suppose S is the set of superdegrees of an F -algebra. By the previous paragraph,
the set S must consist of |F |-powers. Moreover, the integer 1 is always the degree
of the supercharacter corresponding to the functional 0.

Theorem 2.1 demonstrates that these two necessary conditions are also sufficient
to guarantee that S is the set of superdegrees of some F -algebra. The analogous
irreducible character degree result for p-groups can be found in the theorem of
Section 3 of [4], in Theorem 3.1 of [5], and, for odd primes, in Theorem 6 of [7]. As
discussed below, Theorem 2.1 generalizes all of these results. Theorem 3.2 in [5]
states that if |S| > 1 and 2 ≤ n ≤ p, then there is a group of nilpotence class n with
set of irreducible character degrees S; the supercharacter analog of this statement
is false, since, by Theorem 3.3 of [6], the nilpotence class of J is small whenever |S|
is small.

Theorem 2.1. Write e0 = 0 and let e1 ≤ e2 ≤ · · · ≤ em be positive integers. Then
there is an Fq-algebra J such that J3 = 0, the supercharacters of J are exactly the
irreducible characters of 1+J , the superdegrees of J are {qei | 0 ≤ i ≤ m}, and the
superclass sizes of J are {qi | 0 ≤ i ≤ m}.

Proof. Let J be the F -vector space with basis

B = {xi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ ei} ∪ {yj | 1 ≤ j ≤ em} ∪ {zi | 1 ≤ i ≤ m}.
Write

D = {δi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ ei} ∪ {εj | 1 ≤ j ≤ em} ∪ {γi | 1 ≤ i ≤ m}
for the basis for J∗ dual to B. Define a multiplication on J by setting

xi,jyk =

{
zi if j = k,

0 if j �= k

and letting the product of all other basis elements, including ykxi,j , be 0. Set
G = 1 + J , and notice that J3 = 0.

Let

x =

m∑

i=1

(

ei∑

j=1

ai,jxi,j + cizi) +

em∑

j=1

bjyj

and

λ =
m∑

i=1

(

ei∑

j=1

Ai,jδi,j + Ciγi) +

em∑

j=1

Bjεj

for fixed ai,j , bj , ci, Ai,j , Bj , Ci ∈ F .
Consider Rλ first. Note that λ(xk,lx) = blCk and λ(ylx) = 0 = λ(zkx). Thus

x ∈ Rλ if and only if blCk = 0 whenever 1 ≤ k ≤ m and 1 ≤ l ≤ ek. Set

K = max
(
{0} ∪ {1 ≤ k ≤ m | Ck �= 0}

)
,

so x ∈ Rλ if and only if bl = 0 whenever 1 ≤ l ≤ eK . Then {yl + Rλ | 1 ≤ l ≤ eK}
is a basis for the vector space J/Rλ, and so |λG| = |J |/|Rλ| = qeK . Hence, the
superdegrees are exactly {qei | 0 ≤ i ≤ m}.
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Next consider the superclasses. Since

1 +GxG ⊆ 1 + x+ span{zi | 1 ≤ i ≤ m},

it must be the case that |1 + GxG| ≤ qm. Considering x =
∑k

i=1 xi,ei for each

0 ≤ k ≤ m, one sees that each qk is achievable.
Finally, calculate Rλ+Lλ. Note that yk is in Lλ for each 1 ≤ k ≤ em. Combining

this with the calculation for Rλ above, one sees that the basis B is in Rλ + Lλ.
Thus, by Theorem 5.10 of [2], the supercharacter χλ is irreducible. �

Theorem 2.1 deserves two comments. First, it is a generalization of the character
theory result, as, in the character theory version, the group may now be taken to be
an algebra group. Secondly, Theorem 2.1 does not yield just any algebra with the
appropriate superdegrees, but an Fq-algebra. That is, knowing something about
the set of prime powers imposes more structure on the resulting algebra.

3. Superclass sizes

For x ∈ J , the notation Jx = {zx | z ∈ J} and xJ = {xz | z ∈ J} is self-
explanatory. Corollary 3.2 of [2] yields that |1 +GxG| = |Jx+ xJ |. Since Jx+ xJ
is a subspace of J , it is clear that |1 +GxG| is an |F |-power.

