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CHARACTERIZING ISOTOPIC CONTINUA IN THE SPHERE

LEX G. OVERSTEEGEN AND KIRSTEN I. S. VALKENBURG

(Communicated by Alexander N. Dranishnikov)

Abstract. In this paper we will generalize the following well-known result.
Suppose that I is an arc in the complex sphere C∗ and h : I → C∗ is an
embedding. Then there exists an orientation-preserving homeomorphism H :
C∗ → C∗ such that H � I = h. It follows that h is isotopic to the identity.

Suppose X ⊂ C∗ is an arbitrary, in particular not necessarily locally con-
nected, continuum. In this paper we give necessary and sufficient conditions
on an embedding h : X → C∗ to be extendable to an orientation-preserving
homeomorphism of the entire sphere. It follows that in this case h is isotopic to
the identity. The proof will make use of partitions of complementary domains
U ofX, into hyperbolically convex subsets, which have limited distortion under
the conformal map ϕU : D → U on the unit disk.

1. Introduction

The question which embeddings of subcontinua of manifolds are isotopic to the
identity has been extensively studied. Starting with the Schoenflies Theorem that
every two simple closed curves in the plane are equivalently embedded, many pa-
pers have been devoted to a proof of this theorem and the similar result that any
homeomorphism between two simple closed curves in the plane can be extended to
a homeomorphism of the entire plane. See [18] for a recent proof and some history
on this problem. In general strong conditions are necessary (see, for example, [8]
for sufficient conditions on the existence of isotopies in higher dimensions). Bing
and Starbird [3, Theorem 7.3] showed when two linear embeddings of a triangu-
lated complex into the plane are isotopic. It was shown in [15] that an isotopy of a
plane continuum h : X × [0, 1] → C, which starts at the identity, can be extended
to an isotopy of the entire plane. In this paper we will give sufficient conditions
for the existence of an extension of an embedding of an arbitrary continuum X in
the sphere to a homeomorphism of the entire sphere. From this we will be able to
conclude when such an embedding is isotopic to the identity.

Suppose X is a continuum in the sphere C∗, h : X → Y ⊂ C∗ is a home-
omorphism and U is a complementary domain of X. If we want to extend h
homeomorphically over U it is clearly necessary that, given a point z ∈ X which
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is accessible from a complementary domain U of X, h(z) = w is accessible from a
complementary domain V of Y . In other words, the homeomorphism h : X → Y

must induce homeomorphisms ĥU : S1
U → S1

V , where U and V are corresponding
complementary domains of X and Y and S1

U and S1
V are the circles of prime ends

of U and V , respectively. However, as we will show, this by itself is not sufficient.
(It will follow as a corollary to our main result that this condition is sufficient if X
is a locally connected continuum.)

Early results relied on the conformal theory and are especially well-suited to
address the case when X is locally connected. Given a simply connected domain
U in the sphere such that ∂U is a nondegenerate continuum, let ϕU : D → U be a
conformal map. In this case we can identify the unit circle S1

U = ∂D with the circle
of prime ends of U (see [14]). We will identify points θ ∈ S1

U by their arguments
θ ∈ [0, 2π) and call them angles. If ∂U is locally connected, then ϕU extends
continuously to a map ϕU : D → U providing a way to extend the map h over U .
However, if ∂U is not locally connected, the map ϕU is not uniformly continuous
and this method is less promising. We will solve this problem by partitioning the
disk into hyperbolically convex subsets Gα such that the family of maps {ϕU � Gα}
is uniformly equicontinuous.

We denote by AU ⊂ S1
U the set of accessible angles: the set of angles such that

the corresponding external ray Rθ = ϕU ({reθ i | 0 ≤ r < 1}) lands on a point
xθ ∈ ∂U (i.e., Rθ \ Rθ = {xθ}). We will consider the Mazurkiewicz metric ρU on
the set AU which is defined as follows: for θ, γ ∈ AU , ρU (θ, γ) is the infimum of the
diameter of arcs ϕU (A), where A ⊂ D is an open arc from θ to γ. This notion plays
an important role in our main result. As it is of independent interest as well, we
will end this article by showing that AU , with the Mazurkiewicz metric, is always
a separable, complete metric space. However, it can be topologically very different
from a subset of the circle with the standard topology.

Throughout this paper we will assume that we are given a homeomorphism
h : X → Y between two continua in the sphere. Let U and V be complementary
domains of X and Y , respectively. To avoid confusion, the conformal maps to U
and V , respectively, are denoted by ϕU : DU → U and ϕV : DV → V . Similarly,
we denote the respective sets of accessible angles by AU ⊂ S1

U = ∂DU and AV ⊂
S1
V = ∂DV . We can extend both conformal maps over the set of accessible angles

AU and AV , respectively, by defining for θ ∈ AU , ϕU (θ) = xθ (for θ ∈ AV ,
ϕV (θ) = xθ) and we denote these extensions also by ϕU : DU ∪AU → U ∪ϕU (AU )
and ϕV : DV ∪ AV → V ∪ ϕV (AV ). It is well-known [14] that AU and AV are full
measure subsets of S1 and that the extended maps ϕU and ϕV are not necessarily
continuous.

Definition 1.1. Given a homeomorphism h : ∂U → ∂V , we say that a homeomor-

phism ĥ : S1
U → S1

V from the prime end circle of U to the prime end circle of V
is the homeomorphism induced by h or the induced homeomorphism provided that

ĥ � AU : AU → AV is a bijection such that the following diagram commutes:

AU

ϕU �AU

��

ĥ�AU �� AV

ϕV �AV

��

ϕU (AU )
h�ϕU (AU )

�� ϕV (AV )
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In this case we say that the domains U and V are corresponding complementary
domains.

The following theorems are our main results.

