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THE EXISTENCE OF HYPERELLIPTIC FIBRATIONS

WITH SLOPE FOUR AND

HIGH RELATIVE EULER-POINCARÉ CHARACTERISTIC

HIROTAKA ISHIDA

(Communicated by Ted Chinburg)

Abstract. For any relatively minimal hyperelliptic fibration f with slope
four, there exists the inequality with respect to the relative Euler-Poincaré
characteristic χ(f) of f and the genus g(f) of a fiber of f . This inequality
restricts the extent of pairs (g(f), χ(f)) for relatively minimal hyperelliptic
fibrations f with slope four which exist. Hence, for given suitable integers g
and z, we consider the existence of a relatively minimal hyperelliptic fibration
f with g(f) = g, χ(f) = z and slope four. The main purpose in this paper,
for any positive integer g, is to prove that there exists a relatively minimal
hyperelliptic fibration f with g(f) = g, χ(f) ≥ z(g) and slope four, where
z(X) is a certain polynomial of degree two.

Introduction

In this article, all varieties are defined over the complex number field. Let
f : X −→ C be a fibration from an algebraic surface X of general type onto a
smooth algebraic curve C with genus g(C). Denote the genus of a general fiber of
f by g(f) and put Δ = (g(f)− 1)(g(C)− 1).

If f is locally trivial, then we see the following numerical properties:

χ(Ox) = Δ, K2
X = 8Δ, e(X) = 4Δ,

where K•, χ(O•) and e(•) denote a canonical divisor, the Euler-Poincaré charac-
teristic and the topological Euler number of •.

Let KX/C be the relative canonical divisor of f . We call χ(f) = deg f∗KX/C

the relative Euler-Poincaré characteristic of f . Then discrepancies between invari-
ants of f and those of a locally trivial fibration can be computed by the following
equations:

χ(f) = χ(OX)−Δ,

K2
X/C = K2

X − 8Δ,

ef = e(X)− 4Δ,
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where ef is computed as
∑

P∈C{e(f−1(P ))+ 2g(f)− 2}. In fact, this sum is taken

over all points P such that f−1(P ) are singular fibers. (If f−1(P ) is nonsingular,
then e(f−1(P )) = 2− 2g(f).)

We assume that f is relatively minimal and not locally trivial. In this case,
we have χ(f) �= 0 ([2, III,Theorem 17.3]). We define the slope λ(f) of f to be
λ(f) = K2

X/C/χ(f). Note that K2
X = λ(f)χ(OX)+(8−λ(f))Δ. Then, we have the

slope inequality 4(g(f)− 1)/g(f) ≤ λ(f), which is proved by Xiao [9, Theorem 2].
(Horikawa [4, V, Theorem 2.1] and Persson [8, Proposition 2.12] proved the slope
inequality for hyperelliptic fibrations.) If we assume that λ(f) < 4, then we have
g(f) ≤ 4/(4− λ(f)); i.e., there exists the upper bound of g(f) for any fibrations f
with λ(f) < 4.

Furthermore, by Konno [6, Theorem 4.3], if almost all fibers of f are non-
hyperelliptic curves and f∗KX/C is semi-stable, then λ(f) ≥ (5g(f) − 6)/g(f).
In particular, there exists the upper bound of g(f) for any fibrations f satisfying
λ(f) < 5 and the above assumptions. A fibration f : X −→ C is called a hyperel-
liptic fibration if and only if almost all fibers of f are hyperelliptic curves. From
these slope inequalities, for any hyperelliptic fibrations f with 4 ≤ λ(f) < 5, the
genus g(f) may not be restricted. In order to show that there exists no restriction
for g(f), the author has studied hyperelliptic fibrations with slope four in [5] and
proved the following:

Theorem 0.1 ([5, Theorem 0.1]). Let g be an integer greater than three. We set

Δ(g) =

⎧
⎨

⎩

g

2
if g is even,

g − 3 if g is odd.

Then any relatively minimal hyperelliptic fibration f : X −→ C with g(f) = g
and λ(f) = 4 satisfies χ(f) ≥ Δ(g). Moreover, there exists a relatively minimal
hyperelliptic fibration f of genus g with λ(f) = 4 and χ(f) = Δ(g).

From the above theorem, we see that there exists a restriction for χ(f). Our
interest is the following problem: for any pair (g, z) of suitable integers, does there
exist a relatively minimal hyperelliptic fibration f with λ(f) = 4, g(f) = g and
χ(f) = z? If we only consider fibrations f with constant slope λ, then X satisfies
the numerical property K2

X = λχ(OX)+(8−λ)Δ. In particular, in our assumption,
we have K2

X = 4χ(OX) + 4Δ. Hence surfaces with such fibrations correspond to
points (χ(OX), K2

X) with K2
X = 4χ(OX) + 4Δ on the ordinary surface geography.

From [5, Corollary 2.9] and [8, Section 3], we obtained the following:

Corollary 0.2 (cf. [5, Corollary 2.9]). For any positive integer z, there exists a
relatively minimal hyperelliptic fibration f with λ(f) = 4, χ(f) = z and g(f) =
2, 3, 4.

Corollary 0.2 gives an answer to the above problem in the case that g(f) =
2, 3, 4. Hence we consider the case that g(f) ≥ 5. The main purpose of this paper
is to prove the following:

Theorem 0.3. For any integers g and z satisfying one of the following conditions
(i) and (ii), there exists a relatively minimal hyperelliptic fibration f with λ(f) =
4, g(f) = g and χ(f) = z.
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(i) g is an even integer which is greater than four and z ≥ g2 +
g

2
− 2,

(ii) g is an odd integer which is greater than three and z ≥ g2 − 1.