Suppose S is the set of superclass sizes of an F -algebra. By the previous para-
graph, the set S must consist of |F |-powers. Moreover, the integer 1 is always the
size of the superclass of the identity element 1 + 0.

Theorem 3.1 demonstrates that these two conditions are sufficient to guarantee
that S is the set of superclass sizes of an F -algebra. The analogous conjugacy class
result can be found in the theorem of [1].

Theorem 3.1. Let 0 = e0 < e1 < · · · < em be integers. Then there is a com-
mutative Fq-algebra J such that J3 = 0 and the superclass sizes of J are exactly
{qei | 0 ≤ i ≤ m}.

Proof. Let G be the set of pairs (i, j) of positive integers such that there exist
positive integers u and v satisfying the relations

u+ v = m+ 1,

i ≤ eu,

and

j ≤ ev.

Clearly (i, j) is in G if and only if (j, i) is in G.
Set H = {(i, j) ∈ G | i ≤ j}, and let J be the F -vector space with basis

B = {xi | 1 ≤ i ≤ em} ∪ {yi,j | (i, j) ∈ H}.
For all (i, j) ∈ H, define yj,i = yi,j . Define a multiplication by setting

xixj =

{
yi,j if (i, j) ∈ G,
0 if (i, j) /∈ G

and letting the product of all other basis elements be 0. Then J is commutative,
and J3 = 0. Set G = 1 + J .

For each positive integer i satisfying 1 ≤ i ≤ em, define

ti = min{1 ≤ t ≤ m | i ≤ et}.
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In other words, ti is the unique integer such that eti−1 < i ≤ eti . Also, set
tem+1 = m+ 1.

Suppose for the moment that (i, j) is in G, so there exist positive integers u and
v such that u + v = m + 1, such that i ≤ eu, and such that j ≤ ev. Thus, ti ≤ u,
and so m− ti+1 ≥ m−u+1 = v. This implies that j ≤ ev ≤ em−ti+1. Conversely,
suppose that i and j are integers such that 1 ≤ i ≤ em and 1 ≤ j ≤ em−ti+1.
Setting u = ti and v = m− ti + 1, it is clear that (i, j) is in G.

The previous paragraph demonstrated that whenever 1 ≤ i ≤ em is an integer,
then (i, j) is in G if and only if 1 ≤ j ≤ em−ti+1.

It now remains only to calculate the superclass sizes, so let

x =

em∑

i=1

aixi +
∑

(i,j)∈H
bi,jyi,j ,

where the ai and bij are elements of Fq. Since

|1 +GxG| = |xG| = |xJ | = |x span{xi | 1 ≤ i ≤ em}|,
consider v =

∑em
j=1 cjxj . Setting l = min

(
{i | ai �= 0} ∪ {em + 1}

)
yields that

xv =

em∑

i=l

ai

em−ti+1∑

j=1

cjyi,j .

Since em−ti+1 ≤ em−tk+1 whenever k < i, the cj that appear in the equation
above are exactly {cj | 1 ≤ j ≤ em−tl+1}. The elements yl,j are all distinct as j
ranges from 1 to em−tl+1, and it now follows that |1 + GxG| = qem−tl+1 . Since
1 ≤ tl ≤ m + 1 and since x was arbitrary, the superclass sizes all lie in the set
{qek | 0 ≤ k ≤ m}. But tei = i when 1 ≤ i ≤ m, so considering x = xem−k+1

shows that qek is achievable for each 1 ≤ k ≤ m. The number qe0 = 1 is always a
superclass size. �

Unlike Theorem 2.1, Theorem 3.1 is not a generalization of the analogous group
theory result; in particular, since the algebra constructed in the proof is commuta-
tive, the conjugacy class sizes are all 1.

As promised, the following is now clear.

Corollary 3.2. Let S be a set of integers and q > 1 be a prime power. Then the
following are equivalent.

(i) S is the set of superdegrees for some Fq-algebra.
(ii) S is a set of q-powers containing 1.
(iii) S is the set of superclass sizes for some Fq-algebra.