Theorem 1.2. Suppose that h : X → Y is a homeomorphism between continua X
and Y in the sphere C∗ such that:

(1) there exists a bijection ψ between the complementary components of X and
Y such that for each component U of C∗ \X, h � ∂U induces a homeomor-

phism ĥU : S1
U → S1

V from the prime end circle S1
U of U to the prime end

circle S1
V of the complementary domain V = ψ(U) of Y ;

(2) the family {ĥU � AU : AU → AV }, over all complementary domains U
of X, is uniformly equicontinuous in the Mazurkiewicz metric, where V =
ψ(U).

Then h extends to a homeomorphism H : C∗ → C∗.

Combining the above with known results, we get the following:

Theorem 1.3 (Main Theorem). Suppose that h : X → Y is a homeomorphism
between two continua X and Y in the sphere. Then the following are equivalent:

(1) h is isotopic to the identity on X;
(2) there exists an isotopy F : C∗ × [0, 1] → C∗ such that F 0 = idC∗ and

F 1 � X = h;
(3) h extends to an orientation-preserving homeomorphism H : C∗ → C∗;
(4) (a) there exists a bijection ψ between the complementary components of X

and Y such that for each component U of C∗ \ X, h � ∂U induces a

homeomorphism ĥU : S1
U → S1

V from the prime end circle S1
U of U to

the prime end circle of the complementary domain ψ(U) = V of Y ;
(b) there exists a complementary domain U of X such that the induced

homeomorphism ĥU : S1
U → S1

V preserves the circular order;

(c) the family {ĥU � AU : AU → AV }, over all complementary domains
U of X, is uniformly equicontinuous in the Mazurkiewicz metric.

Given a sequence of subsets An of the sphere, we say that limAn = A∞ provided
lim dH(An, A∞) = 0, where dH denotes the Hausdorff metric on the space of closed
subsets of the sphere with the spherical metric.

2. Preliminaries

Denote the complex plane by C, the origin by O, the open unit disk by D, its
boundary ∂D by S1 and the complex sphere by C

∗ = C∪ {∞}. Let X be a proper
subcontinuum in the sphere and U a component of C∗\X. We may assume without
loss of generality that U contains the point ∞ at infinity. Let ϕU : DU → U be a
conformal map such that ϕU (O) = ∞. We always assume that ϕU is extended over
AU ; however, this is in general not continuous.

We say that x ∈ X is accessible from U if there exists an angle α ∈ [0, 2π) such
that the (conformal) external ray Rα lands on x. It is well-known that a point
x ∈ X is accessible from U if and only if there exists a continuum Y ⊂ U such that

Y ∩ X = {x}. Moreover, in this case ϕ−1
U (Y \ {x}) ∩ S1

U = {α} is a single point
and Rα lands on x in X; see Milnor [14, Corollary 17.10].
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We will need the following well-known facts from Carathéodory theory; see for
instance [14] and [17]. Suppose U ⊂ C∗ is a simply connected open set containing
∞. A crosscut C of U is an open arc in U \ {∞} whose closure is a closed arc with
its endpoints in ∂U . If C is a crosscut, denote its shadow by Sh(C), defined as the
component of U \ C disjoint from {∞}. It is known that if C is a crosscut of U ,
then ϕ−1

U (C) is a crosscut of DU and ϕ−1
U (Sh(C)) = Sh(ϕ−1

U (C)), where the shadow
of a crosscut D in DU is defined as the component of DU \D disjoint from O. A
sequence of crosscuts {Ci} is a fundamental chain provided that Ci+1 ⊂ Sh(Ci)
and Ci+1 ∩ Ci = ∅ for each i, and lim diam Ci = 0. Two fundamental chains {Ci}
and {C ′

i} are equivalent if Sh(Cn) contains all but finitely many crosscuts C ′
i and

vice versa. An equivalence class of fundamental chains is called a prime end of U .
Given a fundamental chain {Ci}, the set limϕ−1

U (Ci) is an angle α ∈ S1
U , to which

we can identify the corresponding prime end. For a prime end α and a corresponding
fundamental chain {Ci} we can define the impression of α by Imp(α) :=

⋂
Sh(Ci).

Since it is known that Imp(α) does not depend on the choice of a fundamental chain,
this is well-defined. The principal set of Rα or α is given by Π(α) := Rα \ Rα. It
is known that Π(α) ⊂ Imp(α) and that for each point x ∈ Π(α) there exists a
fundamental chain {Ci} of the prime end α such that limCi = x. Such a family
{Ci} is called a defining family of crosscuts of the prime end α.

The main tool we will be using in this paper is a modification of a partition
of U which is due to Kulkarni and Pinkall [12]; see [5, 15, 4] for applications (of
the modified version). Let B denote the collection of all maximal round open balls
B(z, r) ⊂ U (that is, open balls in the sphere equipped with the spherical metric,
of radius r about z and such that |∂(B(z, r)) ∩ ∂U | ≥ 2). Let C be the collection
of all centers of such balls and for c ∈ C let r(c) be the corresponding radius.
Note that for each c ∈ C, the ball B := B(c, r(c)) is conformally equivalent to the
unit disk D and hence can be endowed with the hyperbolic metric, denoted by ρB.
Geodesics in this metric are intersections of B with round circles C ⊂ C∗ which
cross the boundary ∂B perpendicularly. For every geodesic g, there are exactly
two components of B \ g. The closure in B of such a component is a hyperbolic

halfplane of B. Let F (c) denote the hyperbolic convex hull of B(c, r(c)) ∩ ∂U in

B(c, r(c)), where B(c, r(c)) is equipped with ρB(c,r(c)), given by the intersection of

all hyperbolic halfplanes of B(c, r(c)) that contain B(c, r(c)) ∩ ∂U ; see Figure 1.
Denote F := {F (c) : c ∈ C}. The following theorem is due to Kulkarni and Pinkall;
see [12]:

Theorem 2.1 (Kulkarni-Pinkall). For each z ∈ U there exists a unique c ∈ C such
that z ∈ F (c). In particular, if c1 �= c2 ∈ C, then F (c1) ∩ F (c2) ∩ U = ∅.

