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MOTIVIC INVARIANTS OF ALGEBRAIC TORI

JOHANNES NICAISE

(Communicated by Ted Chinburg)

Abstract. We prove a trace formula and a global form of Denef and Loeser’s

motivic monodromy conjecture for tamely ramified algebraic tori over a dis-
cretely valued field. If the torus has purely additive reduction, the trace for-
mula gives a cohomological interpretation for the number of components of
the Néron model.

1. Introduction

Let R be a complete discrete valuation ring, with quotient field K and residue
field k. We assume that k is algebraically closed. We denote by p the characteristic
exponent of k, and by M the maximal ideal of R. We fix a separable closure Ks of
K, and we denote by Kt the tame closure of K in Ks. We denote by I the inertia
group G(Ks/K), by P ⊂ I the wild inertia subgroup, and by It = I/P = G(Kt/K)
the tame inertia group. We fix a prime � �= p and a topological generator σ of It.

We denote by K0(V ark) the Grothendieck ring of k-varieties, by L = [A1
k] the

class of the affine line in K0(V ark), and by Mk the localization of K0(V ark) w.r.t.
L. We denote by

χtop : K0(V ark)/(L− 1) → Z

the �-adic Euler characteristic (it is independent of �). See [11, 2.1] for details.
If R has equal characteristic, then we put KR

0 (V ark) = K0(V ark) and MR
k =

Mk. If R has mixed characteristic, we denote by KR
0 (V ark) the modified

Grothendieck ring of k-varieties [15, 3.2]. It is a quotient of K0(V ark), obtained
by identifying the classes of universally homeomorphic k-varieties. With a slight
abuse of notation, we denote the image of L in KR

0 (V ark) again by L; we will
always clearly indicate in which ring we are working. We denote by MR

k the lo-
calization of KR

0 (V ark) with respect to L. The Euler characteristic χtop factors
through KR

0 (V ark)/(L− 1).
Let X be a separated rigid K-variety. A weak Néron model for X is a separated

smooth formal R-scheme U, topologically of finite type, endowed with an open
immersion of rigid K-varieties i : Uη → X such that i(K) : Uη(K) → X(K) is a
bijection. Here we denote by Uη the generic fiber of U. Such a weak Néron model
exists iff X admits a smooth quasi-compact open rigid subvariety which contains

Received by the editors April 14, 2009 and, in revised form, April 8, 2010.
2000 Mathematics Subject Classification. Primary 14G10, 20G25, 14F20.
Key words and phrases. Motivic Serre invariant, trace formula, motivic zeta function, mon-

odromy conjecture.
The author was partially supported by ANR-06-BLAN-0183.

c©2010 American Mathematical Society
Reverts to public domain 28 years from publication

1163



1164 JOHANNES NICAISE

all the K-points of X [3, 3.3]. A weak Néron model is far from being unique in
general. Nevertheless, using motivic integration on formal schemes, it was shown
in [7, 4.5.3] and [14, 5.11] (see also [15, § 5.3] for an erratum) that the class

[Us] ∈ KR
0 (V ark)/(L− 1)

of the special fiber Us of U only depends on X, and not on U. It is called the motivic
Serre invariant of X and is denoted by S(X). We consider S(X) as a measure
for the set of rational points on X. In particular, S(X) vanishes if X(K) = ∅
(but the converse implication does not hold). If Y is an algebraic K-variety such
that Y an admits a weak Néron model, we put S(Y ) = S(Y an) (here (·)an is the
non-Archimedean GAGA functor). This definition applies in particular when Y is
smooth and proper.

We showed in [11, 6.3] that the motivic Serre invariant admits a cohomological
interpretation by means of a trace formula: if Y is a smooth and proper K-variety,
then under a certain tameness condition on Y (in particular if k has characteristic
zero), we have

(1.1) χtop(S(Y )) =
∑

i≥0

(−1)iTrace(σ |Hi(Y ×K Kt,Q�)).

