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AN APPLICATION OF AMPLE VECTOR BUNDLES

IN REAL ALGEBRAIC GEOMETRY

WOJCIECH KUCHARZ AND KAMIL RUSEK

(Communicated by Lev Borisov)

Abstract. Let E be an algebraic vector bundle on a compact nonsingular
real algebraic set X, and let Z be the zero locus of a “generic” algebraic
section of E. We investigate how certain cohomological invariants of X and
Z are related. A crucial role in the proof is played by ample vector bundles
on a suitable complexification of X.

1. Introduction

Let X be a compact nonsingular real algebraic set (in R
n or Pn(R) for some n).

A cohomology class in Hk(X;Z/2) is said to be algebraic if the homology class
in Hl(X;Z/2) Poincaré dual to it can be represented by an l-dimensional algebraic
subset of X, l = dimX−k (cf. [10] and [6, 9]). The set of all algebraic cohomology
classes in Hk(X;Z/2) forms a subgroup denoted by Hk

alg(X;Z/2). The groups

Hk
alg( – ;Z/2) play a fundamental role in real algebraic geometry and have been

extensively studied (cf. [2, 3, 4, 5, 6, 7, 15, 16, 18, 20, 24] and [9] for a short
survey).

One can also associate with X and any commutative ring R other cohomological
invariants of algebraic-geometric significance. A nonsingular projective complexi-
fication of X is a pair (V, e), where V is a closed nonsingular subscheme of PN

R

(for some N) and e : X → V (C) is an injective map such that e(X) = V (R), V (R)
is Zariski dense in V , and e induces a biregular isomorphism between X and V (R).
Here the set V (R) of real points of V is regarded as a subset of the set V (C) of com-
plex points of V . Moreover, V (R) is also viewed as an algebraic subset of PN (R).
The existence of (V, e) follows from Hironaka’s resolution of singularities [13]. As is
well known, (V, e) is uniquely determined up to isomorphism over R, provided that
dimX = 1. However, if dimX ≥ 2, then X admits infinitely many pairwise noniso-
morphic projective complexifications, for V can be blown up along a nonsingular
center disjoint from V (R). In view of this nonuniqueness, it is remarkable that the
subgroup

Hk
C
(X;R) := e�(Hk(V (C);R))

of Hk(X;R), where e� : Hk(V (C);R) → Hk(X;R) denotes the homomorphism
induced by e, does not depend on the choice of (V, e). This is proved in [22] for
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X orientable over R, and in [11] for arbitrary X. Note that in both [22] and [11]
the authors use different notation for our Hk

C
( – ;R). Properties and applications

of Hk
C
( – ;R) are elaborated upon in [11, 17, 22, 23].

The groups Hk
alg( – ;Z/2) and Hk

C
( – ;R) are subtle invariants that are, in general,

hard to compute. In this paper we make use of ample vector bundles to estimate the
size of Hk

alg(Z;Z/2) and compute Hk
C
(Z;R) in terms of Hk(X,Z/2) and Hk

C
(X;R),

respectively, for a large class of algebraic subsets Z of X. The ample vector bundles
do not appear in the formulation of our result but only in the proof.

An algebraic vector bundle on X is, by definition, isomorphic to an algebraic
subbundle of the trivial vector bundle with total space X × R

q for some q; cf. [6,
Chapter 12] (such an object was called a strongly algebraic vector bundle in the
earlier literature [4, 5, 7]). Thus the category of algebraic vector bundles on X
is isomorphic to the category of finitely generated projective modules over the ring
of regular functions on X.

The zero locus of a section s : X → E of a vector bundle E on X will be denoted
by Z(s),

Z(s) = {x ∈ X | s(x) = 0}.
Theorem 1.1. Let X be a compact irreducible nonsingular real algebraic set and
let E be an algebraic vector bundle on X with d = dimX − rankE positive. For
each algebraic section s of E, there exist algebraic sections s1, . . . , sp of E and
a proper algebraic subset Σ of Rp such that s1, . . . , sp generate E and for each point
t = (t1, . . . , tp) in R

p\Σ, the algebraic section σt = s+t1s1+ · · ·+tpsp is transverse
to the zero section of E, and its zero locus Zt = Z(σt) is either empty or else it is
a d-dimensional irreducible nonsingular algebraic subset of X satisfying

Hk
alg(Zt;Z/2) ⊆ i�t (H

k(X;Z/2)) for k < d/2,

Hk
C
(Zt;R) = i�t (H

k
C
(X;R)) for k < d,

where it : Zt ↪→ X is the inclusion map.

