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VOLUME INTEGRAL MEANS

OF HOLOMORPHIC FUNCTIONS

JIE XIAO AND KEHE ZHU

(Communicated by Richard Rochberg)

Abstract. The classical integral means of a holomorphic function f in the
unit disk are defined by[

1

2π

∫ 2π

0
|f(reiθ)|p dθ

]1/p

, 0 ≤ r < 1.

These integral means play an important role in modern complex analysis. In
this note we consider integral means of holomorphic functions in the unit ball
Bn in C

n with respect to weighted volume measures,

Mp,α(f, r) =

[
1

vα(rBn)

∫
rBn

|f(z)|p dvα(z)
]1/p

, 0 ≤ r < 1,

where α is real, dvα(z) = (1− |z|2)α dv(z), and dv is volume measure on Bn.
We show that Mp,α(f, r) increases with r strictly unless f is a constant, but in
contrast with the classical case, logMp,α(f, r) is not always convex in log r. As
an application, we show that if α ≤ −1, Mp,α(f, r) is bounded in r if and only
if f belongs to the Hardy space Hp, while if α > −1, Mp,α(f, r) is bounded in
r if and only if f is in the weighted Bergman space Ap

α.

1. Introduction

Let f be an analytic function f on the unit disk D in the complex plane C. For
any 0 < p < ∞ the integral means of f are defined by

Mp(f, r) =

[
1

2π

∫ 2π

0

|f(reiθ)|p dθ
]1/p

, 0 ≤ r < 1.

The limit case p = ∞ takes the form

M∞(f, r) = sup{|f(z)| : |z| = r}, 0 ≤ r < 1.

The classical Hardy convexity theorem states that the functionMp(f, r) is increasing
for r ∈ [0, 1) and the function logMp(f, r) is convex in log r.

Hardy’s convexity theorem is a fundamental result in modern complex and har-
monic analysis in general and in the theory of Hardy spaces in particular. Immediate
consequences of it include Hadamard’s Three Lines Theorem and the justification
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for the identification of Hardy spaces Hp in the unit disk with subspaces of Lp on
the unit circle.

In this paper we are going to consider an analogue of these integral means that
are based on volume integrals. In fact, to go one step further, we will do this on the
unit ball Bn in C

n. Thus for any real number α we consider the weighted volume
measure

dvα(z) = (1− |z|2)α dv(z)

on Bn, where dv is volume measure on Bn, normalized so that v(Bn) = 1.
If f is holomorphic in Bn and 0 < p < ∞, we define

Mp,α(f, r) =

[
1

vα(rBn)

∫
rBn

|f(z)|p dvα(z)
]1/p

, 0 ≤ r < 1.

These will be called volume integral means of the function f . In the limit case
p = ∞, we still define

M∞(f, r) = sup{|f(z)| : z ∈ Bn, |z| = r}, 0 ≤ r < 1.

It follows from the maximum modulus principle that

Mp,α(f, r) → M∞(f, r) as p → ∞,

regardless of the value of α.
Recall that for 0 < p < ∞ the Hardy space Hp of the unit ball consists of

holomorphic functions f in Bn such that

‖f‖p =: sup{Mp(f, r) : 0 ≤ r < 1} < ∞,

where

Mp(f, r) =

[∫
Sn

|f(rζ)|p dσ(ζ)
]1/p

is the surface area integral mean of f , with dσ being the normalized Lebesgue
measure on the unit sphere Sn in C

n.
It is well known that the measure dvα is finite on Bn if and only if α > −1. In

what follows we are going to normalize the measure dvα when α > −1 by redefining

dvα(z) = κn,α(1− |z|2)α dv(z),

where

κn,α =
Γ(n+ α+ 1)

n! Γ(α+ 1)
.

So dvα becomes a probability measure in this case.
For α > −1 and 0 < p < ∞ the weighted Bergman space Ap

α consists of holo-
morphic functions in Lp(Bn, dvα). If H(Bn) denotes the space of all holomorphic
functions in Bn, then

Ap
α = H(Bn) ∩ Lp(Bn, dvα).

For any f ∈ H(Bn) we write

‖f‖p,α =

[∫
Bn

|f(z)|p dvα(z)
]1/p

.

Our main result is the following.