An analogous statement holds for rigid varieties [10, 6.4]. It seems plausible that
(1.1) holds for any smooth, proper, geometrically connected algebraic K-variety Y
such that the wild inertia P acts trivially on the �-adic cohomology of Y and such
that Y (Kt) is non-empty. The results in [11, § 7] show that this is true when Y is a
curve, and that the assumption Y (Kt) �= ∅ cannot be dropped. We proved in [12]
the case where Y is an abelian variety.

In this paper we consider the case of a tamely ramified algebraic K-torus G. Its
analytification Gan does not admit a weak Néron model in general, so the motivic
Serre invariant has to be defined in another way. There are two possible definitions.
First, Gan has a natural quasi-compact open rigid subgroup Gb such that Gb(K)
is the maximal subgroup of G(K) which is bounded in G [6, 3.12]. We show in
Theorem 3.8 that (1.1) holds for G if the left hand side is replaced by χtop(S(G

b)).
Second, if K has characteristic zero, we showed in [11, 5.4] (see also [15, § 5.3] for
an erratum) that there exists a unique ring morphism

S : K0(V arK) → KR
0 (V ark)/(L− 1)

such that S([Y ]) = S(Y ) for any smooth and proper K-variety Y . If X is a K-
variety such that Xan admits a weak Néron model, we have S([X]) = S(Xan) by
[11, 5.4]. We show in Proposition 3.3 that, if K has characteristic zero and G is an
algebraic K-torus, we have S([G]) = S(Gb). In fact, the analogous equality holds
for any algebraic K-group H for which Hb can be defined.

In [6], we associated a motivic zeta function ZA(T ) to every semi-abelian K-
variety A. It measures the behaviour of the Néron model of A under tame base
change. If G is a tamely ramified algebraic K-torus, then the trace formula gives a
cohomological interpretation of ZG(T ) (Proposition 4.3). We prove in Theorem 6.1
that G satisfies a global version of Denef and Loeser’s monodromy conjecture for
motivic zeta functions of complex hypersurface singularities. More precisely, we
show that ZG(L

−s) has a unique pole at s = c(G), where c(G) denotes the base
change conductor of G [4]. This pole has order one, and exp(2πic(G)) belongs
to {−1, 1} and is the unique eigenvalue of σ on Hg(G ×K Kt,Q�), with g the
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dimension of G. We also compute the characteristic polynomial of the σ-action on
H1(G×K Kt,Q�) in terms of the elementary divisors ci(G) of G (Proposition 3.5).
We refer to [6] for analogous results for abelian varieties and for the exact relation
with Denef and Loeser’s motivic monodromy conjecture.

The assumption that G is tamely ramified is crucial for the arguments in this
paper. It would be highly interesting to adapt the results to the wildly ramified
case.

2. Preliminaries

We denote by N
′ the set of integers d > 0 prime to p. For each d ∈ N

′, we
denote by K(d) the unique degree d extension of K in Kt, by I(d) the subgroup
G(Ks/K(d)) of I, and by It(d) the subgroup G(Kt/K(d)) of It.

Let G be an algebraic torus over K. We denote by g the dimension of G and
by X the character group of G. It is a free Z-module of rank g, endowed with a
continuous action of the inertia group I = G(Ks/K). The splitting degree of G
is the degree of the minimal extension L of K where G splits. We say that G is
tamely ramified if the wild inertia P acts trivially on X. This is equivalent to the
property that the splitting degree of G is prime to p, i.e. that G splits over a finite
tame extension of K.

For any element γ of It, we denote by Pγ(t) the characteristic polynomial

det(t · Id− γ |H1(G×K Kt,Q�))

of the action of γ on H1(G ×K Kt,Q�). Since there exists an It-equivariant iso-
morphism

H1(G×K Kt,Q�) ∼= (X ⊗Z Q�)
P ,

the polynomial Pγ(t) coincides with the characteristic polynomial of the γ-action
on XP ⊗Z Q. In particular, Pγ(t) belongs to Z[t], and it is a product of cyclotomic
polynomials, independent of �.