We postpone the proof until Section 2 and now derive the following approxima-
tion result for smooth (of class C∞) submanifolds of X.

Corollary 1.2. Let X be a compact irreducible nonsingular real algebraic set and
let E be an algebraic vector bundle on X with d = dimX − rankE positive. Let M
be a smooth submanifold of X that is the zero locus of a smooth section of E trans-
verse to the zero section. Then there exists a smooth diffeomorphism ϕ : X → X,
arbitrarily close in the C∞ topology to the identity map, such that Z := ϕ(M) is an
irreducible nonsingular algebraic subset of X satisfying

Hk
alg(Z;Z/2) ⊆ i�(Hk(X;Z/2)) for k < d/2,

Hk
C
(Z;R) = i�(Hk

C
(X;R)) for k < d,

where i : Z ↪→ X is the inclusion map.

Proof. Let w : X → E be a smooth section transverse to the zero section and sat-
isfying Z(w) = M . There exists an algebraic section s : X → E arbitrarily close in
the C∞ topology to w (cf. [6, Theorem 12.3.2]). For this section s, let s1, . . . , sp
and Σ be as in Theorem 1.1. If t in R

p \ Σ is close to 0 ∈ R
p, then the algebraic

section σt = s+ t1s1 + · · ·+ tpsp of E is close to w in the C∞ topology. According
to [1, Theorem 20.2], there exists a smooth diffeomorphism ϕ : X → X, close in the
C∞ topology to the identity map, with ϕ(M) = Zt. It suffices to set Z = Zt. �
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In Theorem 1.1 and Corollary 1.2, the cohomology groups of X tell us nothing
about the cohomology groups of Z and Zt. We obtain interesting relationships
only after passing to Hk

alg( – ;Z/2) and Hk
C
( – ;R). These last two groups have the

expected functorial property: If f : X → Y is a regular map between compact
nonsingular real algebraic sets, then

f�(Hk
alg(Y ;Z/2)) ⊆ Hk

alg(X;Z/2) and f�(Hk
C
(Y ;R)) ⊆ Hk

C
(X;R)

(cf. [10, Section 5] or [2, 5] for the former inclusion and [22, 11] for the latter).
In particular, with notation as in Theorem 1.1, the inclusions

i�t (H
k
alg(X;Z/2)) ⊆ Hk

alg(Zt;Z/2),

Hk
C
(Z;R) ⊇ i�(Hk

C
(X;R))

are automatically satisfied for all k. An analogous remark remains valid in the
context of Corollary 1.2.

Conjecture 1.3. In Theorem 1.1 and Corollary 1.2,

Hk
alg(Zt;Z/2) = i�t (H

k
alg(X;Z/2)) for k < d/2

and

Hk
alg(Z;Z/2) = i�(Hk

alg(X;Z/2)) for k < d/2,

respectively.

In view of the functoriality of Hk
alg( – ;Z/2), Conjecture 1.3 is true if

Hk
alg(X;Z/2) = Hk(X;Z/2) for k < d/2.

Theorem 1.1 and Corollary 1.2 are applicable, and Conjecture 1.3 is true in the
following two cases.

Example 1.4. Each topological real vector bundle on P
n(R) is isomorphic to an al-

gebraic vector bundle, and

Hk
alg(P

n(R);Z/2) = Hk(Pn(R);Z/2) for all k

(cf. [6, Example 12.3.7c, Proposition 11.3.3]).

Example 1.5. Let Mn(R) ∼= R
n2

denote the space of real n × n matrices. Given
a matrix A, we write tA for its transpose. The real Grassmannian Gn,r(R) of
r-dimensional vector subspaces of Rn can be identified with the algebraic subset

{A ∈ Mn(R) | A = tA, A2 = A, traceA = r}
of Mn(R). The universal vector bundle En,r on Gn,r(R) is algebraic. Moreover,
Gn,r(R) is nonsingular and

Hk
alg(Gn,r(R);Z/2) = Hk(Gn,r(R);Z/2) for all k.