Theorem. Suppose 0 < p < ∞, α is real, and f is holomorphic in Bn.

(i) The function r �→ Mp,α(f, r) is strictly increasing on [0, 1) unless f is
constant.
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(ii) If α > −1, then Mp,α(f, r) is bounded in r if and only if f is in the weighted
Bergman space Ap

α.
(iii) If α ≤ −1, then Mp,α(f, r) is bounded in r if and only if f belongs to the

Hardy space Hp.

In the next section we prove the above Theorem and present several natural
applications. In Section 3 we discuss the convexity of logMp,α(f, r) in log r. We will
show by an example that logMp,α(f, r) is not always convex in log r. Furthermore,
we conjecture that logMp,α(f, r) is convex in log r when α ≤ 0 and concave in log r
when α > 0. Section 3 also contains some complex geometric evidence to support
this conjecture.

2. Monotonicity of Mp,α(f, r) and applications

We begin with the direct high-dimensional analogue of the classical integral
means on the unit disk. The following result is probably known to experts, but we
have been unable to find a reference. A proof is included here for completeness.

Lemma 1. Suppose 0 < p ≤ ∞ and f is a non-constant holomorphic function in
Bn. Then

(i) The function Mp(f, r) is strictly increasing for r over [0, 1).
(ii) The function logMp(f, r) is convex in log r.

Proof. It suffices to prove the result for p < ∞. The case p = ∞ will then follow
from an obvious limit argument. So we assume 0 < p < ∞ for the rest of the proof.

Various proofs for the case n = 1 can be found in [7], [10], and [18]. The higher-
dimensional case follows from the rotation invariance of dσ and the one-dimensional
case for the so-called slice functions. In fact, we can write

Mp
p (f, r) =

∫
Sn

|f(rζ)|p dσ(ζ)

=
1

2π

∫ 2π

0

(∫
Sn

|f(rζeiθ)|p dσ(ζ)
)

dθ

=

∫
Sn

(
1

2π

∫ 2π

0

|fζ(reiθ)|p dθ
)

dσ(ζ),

where fζ(w) = f(wζ) for ζ ∈ Sn and w ∈ D. If f is not constant on Bn, then the
slice functions fζ will not be constant on D for ζ in the subset of Sn with positive
measure. For each such ζ, the function

r �→ 1

2π

∫ 2π

0

|fζ(reiθ)|p dθ

is strictly increasing on [0, 1). It follows that Mp
p (f, r) is strictly increasing as a

function of r ∈ [0, 1).
Alternatively, the monotonicity of Mp(f, r) follows from the formula

r
d

dr
Mp

p (f, r) =
p2

2n

∫
rBn

|f(z)|p−2|Rf(z)|2|z|−2n dv(z).

This formula was stated and proved in Theorem 4.20 of [22] under the assumption
f(0) = 0. But it can be shown that the assumption f(0) = 0 is not necessary; see
page 174 of [15].
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To prove the logarithmic convexity of Mp(f, r) in log r, we follow the arguments
used in Duren’s book [7]. More specifically, according to Theorem 1.6 of [7], for
any real number λ the function

rλ

2π

∫ 2π

0

|fζ(reiθ)|p dθ =
1

2π

∫ 2π

0

|reiθ|λ|fζ(reiθ)|p dθ

is convex in log r, as the function |w|λ|fζ(w)|p is subharmonic in D − {0}. It is
easy to see that integration with respect to ζ preserves the convexity in log r. Thus
rλMp

p (f, r) is convex in log r for any real λ. The convexity of logMp(f, r) in log r
then follows from exactly the same argument on page 10 of [7]. �

We are now ready to prove the first part of our main result. First observe that
any normalizing constants used in the definition of dvα will not make any difference
in the definition of Mp,α(f, r), so we will not worry about these constants in the
case α > −1.

Theorem 2. Suppose 0 < p < ∞, α is real, and f is holomorphic in Bn. Then the
function r �→ Mp,α(f, r) is strictly increasing on [0, 1) unless f is constant.

Proof. According to integration in polar coordinates, we have

(1)

∫
rBn

|f(z)|p dvα(z) = 2n

∫ r

0

ρ2n−1(1− ρ2)α dρ

∫
Sn

|f(ρζ)|p dσ(ζ).