By the above theorem, we see that there exists a relatively minimal hyperelliptic
fibration f with g(f) = g, χ(f) � 0 and λ(f) = 4 for any positive integer g.
This gives an answer to our problem in the case of a fibration with high relative
Euler-Poincaré characteristic.

If f is a hyperelliptic fibration, then the relative canonical map of f is a gener-
ically two-to-one map and its proper image is a birationally ruled surface over C.
Hence, we see that X is birationally equivalent to a double covering of a ruled
surface over C (cf. [1, Theorem III 4], [5, Lemma 1.1]).

In order to prove Theorem 0.3, we find required fibrations whose structures
are double coverings of Hirzebruch surfaces. In Section 1, we recall the theory of
double coverings of surfaces (cf. [3], [7], [5]). By using this theory, for any positive
integers m and a sufficiently large integer g, we can prove that there exists no
relatively minimal hyperelliptic fibration with g(f) = g, χ(f) = gm and λ(f) = 4.
In consequence of this fact, we see the following: let z(X) be a polynomial in
a variable X. If there exists a relatively minimal hyperelliptic fibration f with
g(f) = g, χ(f) ≥ z(g) and slope four for any positive integer g, then the degree of
z(X) is greater than one. It follows that Theorem 0.3 is best with respect to the
degree of the right side of the inequality.

In Section 2, we give a certain effective divisor which is a branch divisor of a
double covering on the d-th Hirzebruch surface Σd. We call a point P in a divisor
D a 2-fold j-ple point if an infinitely near point of P is an ordinary j-ple point
of the strict transform of D by blowing up at P . By applying a method similar
to that used in [7, Proposition 3.1] for the purpose of constructing fibrations of
genus two, we find sets of suitable effective divisors Bk (k = 1, 2, . . . , g + 1) on

Σd such that B =
∑g+1

k=1 Bk has lj 2-fold j-ple points for (l1, l2, . . . , lg+1) ∈ Z
g+1
>0

satisfying
∑g+1

α=1 jlj = 2d(g + 1). Considering a double covering branched along B,
we obtain a hyperelliptic fibration over the projective line. From the theory of a
double covering in Section 1, we give the numerical condition of (l1, l2, . . . , lg+1)
that the slope of this fibration is equal to four.

In Sections 3, 4 and 5, to conclude the proof Theorem 0.3, we give elements of
Z
g+1
>0 satisfying this numerical condition and compute the Euler-Poincaré charac-

teristic.

1. Resolution of double cover and its invariants

In this section, we recall the terminology and results on double coverings (cf. [3],
[7]). Let π = π0 : X −→ Y be a double cover between a normal surface X = X0

and a smooth algebraic surface Y = Y0. Let B = B0 be the branch divisor of π.
Denote the rational function field of X by K(X).

Let ϕ′
0 : Y1 −→ Y0 be the blowup at a singular point p0 of B and π1 : X1 −→ Y1

the K(X)-normalization of Y1. Then we obtain the natural birational morphism
ϕ0 : X1 −→ X0. Denote the branch divisor of π1 by B1. Continuing this process
until the branch divisor Bn of πn has no singular points, we obtain the sequence of
birational morphisms ϕ0, ϕ1, . . . , ϕn−1 and the following diagram:
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X = X0

π=π0

��

X1ϕ0

��

π1

��

X2ϕ1

��

π2

��

· · ·ϕ2

�� Xn−1ϕn−2

��

πn−1

��

Xn = X ′
ϕn−1

��

πn

��

Y = Y0 Y1
ϕ′

0

�� Y2
ϕ′

1

�� · · ·
ϕ′

0

�� Yn−1
ϕ′

n−2

�� Yn = Y ′.
ϕ′

n−1

��

Since Bn has no singular points, X ′ is smooth; i.e., the composition ϕ : X ′ −→ X
of morphisms ϕ0, ϕ1, . . . , ϕn−1 is a resolution of singularities of X.

We call such a ϕ the canonical resolution of π. Denote the multiplicity of Bk

at pk by multpk
(Bk) and let Ek be the exceptional curve of ϕ′

k. The exceptional
curve Ek is contained in the branch divisor of πk+1 if and only if multpk

(Bk) is
even. Hence, Bk+1 = ϕ′∗

kBk − 2 [multpk
(Bk)/2]Ek, where [a] is the greatest integer

not exceeding a real number a. From [3, Lemma 6] and [7, Corollary 2.2], we can
compute χ(OX′) and K2

X′ .

Lemma 1.1 (Horikawa [3, Lemma 6], Persson [7, Corollary 2.2]). Under the same
notation as above, denote [multpk

(Bk)/2] by mk. Then X ′ has the following nu-
merical properties:

χ(OX′) = 2χ(OY ) +
1

8
B2 +

1

4
KY ·B −

n−1∑

k=0

1

2
mk(mk − 1),

K2
X′ = 2K2

Y +
1

2
B2 + 2KY ·B −

n−1∑

k=0

2(mk − 1)2.

Proof. See [5, Lemma 1.3, Lemma 1.4]. �

Note that some (−1)-curves may appear on X ′. If these images by π ◦ ϕ are
points of Y , then ϕ is not the minimal resolution of X. For example, if the branch
divisor B has a 2-fold triple point, then a (−1)-curve occurs on X ′.