For these facts one can consult [6, pp. 71, 272, 303].

Corollary 1.2 has an interesting application even when E is a trivial vector
bundle. First recall that every compact smooth manifold M is diffeomorphic to
a nonsingular real algebraic set, called an algebraic model of M ; cf. [26] or [6,
Theorem 14.1.10] (and also [21] for a weaker but influential result). How the groups
Hk

alg(Y ;Z/2) vary as Y runs through the class of all algebraic models of M is a

challenging problem (cf. [5, 7, 16, 17]).
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Corollary 1.6. Let M be an m-dimensional smooth manifold that is the boundary
of a compact smooth parallelizable manifold with boundary. If m ≥ 1, then M has
an irreducible algebraic model Y satisfying

Hk
alg(Y ;Z/2) = 0 for 1 ≤ k < m/2.

Proof. Let M = ∂Q, where Q is a compact smooth parallelizable manifold. We may
assume that Q is a smooth submanifold of the unit sphere Sn, n ≥ 2 dimQ+1. Since
the tangent bundle of Q is trivial, the normal bundle of Q in S

n is stably trivial,
and hence trivial being of rank greater than dimQ (cf. [14, p. 100, Theorem 1.5]).
According to [8, Theorem 1.12] there exists a smooth map f : Sn → R

n−m for
which 0 ∈ R

n−m is a regular value and M = f−1(0). Applying Corollary 1.2 to the
trivial vector bundle on S

n with total space S
n × R

n−m, we obtain an irreducible
nonsingular algebraic subset Y of Sn that is diffeomorphic to M and satisfies

Hk
alg(Y ;Z/2) ⊆ i�(Hk(Sn;Z/2)) for k < m/2.

The proof is complete. �

Let N be a compact smooth stably parallelizable manifold. Then the smooth
manifold M = (N × {0}) ∪ (N × {1}), which is the disjoint union of two copies
of N , satisfies the hypothesis of Corollary 1.6. The same is true for M = N × S

1.

2. Vector bundles on schemes over R

Let V be a closed nonsingular subscheme of Pn
R
(for some n) with V (R) nonempty.

We regard V (R) and V (C) as algebraic subsets of Pn(R) and P
n(C), respectively.

Each vector bundle E on V gives rise to algebraic vector bundles E(R) on V (R) and
E(C) on V (C). For any section v : V → E , the corresponding sections

v(R) : V (R) → E(R) and v(C) : V (C) → E(C)
are algebraic. We say that the section v is transverse regular if the section v(C)
is transverse to the zero section of E(C). The zero scheme of v will be denoted by
Z(v). We consider VC = V ×R C as a scheme over C and denote by EC the vector
bundle on VC determined by E . Similarly, we denote by vC : VC → EC the section
determined by v. If E is generated by the sections v1, . . . , vp, then EC is generated
by the sections v1C, . . . , vpC.

Proof of Theorem 1.1. We may assume that X = V (R) and E = E(R), where V is
a closed irreducible nonsingular subscheme of Pn(R) and E is a vector bundle on V
(cf. [15, Lemma 3.4]). There exist an open neighborhood V0 of X in V and a section
v0 : V0 → E which is an extension of s, that is, v0(R) : V0(R) = X → E(R) = E is
equal to s. We have

V0 = V \ Z(H1, . . . , Hl),

where the Hj are homogeneous polynomials in R[T0, . . . , Tn] and Z(H1, . . . , Hl) is
the closed subset of P

n
R

determined by the equations H1 = 0, . . . , Hl = 0. Set
rj = degHj , r = max{r1, . . . , rl}, and

H =

l∑

j=1

(T 2
0 + · · ·+ T 2

n)
r−rjH2

j .

Then H is a homogeneous polynomial of degree 2r and

V (R) ⊆ V \ Z(H) ⊆ V0,
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where Z(H) is the closed subset of Pn
R
determined by the equation H = 0.

For each integer c, we have the vector bundle O(c) on P
n
R
. Let h : Pn

R
→ O(2r)

be the section of O(2r) determined by the homogeneous polynomial H. Note that

Z(h) = Z(H).