Proof. This is apparent from Theorem 2.1 and Theorem 3.1. �

4. Sizes of sets

This section will address what the sizes of the sets of superdegrees and of super-
class sizes can be.

For a group, of course, the set of irreducible character degrees has size 1 if and
only if the group is abelian if and only if the set of conjugacy class sizes has size 1.
As shown by the next lemma, the analogous statement is true for supercharacters,
although the analog of “abelian” is that the algebra has trivial multiplication.
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Lemma 4.1. Let J be a finite, nilpotent algebra. The following are equivalent.

(i) The only superdegree of J is 1.
(ii) J2 = 0.
(iii) The only superclass size of J is 1.

Proof. If λG = 1, then, since 1 +Rλ is the right stabilizer of λ, the subalgebra Rλ

must be all of J . Then, by the definition of Rλ, the kernel of λ contains J2. Thus,
if every superdegree is 1, then J2 lies in the kernel of every λ ∈ J∗, and so J2 = 0.

It is even easier to check that if 1+GxG = {1+x}, then Jx = 0. Thus, if every
superclass has size 1, it must be that J2 = 0.

Conversely, if the multiplication is trivial, then the actions of G on J and on J∗

are trivial, so every superdegree and every superclass size is 1. �

Just as the characters and conjugacy classes of a direct product of groups can
be retrieved from the groups being combined, the supercharacters and superclasses
of a direct sum of algebras can be retrieved from the summands. In particular, the
following holds.

Lemma 4.2. For i ∈ {1, 2}, let Ri and Si be sets of nonnegative integers. If the Fq-
algebras Ji have superdegrees {qr | r ∈ Ri} and superclass sizes {qs | s ∈ Si}, then
J1 ⊕ J2 has superdegrees {qr1+r2 | ri ∈ Ri} and superclass sizes {qs1+s2 | si ∈ Si}.

Proof. Since J1 and J2 annihilate each other in J1⊕J2, it is clear that superclasses
in the latter algebra are the product of superclasses from the subalgebras.

The superdegree claim is almost as easy, or one can appeal to Lemma 6.5 in
[2]. �

Now, consider positive integers r and s. If r and s are to be the respective
sizes of the sets of superdegrees and of superclass sizes of some F -algebra, then, by
Lemma 4.1, either r and s are either both 1 or both not equal to 1.

Theorem 4.5 shows that this weak condition is sufficient to guarantee that there
is an F -algebra with exactly r superdegrees and exactly s superclass sizes. The
analogous result for p-groups can be found in the theorem of [3].

Lemma 4.3. Let m and n be positive integers. Then there is an Fq-algebra J with
superdegrees {1, qm} and superclass sizes {qi | 0 ≤ i ≤ min{m,n}}∪ {qn} such that
J3 = 0 and the supercharacters of J are exactly the irreducible characters of 1+ J .

Proof. Let J be the F -vector space with basis

B = {xi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {yi | 1 ≤ i ≤ m} ∪ {zj | 1 ≤ j ≤ n}.

Write

D = {δi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {εi | 1 ≤ i ≤ m} ∪ {γj | 1 ≤ j ≤ n}

for the basis of J∗ dual to B. Define a product on J by setting

xi,jyk =

{
zj if i = k,

0 if i �= k

and letting the product of all other basis elements, including ykxi,j , be 0. Clearly,
J3 = 0. Set G = 1 + J .
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Let

x =

m∑

i=1

(

n∑

j=1

ai,jxi,j + biyi) +

n∑

j=1

cjzj

and

λ =

m∑

i=1

( n∑

j=1

Ai,jδi,j +Biεi

)
+

n∑

j=1

Cjγj

for fixed ai,j , bj , ci, Ai,j , Bj , Ci ∈ F .
Consider Rλ first. Since λ(xk,lx) = bkCl and λ(ykx) = 0 = λ(zlx), one observes

that x ∈ Rλ if and only if bkCl = 0 for all 1 ≤ k ≤ m and 1 ≤ l ≤ n. If some
Cl �= 0, then Rλ = span

(
{xi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {zj | 1 ≤ j ≤ n}

)
, and

|λG| = |J |/|Rλ| = qm. If every Cl is 0, then Rλ = J and |λG| = 1.
Next, consider the superclasses; one may check that

1 +GxG = {1 + x+
n∑

j=1

m∑

i=1

(ai,jdi + biei,j)zj | di, ei,j ∈ F}.