Hence F ′ := {F (c)∩U : c ∈ C} is a partition of U into disjoint closed subsets. Let
KP(c) be the collection of all nondegenerate chords in ∂F (c) and observe that their
endpoints are accessible points in ∂U . Consider the collection KP :=

⋃
c∈C KP(c).

Note that for a, b ∈ ∂U there may be uncountably many chords in KP joining a and
b. We will replace the collection KP by the collection H, defined below, which has
the property that for each two accessible points in ∂U there is at most one chord
joining them. We denote by G(α, β) the hyperbolic geodesic in DU connecting
α, β ∈ S1

U . The collection

L := {G(α, β) : ∃g ∈ KP, ϕ−1
U (g) has endpoints α, β ∈ S1

U}
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Figure 1. The grey areas depict two hyperbolic convex hulls.

is a lamination of DU in the sense of Thurston, [19]. We modify the partition of U
by, instead of KP, considering the collection

H := {ϕU (G(α, β)) : G(α, β) ∈ L}.
We call its elements hyperbolic leaves and a component of U \

⋃
H a hyperbolic gap.

By Fokkink et al. [5] we have that for every hyperbolic leaf � there is a c ∈ C such
that � ⊂ B(c, r(c)); however, this correspondence is no longer unique. Nevertheless,
this can be strengthened to stating that the collection of hyperbolic leaves and
hyperbolic gaps has essentially the same property as F as given in Theorem 2.1:

Theorem 2.2 ([5, Theorem 4.5]). For each z ∈ U there exists either a unique
hyperbolic leaf � ∈ H so that z ∈ �, or a unique hyperbolic gap Γ generated by H so
that z ∈ Γ. In particular, any two distinct hyperbolic leaves do not cross each other
in U .

A part of the correspondence between balls and elements of the lamination KP
remains valid for the hyperbolic lamination H; see [5, Lemma 4.1]:

Lemma 2.3 (Jörgensen). Let B ⊂ U be a round open ball in C∗. Let G ⊂ DU

be a hyperbolic geodesic. Then ϕU (G) ∩ B is connected. Moreover, if � ∈ H and
� \ � ⊂ ∂B ∩ ∂U , then � ⊂ B.

It follows from Lemma 2.3 (see [5, Lemma 4.4]) that for each hyperbolic leaf or
gap F , there exists B ∈ B such that F ⊂ B. For completeness, we include a useful
corollary following [5, Proposition 5.1].

Corollary 2.4. Suppose that {�i} ⊂ H and suppose there are xi ∈ �i such that
xi → x for some x ∈ U . Then there is a unique hyperbolic leaf � ∈ H that contains
x and, moreover, lim �i = �. If {�i} is a convergent sequence in H, but there is no
convergent sequence {xi} with xi ∈ �i and limxi ∈ U , then lim �i is a point in ∂U .

We will also use the following well-known theorem (e.g. [17, Theorem 4.20]).

Theorem 2.5 (Gehring-Hayman Theorem). There exists a universal constant K
such that for any conformal map ϕ : D → C, if z1, z2 ∈ D, J is an arc in D from z1 to
z2, and G is the hyperbolic geodesic from z1 to z2, then diam ϕ(G) ≤ Kdiam ϕ(J).

The circular order < on S1 is defined as follows. For α �= β �= γ ∈ S1 we
have α < β < γ, whenever following the arc from α along S1 in the direction of
increasing arguments and stopping when γ is encountered for the first time, one
encounters β before γ.
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Definition 2.6. We say that a homeomorphism ĥ : S1 → S1 preserves the circular

order on S1 if ĥ(α) < ĥ(β) < ĥ(γ) whenever α < β < γ in the circular order on S1.

3. Extending a homeomorphism over one complementary domain

Throughout this section we will assume that we are given a homeomorphism
between two continua h : X → Y in the sphere. We may also assume that U and
V are corresponding complementary domains both containing ∞.

Definition 3.1. A function f : S1
U → S1

V is called M-uniform if f(AU ) ⊂ AV and
f � AU is uniformly continuous with respect to the Mazurkiewicz metrics of AU

and AV .

Remark 3.2. Observe that if h � ∂U : ∂U → ∂V induces a homeomorphism ĥ :
S1
U → S1

V and if there exists a homeomorphic extension H : X ∪ U → Y ∪ V of

h � ∂U , then ĥ is M-uniform.

Given the proper simply connected subset U ⊂ C∗ we construct the lamination L
of DU as described in the preliminaries and denote it by LU , and the corresponding
collection of hyperbolic leaves H, denoted by HU := ϕU (LU ) in U .

Let U and V be the corresponding domains of X and Y . On the two copies of the
hyperbolic disk, we now change to the Cayley-Klein model. Therefore consider the
homeomorphism g : D → D from the Poincaré model to the Cayley-Klein model,
given in polar coordinates by g(r, θ) = (2r/(1 + r2), θ). This is the identity on the
boundary S1 of D, the map g preserves radial line segments and for any two points
α1, α2 ∈ S1 the hyperbolic geodesic G(α1, α2) joining α1 and α2 is mapped to the
straight line segment α1α2, which is the (open) Euclidean chord of the unit disk
from α1 to α2.

Lemma 3.3. Suppose there exists a homeomorphism ĥ : S1
U → S1

V induced by

h � ∂U : ∂U → ∂V . Then there exists a homeomorphic extension Ĥ : DU → DV of

ĥ such that for every hyperbolic geodesic G(α, β) ∈ LU we have that Ĥ(G(α, β)) is

the hyperbolic geodesic joining ĥ(α) and ĥ(β). In particular LV := {Ĥ(G(α, β)) :
G(α, β) ∈ LU} forms a lamination in DV .

Proof. Define EU := g(LU ), a Euclidean lamination of the unit disk consisting of
Euclidean chords. Denote the Euclidean chord from α ∈ S1 to β ∈ S1 in D by αβ.