Let L = O(2r)|V and u = h|V . Then L is an ample line bundle on V and
u : V → L is a section. By construction,

V (R) ⊆ V \ Z(u) = V \ Z(H) ⊆ V0.

Given a positive integer m, we set E(m) = E ⊗ Lm, where Lm = L ⊗ · · · ⊗ L is
the m-fold tensor product. There exists a positive integer m0 such that for each
integer m ≥ m0, the vector bundle E(m) is generated by global sections (cf. [12,
p. 153]) and the section

v0 ⊗ um : V \ Z(u) → E(m),

where um = u ⊗ · · · ⊗ u : V → Lm, can be extended to a section wm : V → E(m)
(cf. [12, Lemma 5.14]). We may also assume that E(m) is an ample vector bundle.

Fix m ≥ m0 and set v = wm. Let v1, . . . , vp be sections of E(m) that generate
E(m). Given t = (t1, . . . , tp) in R

p, set

τt = v + t1v1 + · · ·+ tpvp and Vt = Z(τt).

Since the sections v1C, . . . , vpC generate E(m)C, there exists a proper algebraic
subset Σ of Rp such that for each point t in R

p \ Σ, the section τt is transverse
regular.

Henceforth we fix t in R
p \ Σ. Then the subscheme Vt of V is nonsingular of

dimension d. According to Sommese’s theorem (cf. [25, Proposition 1.16] or [19,
Theorem 7.1.1]),

Hk(V (C), Vt(C);Z) = 0 for k ≤ d.

Taking k = 1, we obtain that Vt(C) is connected, and hence Vt is irreducible.
Moreover, if jt : Vt ↪→ V is the inclusion morphism, then

(1) jt(C)
� : Hk(V (C);R) → Hk(Vt(C);R) is an isomorphism for k < d.

Suppose that the algebraic subset Vt(R) of V (R) is nonempty. Then

(2) Vt(R) is irreducible and nonsingular, dimVt(R) = d.

We will now deal with Hk
alg( – ;Z/2). According to [18, Theorem 2.1], condition

(1) (with R = Z) implies that

(3) Hk
alg(Vt(R);Z/2) ⊆ jt(R)

�(Hk(V (R);Z/2)) for k < d/2.

In order to analyze Hk
C
( – ;R), let e : V (R) ↪→ V (C) and et : Vt(R) ↪→ Vt(C) be

the inclusion maps. The following diagram is commutative:

Hk(V (C);R)
jt(C)

�

−−−−→ Hk(Vt(C);R)

e�
⏐⏐� e�t

⏐⏐�

Hk(V (R);R)
jt(R)

�

−−−−→ Hk(Vt(R);R)

Since (V, e) and (Vt, et) are nonsingular projective complexifications of V (R) and
Vt(R), respectively, condition (1) implies that

(4) Hk
C
(Vt(R);R) = jt(R)

�(Hk
C
(V (R);R)) for k < d.
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We are ready for the final step in the proof. Since the zero locus of the section
of O(2r) determined by the polynomial (T 2

0 + · · ·+ T 2
n)

r does not intersect Pn(R),
the algebraic vector bundle O(2r)(R) on P

n(R) is algebraically trivial, and hence
so is the algebraic vector bundle L(R) on V (R). Consequently, the algebraic vec-
tor bundles E(m)(R) and E(R) = E on V (R) = X are algebraically isomorphic.
If Φ: E(m)(R) → E is an algebraic isomorphism, then Φ ◦ v(R) = fs for some
regular function f : X → R with f−1(0) = ∅. Let π : E(m)(R) → X be the bundle
projection and Ψ = (1/f ◦π)Φ. Then Ψ: E(m)(R) → E is an algebraic isomorphism
satisfying Ψ ◦ v(R) = s. Since the sections v1, . . . , vp generate E(m), the algebraic
sections s1 := Ψ ◦ v1(R), . . . , sp := Ψ ◦ vp(R) generate E. We have Ψ ◦ τt(R) = σt,
where σt = s+ t1s1 + · · ·+ tpsp. The transverse regularity of τt implies that σt is
transverse to the zero section of E. By construction, Z(σt) = Z(τt(R)) = Vt(R).
The proof is complete in view of (2), (3), and (4). �
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