An algebraic K-group is a group K-scheme of finite type. When we speak of
the Néron model of an algebraic K-group H, we mean the Néron model defined
in [6, 3.6]. By [6, 3.10], a smooth commutative algebraic K-group H admits a
Néron model H iff it admits a Néron lft-model Hlft in the sense of [2, 10.1.1].
This condition is also equivalent to the property that H does not admit a subgroup
of type Ga,K [2, 10.2.2]. The Néron model H is the maximal quasi-compact open
subgroup R-scheme of Hlft [6, 3.7]. We denote by ΦH the group of connected
components of the special fiber Hs and by Φ′

H the subgroup of elements of order
prime to p. The group ΦH is the torsion part of the component group of Hlft

s . We
denote by Hb the generic fiber of the formal M-adic completion of H. Then Hb

is a separated smooth quasi-compact rigid K-variety, and Hb(K) is the maximal
subgroup of H(K) which is bounded in H [6, 3.12].

We denote by G the Néron model of the K-torus G. The identity component Go
s

of Gs splits canonically into a product T ×k U with T a k-torus and U a unipotent
k-group. The dimensions of T and U are called the toric, resp. unipotent, rank of
Go
s . We say that G has good reduction if U is trivial and that G has purely additive

reduction if T is trivial.
For each integer d > 0, we denote by Φd(t) ∈ Z[t] the cyclotomic polynomial

whose zeroes are the primitive d-th roots of unity. For every rational number a, we
denote by τ (a) the order of a in the quotient group Q/Z.
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3. The motivic Serre invariant and the trace formula

Lemma 3.1. Let H be a smooth connected commutative algebraic k-group and
consider its Chevalley decomposition

0 −−−−→ (L = U ×k T ) −−−−→ H
π−−−−→ B −−−−→ 0

with U unipotent, T a torus, and B an abelian variety. If we denote by u and t the
dimensions of U , resp. T , then

[H] = L
u(L− 1)t[B]

in K0(V ark).

Proof. As a k-variety, U is isomorphic to A
u
k [18, VII, no 6]. By the scissor rela-

tions in the Grothendieck ring, it suffices to show that π is a Zariski-locally trivial
fibration. But π is an L-torsor with respect to the fppf topology, and hence also
with respect to the Zariski topology, because L is a successive extension of Gm and
Ga [8, III.3.7 and III.4.9]. �

Lemma 3.2. Let H be a smooth commutative algebraic K-group. Assume that H
admits a Néron model H, and denote by t the dimension of the maximal torus in
Ho

s. If H admits a subgroup T ∼= Gm,K , then t > 0.

Proof. Denote by T the Néron model of T . If t = 0, then any morphism of group
k-schemes Gm,k → Ho

s is trivial. Since T o
s

∼= Gm,k, it suffices to show that the
natural morphism f : T o

s → Ho
s is non-trivial. For each integer q prime to p, we

have a commutative diagram

qT o
s (k)

∼=←−−−− qT o(R)
(∗)−−−−→ qT (K)

⏐⏐�
⏐⏐�

⏐⏐�(∗)

qHo
s(k)

∼=←−−−− qHo(R)
(∗)−−−−→ qH(K),

where the lower index q(·) denotes the kernel of multiplication by q. The left
horizontal morphisms are bijections by [2, 7.3.3], and all arrows marked by (∗) are
injective. It follows that the map

qT o
s (k) −→ qHo

s(k)

is injective. But T o
s is isomorphic to Gm,k, so that qT o

s (k) is non-trivial. Hence, f
is non-trivial. �

Proposition 3.3. Let H be a smooth commutative algebraic K-group and assume
that H admits a Néron model H. Denote by t the dimension of the maximal torus
in Ho

s and by B the abelian quotient in the Chevalley decomposition of Ho
s. Then

S(Hb) =

{
|ΦH | · [B] if t = 0,

0 otherwise.