By using Lemma 1.1, we see the following:

Proposition 1.2. For any positive integer m and a sufficiently large integer g,
there exists no relatively minimal hyperelliptic fibration f from a surface of general
type onto a smooth algebraic curve with g(f) = g, χ(f) = gm/2 and λ(f) = 4.

Proof. Suppose that there exists a relatively minimal hyperelliptic fibration f from

a surface X̃ of general type onto a smooth algebraic curve C with g(f) = g, χ(f) =
gm/2 and λ(f) = 4 for a sufficiently large integer g. Then we may assume that f is
the relatively minimal model of the canonical resolution of a double cover π : X −→
Y , where Y is a ruled surface over C (cf. [1, Theorem III 4], [5, Lemma 1.1]).

Let p : Y −→ C be a projection and ϕ : X ′ −→ X the canonical resolution of

π described as before. Note that f : X̃ −→ C is a relatively minimal model of

p ◦ π ◦ ϕ : X ′ −→ C. More precisely, X̃ coincides with the surface obtained by
contacting all (−1)-curves contained in fibers of p◦π ◦ϕ. Let H be the tautological
divisor of Y and F a certain fiber of p. We assume that the branch divisor B of π
is linearly equivalent to 2(g+1)H +2nF . Since we have χ(p ◦π ◦ϕ) = χ(OX′)−Δ
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and K2
X′/C = K2

X′ − 8Δ, we obtain

χ(f) = χ(p ◦ π ◦ ϕ) = g(g + 1)

2
H2 + gn−

n−1∑

k=0

1

2
mk(mk − 1),

K2
˜X/C

= K2
X′/C + ε = 2(g2 − 1)H2 + 4(g − 1)n− 2

n−1∑

k=0

(mk − 1)2 + ε,

where ε is the number of (−1)-curves contained in fibers of p ◦ π ◦ ϕ.
From [4, V, p. 746], we may assume that mk ≤ [(g + 2)/2] ≤ (g + 3)/2 for all k.

Denote the integer (g + 1)H2 + 2n by α. From the above equations, we obtain

n−1∑

k=0

mk(mk − 1) = g(α−m),

n−1∑

k=0

(mk − 1)2 ≥ (g − 1)α− gm.

By the assumption that mk ≤ (g + 3)/2, we have (mk − 1)/mk ≤ (g + 1)/(g + 3).
Hence we obtain

(g − 1)α− gm ≤
n−1∑

k=0

(mk − 1)2 ≤ g + 1

g + 3

n−1∑

k=0

mk(mk − 1)

=
g(g + 1)(α−m)

(g + 3)
,

i.e., α ≤ 2gm/(g−3). Since α is an integer, this shows that α ≤ 2m for a sufficiently
large integer g. Moreover, we have

n−1∑

k=0

(mk − 1) =
n−1∑

k=0

{mk(mk − 1)− (mk − 1)2}

≤ g(α−m)− (g − 1)α+ gm = α;

i.e., mk ≤ α + 1 for all k. By a similar argument as above, we have g(α − m) ≤
α(α + 1). Hence we obtain g(α − m) ≤ 2m(2m + 1). By our assumption that
g � 0, we have α = m and mk = 1 for all k; i.e., X has at worst rational double
points. Then it is easy to see that there exist no (−1)-curves contained in a fiber
of p ◦ π ◦ϕ. Hence we have χ(f) = gm/2 and K2

˜X/C
= 2(g− 1)m. This contradicts

λ(f) = 4. �

Let z(X) be a polynomial in one variable X satisfying the following property:

(∗) There exists a relatively minimal hyperelliptic fibration f with g(f) =
g, χ(f) = z and λ(f) = 4 for any positive integers g and z such that
z ≥ z(g).

If the degree of z(X) is one, then there exists an integerm such thatmg/2 ≥ z(g)
for a sufficiently large integer g. Therefore, from Proposition 1.2, the degree of
z(X) satisfying the property (∗) is greater than one. On the other hand, from
Theorem 0.3, the polynomial X2 +X/2 − 1 satisfies the property (∗). Therefore,
we see that the lower bound of the degree of the polynomial with the property (∗)
is two.
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2. Double covering of Hirzebruch surface

In this section, we construct hyperelliptic fibrations which are double coverings
of Hirzebruch surfaces for the proof of Theorem 0.3. Let pd : Σd = PP1(OP1 ⊕
OP1(d)) −→ P

1 be the d-th Hirzebruch surface with d ≥ 1. Set H
(d)
0 = PP1(OP1) ⊂

Σd and H
(d)
∞ = PP1(OP1(d)) ⊂ Σd. First, for constructing the branch divisor, we

show the existence of the following sets of curves and consider the sum of these
curves.

Lemma 2.1. Let (l1, l2, . . . , lg+1) be an element of Zg+1
>0 with

∑g+1
j=1 jlj = 2d(g+1).

Then there exists a set {Ck}g+1
k=1 of curves on Σ2d satisfying the following conditions:

(i) Ck is linearly equivalent to H
(2d)
0 and is a transversal to H

(2d)
0 .

(ii) The divisor
∑g+1

k=1Ck has lj ordinary j-ple points on H
(2d)
0 ; i.e.,

lj = �

{
P ∈ H

(2d)
0

∣∣∣∣∣ P is an ordinary j-ple point of

g+1∑
k=1

Ck

}
(j = 1, 2, . . . , g + 1).

(iii) The divisor
∑g+1

k=1 Ck has at worst double points except for singular points on

H
(2d)
0 .