Define EV := {ĥ(α)ĥ(β) : αβ ∈ EU} and observe that this is a lamination as well,

since ĥ is a homeomorphism. We will first define a map L : DU → DV . For every

αβ ∈ EU , let L � αβ : αβ → ĥ(α)ĥ(β) be the linear extension of ĥ � {α, β}. If Γ is
a gap in EU , that is, a component of DU \

⋃
EU , denote its (Euclidean) barycenter

by bΓ. Note that L is already defined on the entire boundary of Γ. Then the image
of the union of all the leaves in the boundary of Γ forms the boundary of a gap Δ
of EV . Let bΔ denote the barycenter of Δ.

Define L(bΓ) = bΔ and extend L over Γ by mapping, for each x ∈ ∂Γ, the segment
xbΓ linearly onto the segment L(x)bΔ. Then L : DU → DV is a homeomorphism
which maps every leaf � ∈ EU linearly onto the corresponding leaf in EV . Finally
define Ĥ : DU → DV by Ĥ := g−1 ◦L ◦ g. Then Ĥ is the required homeomorphism.

�
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Theorem 3.4. Suppose there exists a homeomorphism ĥ : S1
U → S1

V induced by
h � ∂U : ∂U → ∂V , which is M-uniform. Then there exists a homeomorphic
extension H : X ∪ U → Y ∪ V of h.

Proof. Apply Lemma 3.3 to find an extension Ĥ : DU → DV of ĥ and define
H : X ∪ U → Y ∪ V to be H � U := ϕV ◦ Ĥ � DU ◦ ϕ−1

U and H � X := h. This
is clearly a well-defined bijective extension of h. Denote the induced lamination
for V by HV := H(HU ) = ϕV (LV ). By T we denote a hyperbolic object that is
either a hyperbolic leaf or a hyperbolic gap forHU . By the above considerations and
compactness ofX∪U ⊂ C

∗, we only need to verify continuity ofH. By construction
it is clear that H � U : U → V is a homeomorphism. This also holds for H � T ,
with T a hyperbolic object (see [4]). Hence we only have to be concerned about
sequences in U lying in infinitely many distinct hyperbolic objects that converge to
a point in ∂U . Without loss of generality, we can consider a convergent sequence
{xn} ⊂ U with xn ∈ Tn and Tn �= Tm whenever n �= m, for which x := lim xn ∈ ∂U .
There are two cases: either diam Tn → 0 or diam Tn �→ 0. We will show that in
either case H(xn) → H(x).

Case one. Suppose that diam Tn → 0. For each n we can find two accessible
angles αn, βn with xαn

and xβn
in Tn ∩ ∂U that can be connected by an arc whose

image runs in Tn \ ∂U . Hence ρU (αn, βn) → 0 and by the assumption of M-

uniformity we have that ρV (ĥ(αn), ĥ(βn)) → 0. This implies that there have to be
arcs in DV with small images in V connecting h(xαn

) and h(xβn
), independent of

the choice of αn, βn. In addition, by construction and Theorem 2.5 we find that for
every choice of �n ⊂ ∂Tn we have diam H(�n) → 0. Note that ∂H(Tn) = H(∂Tn)
(see [4]). We conclude that diam H(Tn) → 0. Furthermore, in particular we find
that if limxαn

= x, then h(x) = limh(xαn
) = limH(Tn) = limH(xn) ∈ ∂V and

H(xn) → H(x) = h(x).
Case two. Suppose that diam Tn �→ 0. By Corollary 2.4, we may assume that

limTn = � for some hyperbolic leaf � ∈ HU . Moreover, we may assume that the
sequence Tn converges monotonically to � from one side of �. Denote the endpoints

of ϕ−1
U (�) by α and β. It follows that lim supH(Tn) ⊂ Imp(ĥ(α))∪H(�)∪Imp(ĥ(β)).

We will first show that limH(Tn) = H(�). Let Bn ∈ B such that Tn ⊂ Bn. Then
Bn → B ∈ B and � ⊂ B.

Now construct disjoint arcs ϕV (L̂
′) (ϕV (R̂

′)) with endpoint h(a) (h(b)), for
ϕU (α) = a (ϕU (β) = b, resp.) such that H(Tn) is located “between” these two

arcs. To see how the arcs L̂′ and R̂′ are constructed note first that the sets of
centers C of maximal balls is an R-tree [2, 6]. In particular it is uniquely arcwise
connected. Let [c1, c] ⊂ C denote the unique arc whose endpoints are the centers
of B1 and B. Let r be the radius of B, δ the diameter of � and let η = min{r, δ}.
We may assume that dH(

⋃
Tn, �) < η/10 and cn ∈ [c1, c] ⊂ B(c, η/10) for each n,

where cn is the center of Bn. Let L be the union of all leaves in HU such that
both endpoints are contained B′ ∩ X ∩ B(a, η/5) for some B′ ∈ B with center

c′ ∈ [c1, c] together with all points of
⋃

c′∈[c1,c]
B(c′, r(c′)) ∩X ∩ B(a, η/5) (see [5,

Lemma 6.1.1]). Note that for each n, Tn ∩ L is connected. Construct R similarly.
Observe that for each n, Tn is located “between” L and R.

Then Ĥ ◦ ϕ−1
U (L) = L̂ and Ĥ ◦ ϕ−1

U (R) = R̂ are arcs in DV . We can replace the

closure of every component of L̂ \ Ĥ ◦ ϕ−1
U (Tn) by an arc with the same endpoints

which meets ∂DV nontangentially at both endpoints and is otherwise disjoint from
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∂DV . Denote the new arc by L̂′ and similarly construct R̂′. By the Lindelöf
Theorem, [17], ϕV (L̂

′) and ϕV (R̂
′) are arcs in V with endpoints h(a) and h(b) such

that H(Tn) is located “between them”. Hence limH(Tn) ⊂ H(�), as desired.
We may assume that limxn = x = ϕU (α). Suppose limH(xn) �= H(ϕU (α)) and

we may assume that limH(xn) = z ∈ H(�) \ {H(ϕU(α))}. Then limϕ−1
V (H(xn)) ∈

ϕ−1
V (H(�)) \ϕ−1

V (H(ϕU (α))) = Ĥ(ϕ−1
U (�)) \ {ĥ(α)}. However, xn → ϕU (α) implies

ϕ−1
U (xn) → α and hence ϕ−1

V (H(xn)) = Ĥ(ϕ−1
U (xn)) → ĥ(α). This contradiction

completes the proof. �

We have the following corollaries.