Moreover, if K has characteristic zero, then S([H]) = S(Hb).

Proof. We start by computing S(Hb). TheM-adic completion ofH is a weak Néron
model for Hb, so that S(Hb) = [Hs] in KR

0 (V ark)/(L− 1). Since k is algebraically
closed, every connected component of Hs is isomorphic to Ho

s. By Lemma 3.1, [Hs]
vanishes in KR

0 (V ark)/(L−1) unless t = 0, and in the latter case, [Hs] = |ΦH | · [B]
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in KR
0 (V ark)/(L − 1). Hence, it suffices to show that S([H]) = S(Hb), assuming

that K has characteristic zero.
Assume thatH admits a subgroup T ∼= Gm,K . Consider the short exact sequence

of K-groups

1 −−−−→ T −−−−→ H
f−−−−→ H/T −−−−→ 1.

Since T is a split torus, f is a T -torsor in the Zariski topology, and in particular a
Zariski-locally trivial fibration with fiber T . This implies that [H] = [T ][H/T ] in
K0(V arK). Since the motivic Serre invariant

S(·) : K0(V arK) → KR
0 (V ark)/(L− 1)

maps [Gm,K ] to zero [11, 5.4], we see that S([H]) = 0. On the other hand, t > 0
by Lemma 3.2, so that S(Hb) = 0 as well.

Now, assume that H does not admit a subgroup of type Gm,K . Then the Néron
lft-model Hlft is quasi-compact [2, 10.2.1], so that H = Hlft, and Hb(K) = H(K).
Hence, the M-adic completion of H is a weak Néron model of Han, and we have

S([H]) = S(Hb) = [Hs] ∈ KR
0 (V ark)/(L− 1)

by [11, 5.4]. �

Now we turn to our algebraic K-torus G.

Lemma 3.4. Let L be the minimal splitting field of G. The component group ΦG

is killed by the splitting degree e = [L : K] of G, and |ΦG| = |H1(G(L/K), X)|.

Proof. The component group ΦG is isomorphic to H1(I,X), by [1, 7.2.2] and [19,
2.18]. The I-action on X factors through G(L/K). Since X is torsion-free, the
inflation morphism

H1(G(L/K), X) → H1(I,X)

is an isomorphism [17, VII, Prop. 4]. The group H1(G(L/K), X) is killed by e, by
[17, VIII, Cor. 1]. �

Proposition 3.5. The following are equivalent:

(1) G has purely additive reduction.
(2) Pσ(1) �= 0.
(3) Pσ(1) = |Φ′

G|.

Proof. The implication (3) ⇒ (2) is trivial. It follows from [9, 1.3] that the torus
G has purely additive reduction iff XI = 0. This proves the equivalence of (1)
and (2). It remains to show that (1) ⇒ (3). Assume that G has purely additive
reduction, denote by L the minimal splitting field of G, and by L′ the maximal
tame extension of K inside L. By [17, VII, Prop. 4], we have an exact sequence

0 → H1(G(L′/K), XP ) → H1(G(L/K), X) → H1(G(L/L′), X).

We have |H1(G(L/K), X)| = |ΦG| by Lemma 3.4. Since H1(G(L/L′), X) is a p-
group, and H1(G(L′/K), XP ) has order prime to p [17, VIII, Cor. 1], we find
that

|Φ′
G| = |H1(G(L′/K), XP )| = |XP /(1− σ)XP |,

where the last equality follows from [17, VIII, Prop. 6] and the fact that XI = 0.
By [17, III, Prop. 2] we have

|XP /(1− σ)XP | = |det(1− σ |XP ⊗Z Q)|.
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The polynomial Pσ(t) equals the characteristic polynomial of σ on XP ⊗Z Q. It
is a product of cyclotomic polynomials that do not vanish at t = 1, which easily
implies that Pσ(1) > 0 (see [12, 2.6]). Hence, we find that

|Φ′
G| = Pσ(1). �

Corollary 3.6. If G has purely additive reduction, then |Φ′
G| is invariant under

isogeny.