Proof. For integers i and j with 1 ≤ i ≤ lj and 1 ≤ j ≤ g+1, we set distinct points

Pi, j on H
(2d)
0 . In order to obtain the required curves, we give curves Ck satisfying

the following conditions:

• Ck is linearly equivalent to H
(2d)
0 .

• Ck|H(2d)
0

is reduced.

• j = �{Ck | Ck passes through Pi, j}.
Note that we have

∑g+1
k=1Ck|H(2d)

0
=

∑g+1
j=1

∑lj
i=1 jPi,j for these curves.

Since the multiplicities of
∑g+1

j=1

∑lj
i=1 jPi,j at Pi,j are less than or equal to g+1,

we can choose the reduced divisor Dk (k = 1, 2, . . . , g + 1) on H
(2d)
0 such that

degDk = 2d and
∑g+1

k=1 Dk =
∑g+1

j=1

∑lj
i=1 jPi,j . Let Lk be a sublinear system

consisting of divisors Q ∈ |H(2d)
0 | such that the intersection points of Q and H

(2d)
0

coincide with the support of Dk. From the Riemann-Roch Theorem, we have

dimLk = 1; i.e., there exist curves Ck satisfying Ck|H(2d)
0

= Dk. From
∑g+1

k=1Dk =
∑g+1

j=1

∑lj
i=1 jPi,j , we obtain

j = �{Dk | Dk contains Pi,j} = �{Ck | Ck passes through Pi, j}.
Hence, it follows that there exist curves Ck satisfying the above conditions.

Moreover, by (H
(2d)
0 )2 = 2d, we see that there exists no base point of Lk except

for points contained in Dk. Therefore, we can choose curves Ck ∈ Lk satisfying that

Ck is a transversal to another Ck′ on H
(2d)
0 and that

∑g+1
k=1 Ck has at worst double

points except for singular points on H
(2d)
0 . Therefore, we obtain the required curves

Ck. �

Let fd : Σd −→ Σ2d be the double cover branched along H
(2d)
0 +H

(2d)
∞ . Note that

2H
(d)
0 = f∗

dH
(2d)
0 . For any element (l1, l2, . . . , lg+1) ∈ Z

g+1
>0 satisfying the condition

∑g+1
α=1 jlj = 2d(g + 1), we choose a set {Ck}g+1

k=1 of curves as in Lemma 2.1. The

effective divisor B = f∗
d

∑g+1
k=1Ck is linearly equivalent to 2(g + 1)H

(d)
0 . By the
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conditions (ii) and (iii) in Lemma 2.1, B has lj 2-fold j-ple points of B on H
(d)
0 and

at worst double points except for H
(d)
0 . Moreover, analytic branches of singular

points of B on H
(d)
0 are tangent to a fiber of pd.

Since B is 2-divisible, we can consider the double cover π : X −→ Σd branched
along B. Let ϕ : X ′ −→ X be the canonical resolution of π given by the following
diagram (cf. Section 1):

X

π=π0

��

X1ϕ0

��

π1

��

X2ϕ1

��

π2

��

· · ·ϕ2

�� Xn−1ϕn−2

��

πn−1

��

Xn = X ′
ϕn−1

��

πn=π′

��

Σd Y1
ϕ′

0

�� Y2
ϕ′

1

�� · · ·
ϕ′

0

�� Yn−1
ϕ′

n−2

�� Yn
ϕ′

n−1

��

Let h : X̃ −→ P
1 be the relatively minimal model of pd ◦ π ◦ ϕ. Then h is

a hyperelliptic fibration of genus g. In the following, we call this hyperelliptic
fibration h a fibration associated to (l1, l2, . . . , lg+1). By using Lemma 1.1, we
have the following:

Lemma 2.2. Let (l1, l2, . . . , lg+1) be an element of Zg+1
>0 with

∑g+1
j=1 jlj = 2d(g+1).

Under the same notation as above, the fibration h : X̃ −→ P
1 has the following

numerical properties:

χ(h) =
d

2
g(g + 1)− 1

4

g+1∑

j=3

(j2 − 2j)lj −
1

4

∑

j≥3, j:odd

lj ,

K2
˜X/P1 = 2d(g2 − 1)−

g+1∑

j=3

(j − 2)2lj .

Proof. With the notation concerning the canonical resolution of π as in Section 1,
we first compute χ(OX′) and KX′ . Let P be a 2-fold j-ple point of B. Then
{ϕi}n−1

i=0 contains blowups at P and an infinitely near point of P . For simplicity,
we assume that ϕ′

0 is a blowup at P and that ϕ′
1 is a blowup at an infinitely near

point of P . Let E0 and E1 be strict transforms of exceptional curves of ϕ′
0 and ϕ′

1,
respectively.

We argue the canonical resolution ϕ of π by using Figures 1 and 2. To illustrate
the canonical resolution of π, thin curves are used to represent components of the
branch divisor of ϕ′ and broken curves are used to represent curves not contained
in the branch divisor. Thick curves are used to represent strict transforms of curves
in X ′. The self-intersection number is written near the curves.

Figure 1. In the case that j is odd.
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Figure 2. In the case that j is even.

By Figures 1 and 2, we see that

m0 =

⎧
⎪⎨

⎪⎩

j − 1

2
(j : odd)

j

2
(j : even)

, m1 =

⎧
⎪⎨

⎪⎩

j + 1

2
(j : odd)

j

2
(j : even)

.