Corollary 3.5. Let X and Y be nonseparating planar continua and suppose there
exists a homeomorphism h : X → Y . Suppose there exists a homeomorphism

ĥ : S1
U → S1

V induced by h � ∂U : ∂U → ∂V which preserves the circular order and
is M-uniform. Then h is isotopic to the identity on X.

Proof. We may view X and Y as subsets of the sphere and apply Theorem 3.4
to find an extension H of h such that H : C∗ → C∗ is a homeomorphism. Then
we can compose H by an orientation-preserving homeomorphism K : C∗ → C

∗

such that K � Y = idY and K(H(∞)) = ∞. Hence we obtain a homeomorphism
G = K ◦H which extends h and fixes the point at infinity, so that its restriction to

C is a homeomorphism as well and an extension of h. Since ĥ preserves the circular
order, H and thus G is orientation preserving. Hence, h is isotopic to the identity
[10, Theorem 6.4]. �

Corollary 3.6. Suppose there exists a homeomorphism ĥ : S1
U → S1

V induced
by h � ∂U : ∂U → ∂V which is M-uniform. Then for every α ∈ S1

U we have

h(Π(α)) = Π(ĥ(α)), the inverse ĥ−1 is M-uniform as well and ĥ : S1
U → S1

V is a
homeomorphism with respect to both the usual and the Mazurkiewicz metrics on the
entire prime end circles as defined in Section 5.

4. Extending a homeomorphism over more than one

complementary domain

As in the previous section we will assume that we are given a homeomorphism
between two continua h : X → Y in the sphere.

Definition 4.1. Suppose that Un and Vn are corresponding domains, ĥn : S1
Un

→
S1
Vn

are homeomorphisms and ρUn
and ρVn

are Mazurkiewicz metrics on AUn
and

AVn
. Then we say that the family {ĥn : S1

Un
→ S1

Vn
} is uniformly equicontinuous

in the Mazurkiewicz metric provided that

∀ε∃ δ ∀n ∀α, β ∈ AUn
(ρUn

(α, β) < δ ⇒ ρVn
(ĥn(α), ĥn(β)) < ε).

Remark 4.2. Observe that if h � ∂Un : ∂Un → ∂Vn induces a homeomorphism

ĥn : S1
Un

→ S1
Vn

for every n and if there exists a homeomorphic extension H on

X∪
⋃
Un of h, then the family {ĥn} is uniformly equicontinuous in the Mazurkiewicz

metric.

Theorem 4.3. Let X and Y be two continua in the sphere and suppose there exists
a homeomorphism h : X → Y . Suppose that there exists a bijection ψ between the
complementary components of X and Y such that whenever Un is a component of
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C∗ \ X and Vn = ψ(Un), then h � ∂Un : ∂Un → ∂Vn induces a homeomorphism

ĥn : S1
Un

→ S1
Vn

between the circles of prime ends of Un and Vn, respectively.

Furthermore, assume that the family of the maps {ĥn} is uniformly equicontinuous
in the Mazurkiewicz metric.

Then h can be extended to a homeomorphism H : C∗ → C∗ of the entire sphere.

Proof. Enumerate the complementary domains of X as U1, U2, . . . and for each
n ≥ 1, let Vn = ψ(Un) be the complementary domain of Y which corresponds to

Un. Apply Lemma 3.3 to find an extension Ĥn : DUn
→ DVn

of the homeomorphism

ĥn : S1
Un

→ S1
Vn

. Analogously to Theorem 3.4, put Hn : X ∪ Un → Y ∪ Vn to be

Hn � Un := ϕVn
◦ Ĥ � DUn

◦ ϕ−1
Un

and Hn � X := h. Observe that composing
by Möbius transformations we can treat all complementary domains in a similar
fashion. It is clear that each Hn is a homeomorphism. Put H =

⋃
Hn. If X has

only finitely many complementary domains we are done. If not, it remains to be
established whether H is continuous on a sequence {xi} → x ∈ X with xi ∈ Uni

and ni �= nj whenever i �= j. Let Tni
denote the hyperbolic object (either a leaf or

a gap) generated by the lamination HUni
of Uni

for which xi ∈ Tni
. By Lemma 2.3,

there exists a maximal ball (though possibly not unique) Bn ⊂ Uni
with Tni

⊂ Bn.
Clearly, diam Bn → 0; hence also diam Tni

→ 0. Thus we may replace our sequence
{xi} by a sequence {x′

i}, where x′
i ∈ �i ⊂ ∂Tni

. Now since diam �i → 0, we have
for the angles αi, βi corresponding to the endpoints of �i that ρUni

(αi, βi) → 0

and hence, by the assumption, ρVni
(ĥni

(αi), ĥni
(βi)) → 0. By construction and

Theorem 2.5 we have that diam H(�i) → 0; hence H(limxi) = H(limx′
i) = H(x).

In fact, we now obtain a homeomorphism H : C∗ → H(X) ⊂ C∗; hence H(X) =
C

∗. �

We have the following corollaries.

Corollary 4.4. Let X and Y be two continua in the sphere and suppose there exists
a homeomorphism h : X → Y . Suppose that there exists a bijection ψ between the
complementary components of X and Y such that whenever Un is a component of
C

∗ \ X and Vn = ψ(Un), then h � ∂Un : ∂Un → ∂Vn induces a homeomorphism

ĥn : S1
Un

→ S1
Vn

between the circles of prime ends of Un and Vn, respectively.