Corollary 3.6 is false without the assumption that G has purely additive reduc-
tion, as is shown by the following easy example.

Example 3.7. Assume that k has characteristic zero. Let G1 and G2 be the K-tori
whose character group is Z2 with σ-action given by the matrices

(
0 1
1 0

)
, resp.

(
1 0
0 −1

)
.

Then G1 and G2 are isogenous, but computing H1(I,X) for both tori we find that
ΦG1

= {0} while ΦG2
= Z/2Z.

Theorem 3.8 (Trace formula). Assume that G is tamely ramified. Then Φ′
G = ΦG.

Moreover, if G has purely additive reduction, then

χtop(S(G
b)) = |ΦG| =

∑

i≥0

(−1)iTrace(σ |Hi(G×K Kt,Q�)).

Otherwise,

χtop(S(G
b)) = 0 =

∑

i≥0

(−1)iTrace(σ |Hi(G×K Kt,Q�)).

Proof. Since G is tamely ramified, the splitting degree e of G is prime to p, so
Φ′

G = ΦG by Lemma 3.4. By Proposition 3.3, we find that

S(Gb) = |ΦG| ∈ KR
0 (V ark)/(L− 1)

if G has purely additive reduction, and S(Gb) = 0 otherwise.
By tameness of G, we have

Hi(G×K Kt,Q�) = Hi(G×K Ks,Q�)
P = Hi(G×K Ks,Q�)

for each i ≥ 0, so there exists a canonical It-equivariant isomorphism

Hi(G×K Kt,Q�) ∼=
i∧

Q�

H1(G×K Kt,Q�)

for each i ≥ 0. It follows easily that
∑

i≥0

(−1)iTrace(σ |Hi(G×K Kt,Q�)) = Pσ(1),

and we may conclude the proof by Proposition 3.5. �

Corollary 3.9. If K has characteristic zero and G is tamely ramified, then

χtop(S([G])) =
∑

i≥0

(−1)iTrace(σ |Hi(G×K Kt,Q�)).

For abelian varieties, we proved an analogue of Theorem 3.8 in [12, 2.5 and 2.8].
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4. The motivic zeta function of a torus

For any field F and any smooth F -scheme Z of pure dimension, a gauge form
on Z is a nowhere vanishing differential form of maximal degree. If Y is a smooth
R-scheme of pure relative dimension, φ a gauge form on Y ×RK and C a connected
component of the special fiber Ys, then we denote by ordCω the order of φ along
C [6, 2.1].

For any d ∈ N
′ we denote by G(d) the Néron model of G(d) = G ×K K(d). We

denote by ω a distinguished gauge form on G [6, 7.1], i.e. a translation-invariant
gauge form such that ordGo

s
ω = 0. Such a distinguished gauge form always exists,

and it is unique up to multiplication with a unit in R [2, 4.2.3]. For any d ∈ N
′ we

denote by ω(d) the pull-back of ω to G(d). We introduce a function

ordG : N′ → N

by putting ordG(d) = −ordG(d)osω(d). This function only depends on G and not on
ω. The fact that ordG takes its values in the positive integers follows from [6, 7.4].

The following definition is taken from [6, §8.1].

Definition 4.1. We define the motivic zeta function ZG(T ) of G by

ZG(T ) =
∑

d∈N′

[G(d)s]LordG(d)T d ∈ Mk[[T ]].

For each d ∈ N
′, the image of [G(d)s]LordG(d) in MR

k can be interpreted in terms
of a motivic integral of the “Haar measure” ω(d) on the bounded part G(d)b of
G(d) : we have

[G(d)s]LordG(d) = L
g ·

∫

G(d)b
|ω(d)| ∈ MR

k .