The branch divisor B has lj 2-fold j-ple points on H
(d)
0 and has at worst double

points on Σd \H(d)
0 . Hence, by Lemma 1.1, we have

χ(OX′) = 2χ(OΣd
) +

B2

8
+

B ·KΣd

4
−

∑

j≥3, j:even

j(j − 2)

4
lj −

∑

j≥3, j:odd

(j − 1)2

4
,

K2
X′ = 2K2

Σd
+

B2

2
+ 2B ·KΣd

−
∑

j≥3, j:even

(j − 2)2lj −
∑

j≥3, j:odd

{
(j − 2)2 + 1

}
lj .

Since χ(OΣd
) = 1, K2

Σd
= 8, B2 = 4(g+1)2d and B ·KΣd

= −2(g+1)d−4(g+1),
we obtain

χ(OX′) = 1− g +
(g + 1)2d

2
− (g + 1)d

2
−

g+1∑

j=3

j(j − 2)

4
lj −

∑

j≥3, j:odd

lj
4
,

K2
X′ = 8(1− g) + 2(g + 1)2d− 4(g + 1)d−

g+1∑

j=3

(j − 2)2lj −
∑

j≥3, j:odd

lj .

Denote the morphism pd ◦ π ◦ ϕ by h′. Since h is the relatively minimal model
of h′, for computing χ(h) and K2

X/P1 , we count the number of (−1)-curves in fibers

of h′.
Since B does not contain fibers of pd, (−1)-curves in fibers of h′ coincide with

certain exceptional curves of ϕ. There exists a (−1)-curve contained in the inverse
image of a 2-fold j-ple point by π◦ϕ for an odd integer j. (See Figure 1.) Moreover,
we see that there exist no (−1)-curves in the exceptional set of ϕ except for these
(−1)-curves. (See Figure 2.) Hence, the number of (−1)-curves in fibers of h′ is
equal to

∑
j≥3, j:odd lj , i.e., χ(OX) = χ(OX′) and K2

X = K2
X′ +

∑
j≥3, j:odd lj .

Furthermore, we have χ(OX) = χ(h) + 1 − g and K2
X = K2

X/P1 + 8(1 − g). We

conclude from these equations that

χ(h) =
dg(g + 1)

2
−

g+1∑

j=3

j(j − 2)

4
lj −

∑

j≥3, j:odd

lj/4,

K2
X/P1 = 2d(g2 − 1)−

g+1∑

j=3

(j − 2)2lj . �
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By Lemma 2.2, the slope of a fibration h associated to (l1, l2, . . . , lg+1) is equal
to four if and only if the following equation holds:

2d(g + 1) =

g+1∑

j=3

(2j − 4)lj +
∑

j≥3, j:odd

lj .(2.1)

For any (l3, l4, . . . , lg+1) ∈ Z
g−1
>0 satisfying the condition (2.1), since we have

∑g+1
j=3(2j − 4)lj +

∑
j≥3, j:odd lj ≥

∑g+1
j=3 jlj , we can choose non-negative integers

l1 and l2 satisfying
∑g+1

j=1 jlj = 2d(g + 1). In order to give a hyperelliptic fibration

with slope four, it suffices to give an element (l3, l4, . . . , lg+1) ∈ Z
g−1
>0 satisfying

the condition (2.1). Thus, for simplicity of the notation, we call the above fibration
h a fibration associated to (l3, l4, . . . , lg+1).

For (l3, l4, . . . , lg+1) ∈ Z
g+1
>0 satisfying the condition (2.1), a fibration h associ-

ated to (l3, l4, . . . , lg+1) has the following numerical properties:

g(h) = g, λ(h) = 4,

χ(h) =
d(g2 − 1)

2
−

g+1∑

j=3

(j − 2)2lj
4

.(2.2)

3. In the case that the genus is even

In this section, we prove the existence of fibrations as in Theorem 0.3 (i). Giving

an element (l3, l4, . . . , lg+1) ∈ Z
g−1
>0 satisfying the condition (2.1), we first construct

hyperelliptic fibrations of even genus with slope four.

Proposition 3.1. Let g be an even integer which is greater than four, N a non-
negative integer which is less than or equal to g/2 − 2 and d a positive integer.

For any (k0, . . . , kN+1) ∈ Z
N+2
≥0 satisfying

∑N+1
i=0 ki = d, there exists a relatively

minimal hyperelliptic fibration h which has the following invariants:

g(h) = g, λ(h) = 4, χ(h) =
d

2
{g2 − g −N(N + 1)} − 1

2

N+1∑

i=0

i(i+ 1)ki.

Proof. We set integers l3, l4, . . . , lg+1 as follows:

lN+3−i = lN+4+i = ki (N ≥ 2, i = 0, 1, 2, . . . , N − 2),

l2N+3 = kN−1, l2N+4 = kN (N ≥ 1),

l2N+5 = kN+1, li = 0 (i ≥ 2N + 6),

l3 = d+ kN , l4 = d
( g

2
−N − 2

)
+ kN−1,

where we set k−1 = k0. By the assumption that
∑N+1

i=0 ki = d, we have

g+1∑
j=3

(2j − 4)lj +
∑

j≥3, j:odd

lj =

N−2∑
i=0

{2(N + 3− i)− 4 + 2(N + 4 + i)− 4 + 1}ki

+ {2(2N + 3)− 4 + 1}kN−1 + 4
{
d
( g

2
−N − 2

)
+ kN−1

}
+ {2(2N + 4)− 4}kN + 3(d+ kN ) + {2(2N + 5)− 4 + 1}kN+1

=

N+1∑
i=0

(4N + 7)ki + 2d(g − 2N − 4) + 3d = 2d(g + 1).
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Hence, (l3, l4, . . . , lg+1) satisfies the condition (2.1).
Let h be a fibration associated to (l3, l4, . . . , lg+1). Since it is clear that g(h) = g

and λ(h) = 4, it is enough to compute the relative Euler-Poincaré characteristic of

h. From the equation (2.2) and the assumption that
∑N+1

i=0 ki = d, we have

χ(h) =
d(g2 − 1)