It follows that

d

dr

∫
rBn

|f(z)|p dvα(z) = 2nr2n−1(1− r2)αMp
p (f, r).

Similarly, it follows from

vα(rBn) = 2n

∫ r

0

ρ2n−1(1− ρ2)α dρ

that

(2)
d

dr
vα(rBn) = 2n(1− r2)αr2n−1.

Integration by parts along with (1) and (2) then produces the following deficit
formula between the two integral means:

(3) Mp
p (f, r)−Mp

p,α(f, r) =
1

vα(rBn)

∫ r

0

[ d

dt
Mp

p (f, t)
]
vα(tBn) dt.

In particular, we see that

(4)

∫
rBn

|f(z)|p dvα(z) ≤ Mp
p (f, r)vα(rBn),

where equality holds for some r only when f is constant.
We differentiate the function Mp

p,α(f, r) with respect to r using the quotient rule
and obtain

d

dr
Mp

p,α(f, r) =
vα(rBn)M

p
p (f, r)−

∫
rBn

|f(z)|p dvα(z)(
2nr2n−1(1− r2)α

)−1
vα(rBn)2

.

Combining this with (4), we conclude that

d

dr
Mp

p,α(f, r) ≥ 0, 0 < r < 1,
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where equality holds for some r only when f is constant. This shows thatMp
p,α(f, r),

and hence Mp,α(f, r), is strictly increasing for r ∈ [0, 1) unless f is constant. �

The rest of this section is devoted to various natural applications of Theorem 2,
including a proof of (ii)-(iii) of the main result (cf. Theorem 5 below). We begin
with the easy observation that

Mp,α(f, 0) = lim
r→0+

Mp,α(f, r) = |f(0)|.

The inequality

(5) |f(0)| < Mp,α(f, r), 0 < r < 1,

where f is non-constant, is a certain version of the mean value theorem. In par-
ticular, if α > −1, then we can let r → 1 in (5) to obtain |f(0)| < ‖f‖p,α whose
limiting case α → −1+ appeared in [9]. Replacing f by

F (w) = f ◦ ϕz(w)

[
1− |z|2

(1− 〈w, z〉)2

]n+1+α
p

leads to the following sharp pointwise estimate for functions in weighted Bergman
spaces, which was first obtained in [19].

Corollary 3. Suppose α > −1, p > 0, and f ∈ Ap
α. Then

|f(z)| ≤ ‖f‖p,α
(1− |z|2)(n+α+1)/p

for all z ∈ Bn. Moreover, equality holds at some point a ∈ Bn if and only if

f(z) = c

[
1− |a|2

(1− 〈z, a〉)2

]n+1+α
p

for some constant c.

The limiting case α → −1+ of Corollary 3 is valid as well, provided we identify
Ap

−1 with Hp. See Theorem 5 below and the remark preceding it.

Corollary 4. Suppose α ≤ −1, p > 0, and f is holomorphic in Bn. Then the
integral ∫

Bn

|f(z)|p dvα(z) = sup
r∈(0,1)

∫
rBn

|f(z)|p dvα(z)

is finite if and only if f is identically zero on Bn.

Proof. For any R ∈ (0, 1) we know from Theorem 2 that

Mp
p,α(f,R) ≤

∫
rBn

|f(z)|p dvα(z)
vα(rBn)

, R < r < 1.

As r → 1−, we have vα(rBn) → +∞ and∫
rBn

|f(z)|p dvα(z) →
∫
Bn

|f(z)|p dvα(z).

If the last integral above is finite, then we must have Mp,α(f,R) = 0 for each
R ∈ (0, 1), which clearly implies that f = 0. �
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It is important to realize that the analyticity of f is critical in the corollary
above. For example, in the one-dimensional case, the result will be false if we just
assume f to be harmonic. In fact, the function

f(z) = (1− |z|2)/|1− z|2

is harmonic in the unit disk, and∫
B1

|f(z)|p dv−1(z) < ∞

as long as p < 1. See [11].
If f is any holomorphic function in Bn, then it follows from [23] that

lim
α→−1+

‖f‖p,α = ‖f‖p, , 0 < p < ∞.