In addition, assume there exists an n0 for which ĥn0
preserves the circular order.

Furthermore, assume the family of the maps {ĥn} is uniformly equicontinuous in
the Mazurkiewicz metric. Then h is isotopic to the identity.

Corollary 4.5. Let X and Y be locally connected continua in the sphere and sup-
pose there exists a homeomorphism h : X → Y . Suppose that there exists a bijection
ψ between the complementary components of X and Y such that whenever Un is
a component of C

∗ \ X and Vn = ψ(Un), then h � ∂Un : ∂Un → ∂Vn induces

a homeomorphism ĥn : S1
Un

→ S1
Vn

between the circles of prime ends of Un and

Vn, respectively. In addition, assume there exists an n0 so that ĥn0
preserves the

circular order. Then h is isotopic to the identity on X.

Proof. By Carathéodory’s Theorem (e.g. [14, Theorem 17.14]) if X is locally con-
nected and U is a complementary domain of X, then ϕU : DU → U extends to a
continuous map from DU onto U . Hence, ϕU is uniformly continuous. This implies
that AU = S1

U and also that the usual topology on S1
U coincides with the topology



1504 LEX G. OVERSTEEGEN AND KIRSTEN I. S. VALKENBURG

generated by the Mazurkiewicz metric ρU . Moreover, if an induced homeomorphism

ĥ : S1
U → S1

V exists, then by compactness ĥ is M-uniform.
It is well-known that if Y is a locally connected continuum in the sphere and

dn = diam(Vn), where dn = 0 if Vn = ∅, then lim dn = 0. Hence, the condition of
uniform equicontinuity in Corollary 4.4 is now automatically satisfied. �

We claim that the condition of uniform equicontinuity in the Mazurkiewicz met-
ric in Corollary 4.4 is necessary. For omitting the condition, we have a counterex-
ample in the case with one complementary domain and in the case with infinitely
many complementary domains. For this, we use the continua sketched in Figure 2.

Example 4.6. In Figure 2, consider the upper continuum X and the lower con-
tinuum Y sketched with solid and dashed lines and ignore the dotted lines. Both
consist of curled hairs, converging to a vertical segment and connected to each
other by a horizontal line, together with hairs emanating from the limit vertical
segment and converging to that vertical segment as well. Now X and Y both have
one complementary domain. Furthermore, they are homeomorphic; let h : X → Y
denote the natural homeomorphism. Let U = C∗ \X and V = C∗ \ Y and denote
by ϕU : DU → U and ϕV : DV → V the Riemann maps. There is an angle α ∈ S1

U

for which a ray lands at the point xα, the endpoint of the limit vertical segment
of the curled hairs. Without loss of generality, there is an angle β−

1 > α such
that ϕU (β

−
1 ) = xβ1

and observe that ϕU extends over the positively oriented arc

[α, β−
1 ] and that the image of this arc is the union of the vertical line containing

xα and the horizontal line containing xβ1
. Continue to find an angle γ1 > β−

1 with

ϕU (γ1) = xγ1
and observe that ϕU extends over an arc [β−

1 , γ1] corresponding to
the first curled hair, approached from the left. Next, there is an angle β+

1 > γ1
that goes with xβ1

and an arc [γ1, β
+
1 ] wrapping around the right side of the curled

hair. Continuing in this fashion, we find angles with for each i ≥ 1 the property
α < β−

i < γi < β+
i < β−

i+1 < γi+1 < βi+1 < α. Necessarily, the length of arcs

[β−
i , β−

i+1] tends to zero. Starting at α, but going in the opposite direction, we can
find angles α = α0 > δ1 > α1 > δ2 > α2 . . ., with ϕU (δi) = xδi and ϕU (αi) = xα so
that the image of the arcs [αi−1, αi] wraps around the hair with endpoints xδ1 and
xα respectively. We find that {δi} and {αi} converge to the same angle as {γi};
however, note that the ray that corresponds to this particular angle does not land.

Observe that for Y , we find that ϕV behaves analogously. Here we can find
an angle α′ = α′

0 and sequences of angles {β′−
i }, {β′+

i }, {γ′
i}, {δ′i} and {α′

i} so
that for i ≥ 1 we have ϕV (α

′) = yα′ , ϕV (β
′−
i ) = yβ′

i
= ϕV (β

′+
i ), ϕV (γ

′
i) = yγ′

i
,

ϕV (δ
′
i) = yδ′i and ϕV (αi) = yα′ and furthermore α′ < β′−

i < γ′
i < β′+

i < β′−
i+1 <

γ′
i+1 < β′+

i+1 < α′
i+1 < δ′i+1 < α′

i < δ′i < α′. We can now define ĥ, as follows. If

η ∈ [β−
i , γi], let ĥ(η) be the unique angle in [β′−

i , γ′
i] for which h(ϕU (η)) = ϕV (ĥ(η)).

Similarly, if η ∈ [γi, β
+
i ], let ĥ(η) ∈ [γ′

i, β
′+
i ] with h(ϕU (η)) = ϕV (ĥ(η)). Intervals

[α, β−
1 ] and [β+

i , β−
i+1] can also be mapped to [α′, β′−

1 ] respectively [β′+
i , β′+

i+1] so

that h(ϕU (η)) = ϕV (ĥ(η)) and similarly [αi, δi] and [δi, αi−1] can be mapped to

[α′
i, δ

′
i] respectively [δ′i, α

′
i−1] for i ≥ 1. The function ĥ is now well-defined and

evidently continuous on S1
U \ {limαi}. However, by definition we also have that

whenever lim ηn = limαi, then lim ĥ(ηn) = lim ĥ(αi) = limα′
i. We can extend

ĥ � AU to find a homeomorphism ĥ : S1
U → S1

V induced by h. Moreover, the
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Figure 2. Homeomorphic continua that are not isotopic (one pair
with solid and dashed lines and one pair with solid and dotted
lines).

function ĥ � AU is continuous with respect to the Mazurkiewicz metrics ρU and ρV
because limαi �∈ AU .