In order to give a more explicit description of ZG(T ), we introduce some notation.
For each d ∈ N

′, we put φG(d) = |ΦG(d)|, the number of connected components of
G(d)s. Moreover, we denote by tG(d) and uG(d) the toric, resp. unipotent, rank of
G(d)os. Of course, we have tG(d) + uG(d) = g for every d ∈ N

′.

Proposition 4.2.

ZG(T ) =
∑

d∈N′

φG(d)(L− 1)tG(d)
L
uA(d)+ordG(d)T d ∈ Mk[[T ]].

Proof. This is immediate from Lemma 3.1. �

The trace formula yields the following cohomological interpretation of ZG(T ).
We denote by χtop(ZG(T )) the series in Z[[T ]] obtained by applying the morphism
χtop : Mk → Z to the coefficients of ZG(T ).

Proposition 4.3. If G is tamely ramified, then

χtop(ZG(T )) =
∑

d∈N′, tG(d)=0

φG(d)T
d

=
∑

d∈N′

∑

i≥0

(−1)iTrace(σd |Hi(G×K Kt,Q�))T
d.

Proof. This is immediate from Theorem 3.8 and Proposition 4.2. �
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By Proposition 4.2, the motivic zeta function ZG(T ) only depends on the func-
tions φG, tG, uG and ordG from N

′ to N. We will now recall how the first three of
them can be computed from the I-module X.

Proposition 4.4. For each d ∈ N
′ we have

φG(d) = |H1(I(d), X)|,
tG(d) = rankZ

(
XI(d)

)
,

uG(d) = rankZ

(
X/XI(d)

)
.

Proof. It obviously suffices to prove the result for d = 1, since G(d) is the torus
corresponding to the character group X with the action of I(d). The first equality
follows from [1, 7.2.2] and [19, 2.12]; the other two follow easily from [9, 1.3]. �
Corollary 4.5. Assume that G is tamely ramified, and denote by e the splitting
degree of G. Then φG(d), uG(d) and tG(d) only depend on d mod e. More precisely,
if d is an element of N′ and e′ is a multiple of e such that d+ e′ ∈ N

′, then

φG(d+ e′) = φG(d),

uG(d+ e′) = uG(d),

tG(d+ e′) = tG(d).

Proof. Since G is tamely ramified, we may replace I(d) by It(d) in Proposition 4.4.

Note that It(d) is topologically generated by σd, and It(d + e′) by σd+e′
. But σe

acts trivially on X, so the actions of σd and σd+e′
on X coincide. �

We recall the following definition [4, 2.4].

Definition 4.6. Let L be the minimal splitting field of G. Denote by R′ the
normalization of R in L, and by M′ the maximal ideal of R′. Put e = [L : K] and
G′ = G×K L, and denote by G′ the Néron model of G′. By the universal property
of the Néron model, there exists a unique morphism of R′-schemes

G ×R R′ → G′

that extends the isomorphism between the generic fibers. We have an isomorphism
of R′-modules

Lie(G′)/Lie(G ×R R′) ∼=
v⊕

i=1

(R′/(M′)ci·e)

with c1 ≤ . . . ≤ cv in (1/e)Z>0. The tuple (c1, . . . , cv) is called the tuple of
elementary divisors of G, and

c(G) :=
v∑

i=1

ci =
1

e
· lengthR′ (Lie(G′)/Lie(G ×R R′))

is called the base change conductor of G.

Note that our definition differs slightly from the one in [4, 2.4]. Chai extends
the tuple of elementary divisors by adding zeroes to the left until the length of the
tuple equals the dimension of G.