Thus we can think of the Hardy space Hp as the limit case of the Bergman spaces
Ap

α as α → −1+. The following result makes this even more clear.

Theorem 5. Suppose p > 0 and f is holomorphic in Bn.

(i) If α > −1, then

sup {Mp,α(f, r) : 0 < r < 1} = ‖f‖p,α.
So in this case f ∈ Ap

α if and only if there is a positive constant C such
that Mp,α(f, r) ≤ C for all r ∈ [0, 1).

(ii) If α ≤ −1, then

sup {Mp,α(f, r) : 0 < r < 1} = ‖f‖p.
So in this case f ∈ Hp if and only if there exists a positive constant C such
that Mp,α(f, r) ≤ C for all r ∈ [0, 1).

Proof. When α > −1, we have vα(rBn) → vα(Bn) = 1 (according to our normal-
ization) as r → 1−, and

lim
r→1−

∫
rBn

|f(z)|p dvα(z) =
∫
Bn

|f(z)|p dvα(z),

whether the integral on the right hand side is finite or not. Thus (i) follows from
Theorem 2, the monotonicity of Mp,α(f, r) in r.

When α ≤ −1 and f is not identically zero, we have vα(rBn) → ∞ as r → 1−,
and according to Corollary 4,

lim
r→1−

∫
rBn

|f(z)|p dvα(z) =
∫
Bn

|f(z)|p dvα(z) = ∞.

Therefore, we can use the monotonicity of Mp,α(f, r) once again and apply
L’Hôpital’s rule to obtain (see the proof of Theorem 2 as well)

sup
0<r<1

Mp
p,α(f, r) = lim

r→1−
Mp

p,α(f, r)

= lim
r→1−

∫
rBn

|f(z)|p(1− |z|2)α dv(z)∫
rBn

(1− |z|2)α dv(z)

= lim
r→1−

2nr2n−1(1− r2)α
∫
Sn

|f(rζ)|p dσ(ζ)
2nr2n−1(1− r2)α

= lim
r→1−

Mp
p (f, r) = ‖f‖pp.



VOLUME INTEGRAL MEANS 1461

This proves part (ii). �

The following estimate is clearly a direct consequence of Theorem 2.

Corollary 6. Suppose α > −1, 0 < p < ∞, and f is in Ap
α. Then∫

rBn

|f(z)|p dvα(z) ≤ vα(rBn)

∫
Bn

|f(z)|p dvα(z)

for all r ∈ [0, 1]. Moreover, equality holds for some r ∈ [0, 1) only when f is
constant.

This, in turn, yields another monotonicity principle as follows.

Corollary 7. Suppose f is a non-constant holomorphic function in Bn. Then

(i) The function p �→ ‖f‖p,α is strictly increasing for p ∈ (0,∞).
(ii) The function α �→ ‖f‖p,α is strictly decreasing for α ∈ (−1,∞).

Proof. Part (i) follows easily from Hölder’s inequality and its equality case. So the
non-trivial part is (ii).

Bringing the normalization constant back, we recall from the proof of Theorem 2
that

d

dr

∫
rBn

|f |p dvα = 2nκn,α(1− r2)αr2n−1

∫
Sn

|f(rζ)|p dσ(ζ).

We integrate by parts and use Corollary 6 to obtain that if −1 < α1 < α2 < ∞
and ‖f‖p,α1

< ∞, then

‖f‖pp,α2
=

∫ 1

0

d

dr

(∫
rBn

|f |p dvα2

)
dr

=
κn,α2

κn,α1

∫ 1

0

(1− r2)α2−α1
d

dr

(∫
rBn

|f |p dvα1

)
dr

=
κn,α2

κn,α1

[
(1− r2)α2−α1

∫
rBn

|f |p dvα1

∣∣1
0

−
∫ 1

0

(∫
rBn

|f |p dvα1

)
d(1− r2)α2−α1

]

= −κn,α2

κn,α1

∫ 1

0

(∫
rBn

|f |p dvα1

)
d(1− r2)α2−α1

≤ −κn,α2

κn,α1

∫ 1

0

(
vα1

(rBn)‖f‖pp,α1

)
d(1− r2)α2−α1

= ‖f‖pp,α1
.