If any bk �= 0, then the variable ek,j controls the coefficient of zj for each 1 ≤ j ≤ n,
and |1 +GxG| = qn. So suppose each bk is 0; then

1 +GxG = {1 + x+

n∑

j=1

m∑

i=1

ai,jdizj | di ∈ F}.

Since there are n coefficients that may vary, namely those of the zj , and there are m

variables in these coefficients, namely the di, it must be that |1+GxG| ≤ qmin{m,n}.

Considering x =
∑k

i=1 xi,i for each 0 ≤ k ≤ min{m,n}, one sees that each such qk

is achievable.
Finally, consider Rλ + Lλ. As above,

span
(
{xi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {zj | 1 ≤ j ≤ n}

)
⊆ Rλ.

Since λ(yixk,l) = λ(yiyk) = λ(yizl) = 0,

span{yi | 1 ≤ i ≤ m} ⊆ Lλ,

so Rλ + Lλ = J . By Theorem 5.10 in [2], and since λ was arbitrary, every super-
character is irreducible. �

Lemma 4.4. Let n be a positive integer. Then there is an Fq-algebra J with
superdegrees {qi | 0 ≤ i ≤ n} and superclass sizes {1, q2n−1} such that J3 = 0.

Proof. Let J be the F -vector space with basis

B = {xi | 1 ≤ i ≤ n} ∪ {yi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ n}.
Write

D = {δi | 1 ≤ i ≤ n} ∪ {εi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ n}
for the basis of J∗ dual to B. Define a product on J by setting xixj = yi,j and
letting the product of all other basis elements be 0. Clearly, J3 = 0. Set G = 1+J .

Let

x =
n∑

i=1

(aixi +
n∑

j=1

bi,jyi,j)
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and

λ =

n∑

i=1

(Aiδi +

n∑

j=1

Bi,jεi,j)

for fixed ai, bi,j , Ai, Bi,j ∈ F .
First note that λG = {λ +

∑n
i=1

∑n
j=1 cjBi,jδi | cj ∈ F}. Since there are n

coefficients that may vary, namely those of the δi, it must be that |λG| ≤ qn.

Considering λ =
∑k

i=1 εi,i for each 0 ≤ k ≤ n, one sees that each qk is achievable.
Finally, consider the superclasses; one may check that

1 +GxG = {1 + x+

n∑

i=1

n∑

j=1

(aicj + diaj)yi,j | cj , di ∈ F}.

If any ak �= 0, then the variable cj controls the coefficient of yk,j for each 1 ≤ j ≤ n
and the variable di controls the coefficient of yi,k for each 1 ≤ i ≤ n. Since ck and
dk are not both needed to control the coefficient of yk,k, it must be considered if
there is an as-yet uncontrolled coefficient that either variable might influence. The
only coefficients either variable might affect, though, are those of the yk,j and yj,k,

and these are already able to vary without limitation. Thus, |1+GxG| = qn+(n−1).
If each ak = 0, then |1 +GxG| = 1. �

The algebra constructed in the proof of Lemma 4.4 has supercharacters which
are not irreducible. Adopting the notation of the proof, the subalgebra Rε1,1 = Lε1,1

is proper, so, by Theorem 5.10 of [2], the supercharacter χε1,1 is not irreducible.

Theorem 4.5. Let r and s be positive integers that are either both 1 or both not 1.
Then there is an Fq-algebra J with exactly r superdegrees and exactly s superclass
sizes such that J3 = 0.

Proof. If r = s = 1, the algebra J = 0 will work, so it suffices to consider 1 < r, s.
First, assume that r ≤ s. Taking m = s− 1 and

ei =

{
i if 1 ≤ i ≤ r − 1,

r − 1 if r ≤ i ≤ s− 1

in Theorem 2.1 yields an algebra J with superdegrees {qi | 0 ≤ i ≤ r − 1} and
superclass sizes {qi | 0 ≤ i ≤ s− 1}, so it suffices to assume 1 < s < r.