However, the function ĥ is not M-uniform. Indeed, denote by θi the angle in

[γi, β
+
i ] for which d(ϕU (θi), xβi

) is maximal. Let ĥ(θi) = θ′i and recall that ĥ(γi) =
γ′
i. Then ρU (γi, θi) → 0 while for the image points lim inf ρV (γ

′
i, θ

′
i) = ε > 0. Hence

h cannot be extended to a homeomorphism of the sphere.
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Observe that without the hairs with endpoints xδi and yδ′i the induced function

ĥ � AU would already have failed Mazurkiewicz continuity at the angle α.

Example 4.7. Consider the upper continuum X and the lower continuum Y
sketched in Figure 2 with solid and dotted lines, but not with dashed lines. Thus
we have two homeomorphic continua that both have infinitely many complemen-
tary domains. Let h denote the natural homeomorphism. Since the boundary
of each complementary domain is locally connected, by the same argument as

in Corollary 4.5, we can find homeomorphisms ĥn : S1
Un

→ S1
Vn

, induced by
h � ∂Un that are also homeomorphisms with respect to the Mazurkiewicz met-
rics. By compactness, we even have uniform continuity on each domain. However,
the uniformity condition on all domains simultaneously fails. Suppose that Ui is
in the ith rectangle. Then there are angles β−

i < θ−i < γi < θ+i < β+
i with

ϕUi
(β−

i ) = ϕUi
(β+

i ) = xβi
, ϕUi

(γi) = xγi
and ϕUi

(θ+i ) = ϕUi
(θ−i ) = xθi . We can

similarly find angles β′−
i , β′+

i for Vi and define ĥi so that [β−
i , β+

i ] is mapped onto

[β′−
i , β′+

i ] with h(ϕUi
(η)) = ϕVi

(ĥi(η)) for every η ∈ S1
Ui
. Then ρUi

(γi, θ
−
i ) → 0,

but ρVi
(ĥi(γi), ĥi(θ

−
i )) �→ 0. Since the family {ĥn} is not uniformly equicontinu-

ous in the Mazurkiewicz metric, h cannot be extended to a homeomorphism of the
sphere.

5. The Mazurkiewicz metric

We now consider a proper, simply connected open subset U and the conformal
map ϕU : DU → U as discussed in the preliminaries. We will identify the (entire)
unit circle S1

U = ∂DU with the circle of prime ends of U and equip it with the
Mazurkiewicz metric ρU defined as follows: if α = β, set ρU (α, β) = 0; if α �= β,
then

ρU (α, β) = inf{diam ϕU (J) : J is an open arc in DU whose closure

is a closed arc in DU ∪ {α, β} from α to β}.

Denote the standard Euclidean topology on S1
U by TE and the topology induced by

the Mazurkiewicz metric by TM. We will show that TE ⊂ TM and that S1
U , with

the topology TM, can contain an uncountable discrete subset. Nevertheless we will
show that the subspace (AU , TM) is always a separable and complete metric space
(see [9, 16] for related results). Since the space (AU , TM) of accessible angles can
contain a one-dimensional totally disconnected subspace, the topology TM on AU

is very different from TE . It is well-known that ρU is a metric. Hence the easy proof
of the following lemma is omitted.

Lemma 5.1. The Mazurkiewicz metric ρU is a metric on S1
U .

We will list some observations regarding the Mazurkiewicz metric and angles
that correspond to accessible points and two examples.

Remark 5.2. With respect to the usual topology on S1
U , the subset of accessible

angles AU is a dense subset of S1
U of full measure (e.g. [14, Theorem 17.4]).

Lemma 5.3. Every α ∈ S1
U \ AU is isolated in the Mazurkiewicz metric.

Proof. For α /∈ AU and α �= β we always find ρU (α, β) ≥ diam Π(α) > 0. �
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Example 5.4. The unit circle equipped with the Mazurkiewicz metric is not nec-
essarily separable. In the light of Lemma 5.3, it suffices to provide an example of a
continuum for which uncountably many angles are not accessible angles. A special
embedding of the pseudo-arc P in the plane has the property that any two distinct
accessible points are in distinct composants (i.e. no proper subcontinuum X of P
contains more than one accessible point); cf. [13]. Now let P be that continuum

and U = C \ P ∪ {∞}. Let C be any crosscut of P . Then P ⊂ Sh(C), for if this is
not the case, then this crosscut would enable us to find a proper subcontinuum of
P containing two accessible points. Hence all impressions are equal to P . It now
follows from a theorem of Collingwood [7] that the set of angles whose principal set
is P is a dense, second category subset of S1

U . Hence S1
U \ AU is uncountable and

(S1
U , ρU ) contains uncountably many isolated points.

Example 5.5 (Hairy Circle). As a variation on the construction of the Hairy
Arc by Aarts and Oversteegen [1], we describe the construction of a continuum X
in the plane called the Hairy Circle. There exists an upper semicontinuous map
l : S1 → [0, 1] called the length function, such that

(1) for all z ∈ C we have z ∈ X if and only if z = (1 + λ)x, where x ∈ S1 and
0 ≤ λ ≤ l(x);

(2) the sets {x ∈ S1 : l(x) > 0} and {x ∈ S1 : l(x) = 0} are both dense in S1;
and

(3) for each x ∈ S1 with l(x) > 0 there exist sequences (yn)n and (y′n)n in S1

such that yn ↑ x, y′n ↓ x and lim l(yn) = lim l(y′n) = l(x).