This proves the monotonicity ‖f‖p,α2
≤ ‖f‖p,α1

. If equality occurs for some α1 and
α2, then the previous estimates would force∫

rBn

|f(z)|p dvα1
(z) = vα1

(rBn)‖f‖pp,α1
,

which, according to Corollary 6, implies that f must be a constant. �

The results in Corollary 7 above are optimal embeddings of weighted Bergman
spaces. The following corollary gives several more such embeddings as well as some
isoperimetric-type inequalities.
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Corollary 8. Suppose p > 0, α > −1, ε ≥ p(α + 1)/n, and f is holomorphic in
Bn.

(i) We always have ‖f‖p,α ≤ ‖f‖p. Equality occurs if and only if f is a
constant, provided the quantities are finite.

(ii) We always have ‖f‖p(n+1+α)/n,α ≤ ‖f‖p+ε. Equality occurs if and only if
f is a constant, provided the quantities are finite.

(iii) If f is a zero-free function in Hp and m is a natural number, then we
always have ‖f‖pm,(m−1)n−1 ≤ ‖f‖p. Equality occurs if and only if f(z) =

c(1− 〈z, w〉)−2n/p, where c ∈ C and w ∈ Bn.

Proof. The inequality in part (i) is obvious. If it becomes equality and the norms
are finite, then for any β ∈ (−1, α) we use Corollary 6 to get

‖f‖p ≥ ‖f‖p,β ≥ ‖f‖p,α,
which implies that ‖f‖p,β = ‖f‖p,α, and so f is constant.

To prove part (ii), write q = p(n+1+α)/n. From (i) and Hölder’s inequality it
follows that

‖f‖q,α ≤ ‖f‖q ≤ ‖f‖p+ε,

with equalities if and only if f is a constant, provided the norms are finite.
Part (iii) follows from [4]. In fact, according to Theorem 5.1 in [4], if g is in H2,

then gm belongs to A2
(m−1)n−1 and

‖gm‖
1
m

2,(m−1)n−1 ≤ ‖g‖2,

with equality occuring when and only when g(z) = c(1−〈z, w〉)−n for some constant

c and some point w ∈ Bn. Since f is zero-free, taking g = f
p
2 in the last inequality

yields
‖f‖mp,(m−1)n−1 ≤ ‖f‖p,

with equality occuring if and only if f(z) = c(1− 〈z, w〉)−2n/p for some constant c
and some point w ∈ Bn. �

When n = 1, part (iii) above is related to [17, page 97, Theorem 19.9], [12] and
[20], which extended Carleman’s argument for the isoperimetric inequality

Area

π
≤

(Length

2π

)2

on minimal surfaces [6].
For our final application in this section we specialize to the unit open disk D

equipped with the normalized area measure dA. This will enable us to see the
geometry much more clearly.

Corollary 9. If f is analytic in the unit disk, then∫
rD

|f ′(z)|2 dA(z) ≤ r2
∫
D

|f ′(z)|2 dA(z)

for all 0 ≤ r < 1. Moreover, equality holds for some r ∈ [0, 1) if and only if
f(z) = az + b is a linear function.

This result is almost trivial in terms of Taylor expansions, and it is clearly a
special case of Corollary 6. If f is univalent, the Dirichlet integrals∫

rD

|f ′(z)|2 dA(z),

∫
D

|f ′(z)|2 dA(z)
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represent the areas of the images of rD and D under the mapping f , and the
inequalities in Corollary 9 can be rephrased as

A
(
f(rD)

)
≤ r2A

(
f(D)

)
, 0 ≤ r < 1,

where A(Ω) denotes the area of Ω in the complex plane. This inequality was
obtained and discussed in [5], and there it was called the Area Schwarz Lemma.
When f is not necessarily univalent, the above Dirichlet integrals represent the areas
of the images of rD and D under f when multiplicities are taken into consideration.
Alternatively, these integrals represent the areas of Riemann surfaces (rD, f) and
(D, f). Thus Corollary 9 can be considered a certain version of the Schwarz Lemma
for Riemann surfaces (cf. [14], [1] and [21]).

3. Logarithmic convexity

In light of Lemma 1 (ii) we naturally ask if the volume integral means Mp,α(f, r)
are also logarithmically convex in log r. Unlike the monotonicity issue, the loga-
rithmic convexity problem is more delicate and the answer depends on the weight
parameter α. The following example shows that logMp,α(f, r) could be convex in
log r for some α, but it could also be concave for some other α.