Next suppose that s is even, and write s = 2l. Taking n = r − l in Lemma 4.4
yields an algebra K with superdegrees {qi | 0 ≤ i ≤ r − l} and superclass sizes
{1, q2r−2l−1}. Taking m = l − 1 and ei = i for 0 ≤ i ≤ l − 1 in Theorem 2.1 yields
an algebra L with both superdegrees and superclass sizes {qi | 0 ≤ i ≤ l − 1}. Set
J = K ⊕ L. Lemma 4.2 then says that J has superdegrees {qi | 0 ≤ i ≤ r − 1}
and superclass sizes {qi | 0 ≤ i ≤ l − 1} ∪ {qi | 2r − 2l − 1 ≤ i ≤ 2r − l − 2}. But
l − 1 < 2r − 2l − 1, and the latter set has size 2l = s. So it suffices to assume that
s is odd.

Now suppose that s > 3, and write s = 2l+3. Taking m = l and n = 2r− 2l− 3
in Lemma 4.3 results in an algebra K with respective superdegrees and superclass
sizes {1, ql} and {qi | 0 ≤ i ≤ l} ∪ {q2r−2l−3}. Taking n = r − l − 1 in Lemma 4.4
yields an algebra L with superdegrees {qi | 0 ≤ i ≤ r − l − 1} and superclass sizes
{1, q2r−2l−3}. Set J = K ⊕ L. Then J has superdegrees {qi | 0 ≤ i ≤ r − 1} and
superclass sizes {qi | 0 ≤ i ≤ l}∪{qi | 2r−2l−3 ≤ i ≤ 2r−l−3}∪{q4r−4l−6}. Since
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l < 2r−2l−3 and 2r−l−3 < 4r−4l−6, the latter set has size (l+1)+(l+1)+1 = s.
It suffices to consider 3 = s < r.

Next assume that r is odd, and write r = 2l+1. Taking n = l in Lemma 4.4 yields
an algebra K with superdegrees {qi | 0 ≤ i ≤ l} and superclass sizes {1, q2l−1}.
Set J = K ⊕ K, so J has superdegrees {qi | 0 ≤ i ≤ 2l} and superclass sizes
{1, q2l−1, q4l−2}. The former set has size 2l + 1 = r, so assume that r is even.

Next suppose that r ≥ 6, and write r = 2l+2. Taking n = l in Lemma 4.4 yields
an algebra K with superdegrees {qi | 0 ≤ i ≤ l} and superclass sizes {1, q2l−1}.
Applying Theorem 2.1 to the situation where the size of the field is q2l−1, where
m = 1, and where e1 = 1 yields an Fq2l−1-algebra L with superdegrees {1, q2l−1}
and superclass sizes {1, q2l−1}. View Fq as a subfield of Fq2l−1 , so the algebra L
is an Fq-algebra. Clearly, the superclasses do not depend on the underlying field
of the algebra. By Theorem 2.2 in [2], the supercharacters also remain unaffected
by changing the field. Set J = K ⊕ L. Then J has respective superdegrees and
superclass sizes {qi | 0 ≤ i ≤ l} ∪ {qi | 2l − 1 ≤ i ≤ 3l − 1} and {1, q2l−1, q4l−2}.
There are (l + 1) + (l + 1) = r superdegrees, and it remains to consider r = 4.

For the last case, apply Theorem 2.1 twice to the situation where m = 1. For
the first algebra K, take e1 = 1, and for the second algebra L, take e1 = 2. Then
J = K ⊕ L has superdegrees {1, q, q2, q3} and superclass sizes {1, q, q2}.

Each of the constructions of J above consists either of an algebra from The-
orem 2.1, Lemma 4.3, or Lemma 4.4, or it is the direct sum of such algebras.
Regardless, one sees that J3 = 0. �

5. Conclusion

It is now natural to wonder if, given any pair of nontrivial sets of q-powers that
contain 1, there is an algebra whose superdegrees and superclass sizes are the given
sets. Corollary 5.4 confirms that the answer is negative.

Lemma 5.1. The Fq-algebra J has superclass sizes {1, q} if and only if dim J2 = 1.