2
−

N−2∑
i=0

{
(N + 1− i)2 + (N + 2 + i)2

4

}
ki −

(2N + 1)2

4
kN−1

− (2N + 2)2

4
kN − (2N + 3)2

4
kN+1 − d

( g

2
−N − 2

)
− kN−1 −

d+ kN
4

=
d(2g2 − 2g + 4N + 5)

4
−

N+1∑
i=0

{
2N2 + 6N + 5 + 2i(i+ 1)

4

}
ki.

=
d(g2 − g −N2 −N)

2
− 1

2

N+1∑
i=0

i(i+ 1)ki. �

For integers a and b, we denote the intersection of the interval [a, b] (resp. [a, ∞))
and Z by [a, b]Z (resp. [a, ∞)Z). The positive integer denoted by i(i + 1)/2 (i ∈
Z>0) is called a triangular number. Before we prove Theorem 0.3 (i), we show
the following lemma from the well-known fact on the representation of a positive
integer by a sum of three triangular numbers.

Lemma 3.2. For an integer d which is greater than or equal to three and a positive
integer N , set

ΔN,d =

{
N∑

i=0

1

2
i(i+ 1)ki

∣
∣
∣
∣
∣
ki ∈ Z≥0,

N∑

i=0

ki = d

}

.

Then ΔN,d contains [0, dN(N + 1)/2−N2]Z.

Proof. Let z be an integer which is less than (N+1)(N+2)/2. It is well-known that
any positive integer is represented by a sum of at most three triangular numbers.
Therefore, z is represented by a sum of at most three triangular numbers which are
less than (N + 1)(N + 2)/2, i.e., z ∈ ΔN,3.

Let m and z′ be integers such that 3 ≤ m ≤ d and (m− 1)N(N + 1)/2−N2 ≤
z′ < mN(N + 1)/2−N2 + 1. The integer z′ − (m− 3)N(N + 1)/2 is positive and
less than (N + 1)(N + 2)/2. Hence, we have z′ − (m− 3)N(N + 1)/2 ∈ ΔN,3, i.e.,
z′ ∈ ΔN,m ⊂ ΔN,d. Thus, we obtain [0, dN(N + 1)/2−N2]Z ⊂ ΔN,d. �

Next we show that the fibration required in Theorem 0.3 (i) coincides with one
of the fibrations constructed in Proposition 3.1 by using the previous lemma. For
a set I ⊂ Z and x ∈ Z, we denote the set {x− z ∈ Z | z ∈ I} as x− I.

Proposition 3.3. For an even integer g ≥ 6 and an integer z ≥ g2 + g/2 − 2,
there exists a relatively minimal hyperelliptic fibration h with λ(h) = 4, g(h) = g
and χ(h) = z.

Proof. By Proposition 3.1, it suffices to prove that an integer z ≥ g2 + g/2 − 2 is
represented by the form

1

2

N+1∑

i=0

ki
(
g2 − g −N(N + 1)− i(i+ 1)

)
,
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where the ki’s are non-negative integers and N is an integer such that 0 ≤ N ≤
g/2− 2. Denote

∑N+1
i=0 ki by d and set

Rg,d,N =
d

2
(g2 − g −N(N + 1))−ΔN+1,d.

Hence it is enough to show that
⋃

d≥1

⋃ g
2 −2

N=0 Rg,d,N ⊃ [g2 + g/2− 2, ∞)Z.

By Lemma 3.2, if d is greater than two, then ΔN+1,d contains [0, d(N +1)(N +
2)/2− (N + 1)2]Z. Moreover, it is easy to see that Δ1,d ⊃ [0, 3d− 2]Z. Hence, we
have

Rg,d,N ⊃ [d(g2 − g − 2(N + 1)2)/2 + (N + 1)2, d(g2 − g −N(N + 1))/2]Z,

R6,d,1 ⊃ [11d+ 2, 14d]Z.

Denote d(g2 − g − 2(N + 1)2)/2 + (N + 1)2 by αg,d,N , d(g2 − g −N(N + 1))/2

by βg,d,N . Now we consider the set
⋃ g

2 −2

N=0 Rg,d,N . In the case that d ≥ 3, since we
have N ≥ 0, we have

βg,d,N+1 − αg,d,N + 1 =

(
d

2
− 1

)

N2 +

(
d

2
− 2

)

N ≥ 0;

i.e., we obtain αg,d,N − 1 ∈ [αg,d,N+1, βg,d,N+1]Z for d ≥ 3. Hence, it follows that
⋃ g

2 −2

N=0 Rg,d,N ⊃ [αg,d, g
2 −2, βg,d,0]Z and

⋃1
N=0 R6,d,N ⊃ [11d+ 2, β6,d,0]Z.

If we assume that d ≥ 4 and g ≥ 8, then we have

βg,d−1,0 − αg,d, g
2 −2 + 1 =

(g − 2)2

4

(

d− 3g

g − 2

)

≥ (g − 2)(g − 8)

4
≥ 0.