We have c(G) = 0 iff G has good reduction. If G is tamely ramified, then the
elementary divisors of G coincide with the non-zero jumps of Edixhoven’s filtration
for semi-abelian varieties [6, 4.18]. This comparison result shows in particular that
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0 < ci < 1 for all i. We’ll now see that the functions ordG and uG (and hence
tG = g − uG) can be computed from the elementary divisors of G. For every real
number x, we denote by �x� the unique integer in the interval ]x− 1, x].

Proposition 4.7. Assume that G is tamely ramified. Denote by (c1, . . . , cv) its
tuple of elementary divisors, and by c(G) its base change conductor. For any d ∈ N

′

we have

ordG(d) =

v∑

i=1

�ci · d�,

uG(d) = |{i ∈ {1, . . . , v} | d · ci /∈ Z}|.
In particular, if e is the splitting degree of G, then

ordG(d+ e′) = ordG(d) + c(G) · e′

for each d ∈ N
′ and each multiple e′ of e such that d+ e′ ∈ N

′.

Proof. This follows from [6, 6.2 and 7.5]. �

Corollary 4.8. If G is tamely ramified, then the unipotent rank u(G) of Go
s is equal

to the number v of elementary divisors of G.

5. Elementary divisors and monodromy

Proposition 5.1. Let G be a tamely ramified algebraic K-torus and denote by
c1 ≤ . . . ≤ cv its elementary divisors. Denote by e the splitting degree of G, and fix
a primitive e-th root of unity ξ in an algebraic closure Q

a of Q. The characteristic
polynomial Pσ(t) of σ on H1(G×K Kt,Q�) is given by

(5.1) Pσ(t) = (t− 1)tG(1)
v∏

i=1

(t− ξe·ci) ∈ Z[t].

If we put, for each integer d > 1,

νd = |{i ∈ {1, . . . , v} | τ (ci) = d}|,
then the Euler number ϕ(d) divides νd, and

Pσ(t) = (t− 1)tG(1)
∏

d>1

Φd(t)
νd/ϕ(d).

Recall that τ (ci) denotes the order of ci in Q/Z.

Proof. The second expression for Pσ(t) follows immediately from the first. Note
that the product over d > 1 is finite since νd vanishes unless d divides e.

So let us prove that (5.1) holds. Consider the Néron model G(e) of G(e) = G×K

K(e), and denote by M′ the maximal ideal of the normalization R(e) of R in K(e).
If we let G(K(e)/K) act on K(e) on the left, then any element θ of G(K(e)/K)
acts on the rank one k-vector space M′/(M′)2 by multiplication with an element
θ′ of μe(k), and the map θ �→ θ′ defines an isomorphism G(K(e)/K) ∼= μe(k). We
denote by ζ the image of σ in G(K(e)/K) ∼= μe(k). Then by [6, 4.8 and 4.17], the
characteristic polynomial of the ζ-action on Lie(G(e)s) equals

Q(t) = (t− 1)tG(1)
v∏

i=1

(t− ζe·ci) ∈ k[t].
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Since G(e) is a split R(e)-torus, the k-vector space Lie(G(e)s) is canonically isomor-
phic to HomZ(X, k), so that Q(t) equals the image of Pσ(t) under the morphism
Z[t] → k[t].

We know that Pσ(t) is a product of cyclotomic polynomials Φd(t) with d prime
to p. It remains to show that the only such product mapping to Q(t) ∈ k[t] is

Q′(t) = (t− 1)tG(1)
v∏

i=1

(t− ξe·ci) ∈ Z[t].

It suffices to prove that for all tuples (m1, . . . ,mr) and (n1, . . . , ns) of elements in
N

′, the function

R(t) =

∏r
i=1(t

mi − 1)∏s
j=1(t

nj − 1)
∈ Z

[
t,

1

tn − 1

]

n∈N′

maps to one in k(t) iff R(t) = 1. This is easily seen by looking at the zeroes of∏r
i=1(t

mi − 1) ∈ k[t] and
∏s

j=1(t
nj − 1) ∈ k[t] and using the fact that μn(k) is a

cyclic group of order n for each n ∈ N
′. �

Corollary 5.2. If G is tamely ramified and G has purely additive reduction, then

|ΦG| =
∏

d>1

Φd(1)
νd/ϕ(d).