Proof. For v ∈ J , write Fv for the one-dimensional subspace of J spanned by v.
Recall that the superclass size of the element 1 + x is |1 +GxG| = |Jx+ xJ |.

First suppose that the superclass sizes are {1, q}. If u, v ∈ J are such that
uv �= 0, then

q = |Fuv| ≤ |Jv + vJ | = q,

so Jv + vJ = Fuv. Similarly, Ju+ uJ = Fuv.
Since J has a nontrivial superclass size, Lemma 4.1 guarantees that there are

y, z ∈ J such that yz �= 0. It suffices to show that if w, x ∈ J , then wx ∈ Fyz.
If wy �= 0, then

wx ∈ Jw + wJ = Fwy = Jy + yJ = Fyz,

as desired, so assume wy = 0. Similarly, if xz �= 0, then wx ∈ Fyz, so assume
xz = 0.

Then (x+ y)z = yz �= 0, and J(x+ y) + (x+ y)J = F (x+ y)z = Fyz. Hence,

wx = w(x+ y) ∈ J(x+ y) + (x+ y)J = Fyz.

Conversely, assume that dim J2 = 1. But |Jx+ xJ | ≤ |J2| = q for all x ∈ J , so
the superclass sizes are a subset of {1, q}. Since J2 �= 0, it cannot be the case that
1 is the only superclass size. �
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Lemma 5.2. If dim J2 = 1, then J has exactly 2 superdegrees.

Proof. Let B1 be a basis for J2, and extend this to a basis B1 ∪ B2 for J . Let
D1 ∪ D2 be the basis for J∗ dual to B1 ∪ B2, where |Bi| = |Di|. Let V be the span
of B2, and identify D2 with {λ|V | λ ∈ D2}, so V ∗ may be viewed as a subspace
of J∗. Likewise view (J2)∗ as a subspace of J∗. Note that this process of carrying
the vector space decomposition J = J2 ⊕V to J∗ is highly dependent on the bases
chosen.

With this setup, the first goal is to check that if λ ∈ V ∗ ≤ J∗ and μ ∈ J∗, then
|(λ+μ)G| = |μG|. This is immediate from the observation that (λ+μ)·g = λ+(μ·g)
for all g in G. Second, observe that for all μ ∈ J∗, α ∈ Fq, and g ∈ G, one has
(αμ) · g = α(μ · g), so |(αμ)G| = |μG|.

By construction, every ν ∈ J∗ can be written as ν = λ + μ, where λ ∈ V ∗ and
μ ∈ (J2)∗. Since dim J2 = 1, the space (J2)∗ also has dimension 1. The previous
paragraph thus guarantees that the superdegrees are precisely {1, |μG|}, where μ
is any element of (J2)∗. Since J2 �= 0, the superdegree |μG| is not 1, and so there
are 2 superdegrees. �

Lemma 5.3. Let n be a positive integer. Then there is an Fq-algebra J with
superdegrees {1, qn} such that dim J2 = 1.

Proof. Let J be the F -vector space with basis

B = {xi | 1 ≤ i ≤ n+ 1} ∪ {y}.

Write

D = {δi | 1 ≤ i ≤ n+ 1} ∪ {ε}

for the basis of J∗ dual to B. Define a product on J by setting

xixj =

{
y if i < j,

0 if i ≥ j

and letting the product of all other basis elements be 0.
Clearly, dim J2 = 1, so, by Lemma 5.2, it suffices to find a superdegree equal to

qn. One may verify that |ε(1 + J)| = qn. �

This now yields a complete characterization of which sets of q-powers are the
set of superdegrees of an algebra with superclass sizes {1, q}. As claimed at the
beginning of the section, the sets cannot be arbitrary.

Corollary 5.4. Let S be a set of integers. Then S is the set of superdegrees of an
Fq-algebra with superclass sizes {1, q} if and only if S = {1, qn} for some positive
integer n.

Proof. The forward implication follows from Lemma 5.1 and Lemma 5.2.
Lemma 5.3 and Lemma 5.1 give the reverse. �

So, the question at the beginning of the section was overly optimistic. The right
question to consider is what restrictions choosing either the set of superdegrees or
the set of superclass sizes imposes on the other set.
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