If we assume that d ≥ 4 and g = 6, then we have

β6,d−1,0 − (11d+ 2) + 1 = 4d− 16 ≥ 0.

Therefore, we have
⋃

d≥1

⋃ g
2 −2

N=0 Rg,d,N ⊃ [αg,3, g
2 −2, ∞)Z. Since we have αg,3, g

2 −2

= g2 + g/2− 2, the assertion follows from it. �

4. In the case that the genus is odd and greater than five

We need several propositions to prove the existence of fibrations as in Theo-
rem 0.3 (ii) in the case that the genus is odd and greater than five. These propo-
sitions are proved by the same calculations as in Proposition 3.1. In the proof of
these, we give only integers l3, l4, . . . , lg+1 satisfying the condition (2.1) and do
not repeat the same argument concerning invariants of the fibration associated to
(l3, l4, . . . , lg+1).

Proposition 4.1. Let g be an odd integer which is greater than three, N a non-
negative integer which is less than or equal to (g − 5)/2 and d an integer which

is greater than two. For any (k0, . . . , kN+1) ∈ Z
N+2
≥0 satisfying d =

∑N+1
i=0 ki,

there exists a relatively minimal hyperelliptic fibration h which has the following
numerical properties:

g(h) = g, λ(h) = 4, χ(h) =
d

2
{g2−g−N(N+1)}− 1− (−1)d

2
− 1

2

N+1∑

i=0

i(i+1)ki.
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Proof. The following integers l3, l4, . . . , lg+1 satisfy the condition (2.1):

lN+3−i = lN+4+i = ki (N ≥ 2, i = 0, 1, 2, . . . , N − 2),

l2N+3 = kN−1, l2N+4 = kN (N ≥ 1),

l2N+5 = kN+1, li = 0 (i ≥ 2N + 6),

l3 = d− {1− (−1)d}+ kN , l4 = d

(
g − 4

2
−N

)

+ kN−1 +
3

4
(1− (−1)d),

where we set k−1 = k0. �

Proposition 4.2. Let g be an odd integer which is greater than five, N a non-
negative integer which is less than or equal to (g − 7)/2 and d an integer greater

than three. For any (k0, . . . , kN+1) ∈ Z
N+2
≥0 satisfying d =

∑N+1
i=0 ki, there ex-

ists a relatively minimal hyperelliptic fibration h which has the following numerical
properties:

g(h) = g, λ(h) = 4, χ(h) =
d

2
{g2 − g + 2−N(N + 1)} − 1

2

N+1∑

i=0

i(i+ 1)ki.

Proof. The following integers l3, l4, . . . , lg+1 satisfy the condition (2.1):

lN+3−i = lN+4+i = ki (N ≥ 2, i = 0, 1, 2, . . . , N − 2),

l2N+3 = kN−1, l2N+4 = kN (N ≥ 1),

l2N+5 = kN+1, li = 0 (i ≥ 2N + 6),

l3 = 3d+ kN , l4 = d

(
g − 7

2
−N

)

+ kN−1,

where we set k−1 = k0. �

Proposition 4.3. Let g be an odd integer which is greater than five. For any

element (k0, . . . , k g−3
2
) in Z

g−1
2

≥0 satisfying
∑ g−3

2

i=0 ki = 4, there exists a relatively

minimal hyperelliptic fibration h which has the following numerical properties:

g(h) = g, λ(h) = 4, χ(h) =
3

2
g2 − 7

2
− 1

2

g−3
2∑

i=0

i(i+ 1)ki.

Proof. The following integers l3, l4, . . . , lg+1 satisfy the condition (2.1):

l g+3
2 −i = l g+5

2 +i = ki (i = 0, 1, 2, . . . ,
g − 7

2
),

lg = k g−5
2
, lg+1 = k g−3

2
, l3 = k g−3

2
, l4 = k g−5

2
+ 1. �

Proposition 4.4. Let g be an odd integer which is greater than five. For any

element (k0, . . . , k g−3
2
) in Z

g−1
2

≥0 satisfying
∑ g−3

2
i=0 ki = 3, there exists a relatively

minimal hyperelliptic fibration h which has the following numerical properties:

g(h) = g, λ(h) = 4, χ(h) =
9

8
g2 − 17

8
− 1

2

g−3
2∑

i=0

i(i+ 1)ki.
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Proof. The following integers l3, l4, . . . , lg+1 satisfy the condition (2.1):

l g+3
2 −i = l g+5

2 +i = ki (i = 0, 1, 2, . . . ,
g − 7

2
),

lg = k g−5
2
, lg+1 = k g−3

2
, l3 = k g−3

2
+ 1, l4 = k g−5

2
. �

The fibration required in Theorem 0.3 (ii) coincides with one of the fibrations
constructed in Propositions 4.1-4.4. We prove the following proposition by an
argument similar to the proof of Proposition 3.3.

Proposition 4.5. For an odd integer g ≥ 7 and an integer z ≥ g2 − 1, there exists
a relatively minimal hyperelliptic fibration h with λ(h) = 4, g(h) = g and χ(h) = z.

Proof. We set

Sg,d,N =
d

2
{g2 − g −N(N + 1)} − 1− (−1)d

2
−ΔN+1,d (0 ≤ N ≤ g − 5

2
),

Tg,d,N =
d

2
{g2 − g + 2−N(N + 1)} −ΔN+1,d (0 ≤ N ≤ g − 7

2
),

Ug =
3

2
g2 − 7

2
−Δ g−3

2 ,4,

Vg =
9

8
g2 − 17

8
− 1−Δ g−3

2 ,3.