Proof. Apply Lemma 3.4 and Proposition 3.5. �
Corollary 5.3. If G is tamely ramified, then its elementary divisors are invariant
under isogeny.

Corollary 5.4. If G is tamely ramified, then its base change conductor satisfies

c(G) =
u(G)

2
,

where u(G) is the unipotent rank of Go
s .

Proof. Let c = (c1, . . . , cv) be the tuple of elementary divisors of G. The fact that
the right hand side of (5.1) belongs to Z[t] implies that the map x �→ 1− x defines
a permutation of c. Therefore,

c(G) :=
v∑

i=1

ci = v/2 = u(G)/2,

where the last equality follows from Corollary 4.8. �
Remark. Corollary 5.4 is a special case of a much deeper result by Chai, Yu and de
Shalit [5, 11.3 and 12.1], stating that for any algebraic K-torus G, the base change
conductor c(G) equals half of the Artin conductor of the I-action on V = X ⊗Z Q.
If G is tame, then the Artin conductor simply equals the dimension of V/V I , and
this is precisely u(G) by Proposition 4.4. If G is not tame, it is no longer true that
its elementary divisors are invariant under isogeny (see for instance [4, 8.5(b)]).

Corollary 5.5. If G is tamely ramified, then the determinant D of the σ-action
on H1(G ×K Kt,Q�) equals (−1)u(G). Likewise, the determinant of the σ-action
on X ⊗Z Q equals (−1)u(G).

Proof. If ξ is any primitive e-th root of unity in Q
a, then by Proposition 5.1 we

know that D = ξc(G)e. Now the result follows from Corollary 5.4. �
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6. The global monodromy property for algebraic tori

The following result is a global version for algebraic tori of Denef and Loeser’s
motivic monodromy conjecture. For the notion of a pole of a motivic generating
series, we refer to [16, 4.7] (it requires some care since Mk might not be a domain).

Theorem 6.1. Let G be a tamely ramified algebraic K-torus of dimension g. De-
note by e the splitting degree of G, and by u(G) the unipotent rank of the identity
component of the special fiber of the Néron model of G. The motivic zeta function
ZG(T ) belongs to

Mk

[
T,

1

1− LepT c(G)ep

]
.

It has degree zero if p = 1 and has strictly negative degree if p > 1. Moreover,
the order of the unique pole s = c(G) of ZG(L

−s) equals one. The cyclotomic
polynomial Φτ(c(G))(t) equals t+(−1)u(G)+1, and it coincides with the characteristic

polynomial P
(g)
σ (t) of the action of the monodromy operator σ on Hg(G×KKt,Q�).

Proof. Denote by J the set of integers in {1, . . . , ep} that are prime to p. By
Propositions 4.2, 4.4 and 4.7 we can write

ZG(T ) =
∑

i∈J

⎛

⎝φG(i)L
uG(i)+ordG(i)(L− 1)tG(i)T i

∑

q≥0

L
c(G)epqT epq

⎞

⎠

=
∑

i∈J

(
φG(i)L

uG(i)+ordG(i)(L− 1)tG(i)T i
) 1

1− Lc(G)epT ep
.

So we see that ZG(L
−s) has a unique pole at s = c(G), of order one (to see that the

order is one and not zero, specialize the zeta function with respect to the Poincaré
polynomial; see [11, § 8]). Since the σ-action onHg(G×KKt,Q�) is the determinant
of the σ-action on H1(G×K Kt,Q�), it follows from Corollary 5.5 that

P (g)
σ (t) = t+ (−1)u(G)+1.

This polynomial is equal to Φτ(c(G))(t) by Corollary 5.4. �
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