Example 10. Let n = 1 and f be holomorphic in the unit disk D.

(i) If 1 ≤ p < ∞ and α ∈ {−1, 0}, then logMp,α(f, r) is a convex function of
log r.

(ii) If p = 2, α = 1, and f(z) = z on D, then logMp,α(f, r) is a concave function
of log r.

Proof. Note that

Mp,0(f, r) =

[∫
D

|f(rz)|p dA(z)

]1/p

.

It follows from Taylor’s Banach space method in [18, Theorem 3.3] that logMp,0(f, r)
is a convex function of log r. The case when α = −1 is the classical Hardy convexity
theorem. This proves part (i).

To prove part (ii), we recall that

dA1(z) = 2(1− |z|2)dA(z), z ∈ D,

and

A1(rD) = 2

∫
rD

(1− |z|2) dA(z) = r2(2− r2),

as well as∫
rD

|f(z)|2 dA1(z) = 2

∫
rD

|z|2(1− |z|2) dA(z) = r4
(
1− 2r2/3

)
.

Write

F = M2
2,1(z, r) =

r4(1− 2r2/3)

r2(2− r2)
=

1− 2r2/3

2− r2
r2, 0 ≤ r < 1.

If we set t = log r, then −∞ < t < 0 and

F =
1− 2e2t/3

2− e2t
e2t.

It follows that

logF = x+ log(1− 2ex/3)− log(2− ex), x = 2t.
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Elementary calculations show that

d2

dx2
logF =

2ex

3(2− ex)2(1− 2ex/3)2

[
1

3
e2x − 1

]
.

Since −∞ < x < 0, we must have

d2

dx2
logF < 0, −∞ < x < 0.

This shows that logM2,1(z, r) is concave in log r. �

To better understand the dependence of logarithmic convexity on the weight
parameter, let us take a closer look at the problem from a complex geometric
viewpoint. According to [2], [16] and [13], a weighted Ricci curvature tensor on Bn

is defined by

Ricα := Ric0 −Hess log(1− |z|2)α,
where Ric0 vanishes as the Ricci curvature tensor of the original ball (Bn, v), and

Hess log(1− |z|2)α =

(
∂2 log(1− |z|2)α

∂zk∂z̄l

)
1≤k,l≤n

is the complex Hessian matrix of log(1− |z|2)α. Recall that the Bergman kernel of
Bn is given by

K(z, w) =
1

(1− 〈z, w〉)n+1
, z, w ∈ Bn.

We follow [3] and [8] to write the Bergman metric as

ds2B =

n∑
k,l=1

gkl̄ dzkdz̄l, where gkl̄ =
∂2K(z, z)

∂zk∂z̄l
,

and to write the Ricci curvature tensor of ds2B as

(
Rickl̄

)
:=

(
−
∂2 det

(
gkl̄

)
∂zk∂z̄l

)
.

A direct computation (see pages 22-23 of [22] for example) shows that

Ricα = − α

n+ 1

(
Rickl̄

)
=

α

n+ 1

(
gkl̄

)
.

Consequently, the sign of α completely determines the sign of Ricα. In particular,
when α ∈ (−∞, 0), the weighted complex ball (Bn, vα) can be viewed as a Kähler-
Einsten manifold with negative weighted Ricci curvature.

It seems reasonable to expect that the weighted Ricci curvature is somehow
related to the volume integral means of holomorphic functions, especially when
convexity issues are concerned. Example 10 appears to support this intuition, and
we are tempted to make the following conjecture.

Conjecture 11. Suppose 0 < p < ∞, α is real, and f is a non-constant holomor-
phic function on Bn. Then the function r �→ logMp,α(f, r) is convex in log r when
α ≤ 0 and concave in log r when α > 0. Furthermore, the function

d

dr

(
r
d

dr
logMp,α(f, r)

)
=

d

dr
logMp,α(f, r) + r

d2

dr2
logMp,α(f, r)
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has the opposite sign of the weighted Ricci curvature tensor of (Bn, vα), that is,
the function above is always non-negative when α ≤ 0, and always negative when
α > 0.
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