From Propositions 4.1-4.4, it suffices to show that a positive integer z satisfying
z ≥ g2−1 is contained in one of the sets Sg,d,N , Tg,d,N , Ug and Vg. In other words,

we show that
⋃

d≥1(
⋃(g−5)/2

N=1 Sg,d,N ∪
⋃(g−7)/2

N=1 Tg,d,N ) ∪ Ug ∪ Vg ⊃ [g2 − 1, ∞)Z.

Denote d(g2 − g)/2− (d− 1)(N +1)2 and d(g2 − g−N(N +1))/2 by αg,d,N and
βg,d,N , respectively. From Lemma 3.2, if d is greater than two, then we have

Sg,d,N ⊃
[

αg,d,N − 1− (−1)d

2
, βg,d,N − 1− (−1)d

2

]

Z

,

Tg,d,N ⊃ [αg,d,N + d, βg,d,N + d]
Z
,

Ug ⊃
[
5g2 + 2g − 11

4
,
3g2 − 7

2

]

Z

,

Vg ⊃
[

g2 − 1,
9g2 − 17

9

]

Z

.

If we assume that d ≥ 3, then

βg,d,N+1 − αg,d,N + 1 =

(
d

2
− 1

)

N2 +

(
d

2
− 2

)

N ≥ N(N − 1)

2
.

Hence, we obtain
g−5
2⋃

N=0

Sg,d,N ∪
g−7
2⋃

N=0

Tg,d,N ⊃
[

αg,d, g−5
2

− 1− (−1)d

2
, βg,d,0 + d

]

Z

(d ≥ 3).

Moreover, since we have Δ1,d ⊃ [0, 3d− 2]Z for d ≥ 3, we obtain
(⋃1

N=0 S7,d,N

)
∪

T7,d,1 ⊃ [17d+ 2, 22d]Z.
If we assume that d ≥ 5, then we have

(βg,d−1,0 + d− 1)− α
g,d, g−5

2
+ 1 ≥ (g − 4)(g − 7)

2
≥ 0.
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Therefore, we obtain

⋃

d≥4

⎛

⎝

g−5
2⋃

N=0

Sg,d,N ∪
g−7
2⋃

N=0

Tg,d,N

⎞

⎠ ⊃ [γg, ∞)
Z
,

where γg is equal to αg,4, g−5
2

if g ≥ 9 and is equal to 70 if g = 7.

Since we have

3g2 − 7

2
− γg + 1 =

⎧
⎪⎨

⎪⎩

g2 − 10g + 17

4
≥ 0 if g ≥ 9,

1 if g = 7,

(βg,3,0 + 3)− 5g2 + 2g − 11

4
+ 1 =

g2 − 8g + 27

4
≥ 0,

9g2 − 17

8
− (αg,3, g−5

2
− 1) + 1 =

g2 − 12g + 35

8
≥ 0,

it follows that

⋃

d≥3

⎛

⎝

g−5
2⋃

N=0

Sg,d,N ∪
g−7
2⋃

N=0

Tg,d,N

⎞

⎠ ∪ Ug ∪ Vg ⊃
[
g2 − 1, ∞

)
Z
. �

5. In the case that the genus is five

In this section, we prove the existence of fibrations as in Theorem 0.3 (ii) in the
case that the genus is five by an argument similar to Proposition 4.5. We prepare
the following:

Proposition 5.1. Let d be a positive integer. For any (k0, k1, k2) ∈ Z
2
≥0 satisfying

∑2
i=0 ki = d, there exists a relatively minimal hyperelliptic fibration h which has

the following numerical properties:

g(h) = 5, λ(h) = 4, χ(h) = 11d− 2
2∑

i=0

iki.

Proof. The following integers l3, l4, . . . , lg+1 satisfy the condition (2.1):

l3 = 4k0, l4 = 3k1 + k2, l5 = 0, l6 = k2.

Then the fibrations associated to (l3, l4, . . . , lg+1) satisfy the requirements. �

Proposition 5.2. For an integer z ≥ 20, there exists a relatively minimal hyperel-
liptic fibration h with λ(h) = 4, g(h) = 5 and χ(h) = z.

Proof. We use the same notation as in the proof of Proposition 4.5 and set

Wd = {z ∈ [7d, 11d]Z | z ≡ d mod 2} .

From Propositions 4.4 and 5.1, for any positive integer z ∈
(⋃

d≥1 Wd

)
∪ V5, there

exists a relatively minimal hyperelliptic fibration h with g(h) = 5, λ(h) = 4 and

χ(h) = z. Hence, we show that
(⋃

d≥1 Wd

)
∪ V5 ⊃ [20, ∞)Z.
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By an easy calculation, we have
⋃

d≥3:odd

Wd = {z ∈ [21, ∞)Z | z is odd} ,

⋃

d≥3:even

Wd = {z ∈ [28, ∞)Z | z is even} .

Now we have
⋃

d≥3 Wd = [27, ∞)Z. We obtained V5 ⊃ [24, 26]Z in the proof of
Proposition 4.5. Moreover, we have 20, 22 ∈ W2 and 21, 23 ∈ W3, and we see that(⋃

d≥1 Wd

)
∪ V5 ⊃ [20, ∞)Z. This completes the proof of the proposition. �

From Propositions 4.5 and 5.2, we have Theorem 0.3 (ii).
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