Let U be the unbounded complementary domain of X and let ϕ : D → U ∪{∞} be
a conformal map. In this case it is easily verified that the set of accessible angles
A = S1, but we will show that (A, ρU ) is homeomorphic to the subset of the plane of
all accessible points in ∂U . Indeed, the map α �→ ϕ(α) is a bijection, and it is clear
that whenever αn → α in the Mazurkiewicz sense, so that there are arcs Jn joining
αn and α with diam ϕ(Jn) → 0, then also xαn

→ xα in the plane. To establish
continuity of the inverse map, suppose that xαn

→ xα, but for some ε > 0 and all
arcs Jn connecting αn and α we have that diam ϕ(Jn) > ε. Let x, xn ∈ S1 be the
unique points for which xαn

= (1 + l(xn))xn and xα = (1 + l(x))x. In particular,
xn → x in the usual topology on S1. By the property for arcs connecting αn and
α, there also exist yn ∈ S1 so that l(yn) ≥ l(x) + ε and with yn → x. Since by
upper semicontinuity the set {y ∈ S1 : l(y) ≥ l(x)+ ε} is closed in S1, we find that
x is in the set and hence l(x) ≥ l(x) + ε, a contradiction.

The subspace of the plane consisting of endpoints of hairs {(1 + l(x))x : x ∈
S1 and l(x) > 0} is homeomorphic to complete Erdős space (the subspace of �2, all
of whose coordinates are irrational) according to [11]. Since that space is totally
disconnected, yet one dimensional, the usual topology on the circle and the topology
generated by the Mazurkiewicz metric do not necessarily coincide, even when all
external rays land.

Let X be the Hairy Circle constructed above and let h, k : X → C be any
two embeddings of X in the plane such that in both cases the boundary of the
bounded complementary domain of h(X) and of k(X) is a circle. Then it follows
from Theorem 4.3 that the homeomorphism h◦k−1 : k(X) → h(X) can be extended
over the sphere and any two such continua are equivalently embedded in C.

Lemma 5.6. The Mazurkiewicz metric is complete.
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Proof. Suppose we are given a sequence of angles (αi)i∈N that is Cauchy with
respect to the Mazurkiewicz metric. We may assume that the sequence (αi) is not
constant and, hence, diam(Π(αi)) → 0. Then we can find a subsequence (αij )j∈N

and arcs Jj from αij to αij+1
such that diam ϕU (Jj) < 2−j and limαij = α in TE .

Assume ij = j for all j. Put Pn =
⋃

j≥n Jj and ϕU (Pn) = P ′
n. Then diam(P ′

n) → 0,

and we may assume that limP ′
n = x. If x /∈ ∂U , we would be able to find an open

neighbourhood N of x in the sphere such that N ∩ ∂U = ∅, which is impossible
since for some m ∈ N we have that Pm ⊂ N . We can approximate each Pn by
an open arc An whose closure is an arc joining the points αn and α such that
diam(ϕU (An)) ≤ diam(P ′

n) + 1/n. Hence ρU (αn, α) → 0 and moreover α ∈ AU .
Then limαi = α in TM, as required. �

Note that by Lemma 5.3, the subspace AU of (S1
U , TM) is a closed subset. Hence

we have the following corollary.

Corollary 5.7. The subspace AU with the Mazurkiewicz metric is a complete met-
ric space.

Lemma 5.8. The topology generated by the Mazurkiewicz metric on S1
U is stronger

than the original topology.

Note that we do not intend to show that the topology is strictly stronger. Indeed,
take X = S1.

Proof. If α /∈ AU , then the set {α} is open with respect to the Mazurkiewicz
metric by Lemma 5.3, so let α ∈ AU be arbitrary and consider some open interval
N ⊂ S1

U containing α. Then we can find angles β, β′ ∈ AU with β < α < β′

and ϕU (β) �= ϕU (α) �= ϕU (β
′) �= ϕU (β) such that the interval (β, β′) ⊂ N . Let

r < ∞ be such that X ⊂ B(O, r/2), the closed ball about O of radius r/2. Define
ε = d(Rα ∩ B(O, r), (Rβ ∪ Rβ′) ∩ B(O, r)) and note that ε > 0. Let γ /∈ N . It
suffices to show that ρU (α, γ) ≥ ε. For this, note that there has to exist an arc
J connecting α and γ within B(O, r) and that the image of such an arc intersects
either Rβ or Rβ′ by an order argument. Hence the image under ϕU always has
diameter at least ε and ρU (α, γ) ≥ ε. �

Corollary 5.9. If dim(AU , TE) = 0, then (AU , TM) is totally disconnected.

Proposition 5.10. The subspace AU of S1
U equipped with the Mazurkiewicz metric

is separable.

Proof. We consider the hyperbolic lamination H of U introduced in the prelim-
inaries. Let N be the collection of all centers c ∈ C such that for the maximal
ball B(c, r(c)) = B, B ∩ ∂U contains nondegenerate arcs Icn. Then N is countable
and J =

⋃
c∈N

⋃
n ϕ

−1
U (Icn) is a countable union of subarcs of S1

U . Since on each

arc ϕ−1
U (Icn) the Mazurkiewicz topology and the normal subspace topology of S1

U

coincide, J contains a countable dense subset. Hence we only need to consider
AU \ J .

It follows from Corollary 2.4 that if Hn := {� ∈ H | diam(�) ≥ 1/n}, then the
collection H∗

n of the closures of all hyperbolic leaves in Hn is a compact subset of
the hyperspace of closed subsets 2C

∗
of the sphere. Hence there exists a countable

collection Cn of hyperbolic leaves in Hn such that the closure of every hyperbolic
leaf in Hn is the limit of a sequence of hyperbolic leaves in Cn. Let Ln be the
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collection of all leaves of the form ϕ−1
U (�) for � ∈ Cn and let E be the set of all

endpoints of leaves in
⋃

n Ln.
Then E is a countable subset of AU . We claim that E is dense in AU \ J .

To see this choose θ ∈ AU \ J . If ϕU (θ) is the endpoint of a hyperbolic leaf
� ∈ H, then there exist n and a sequence �i ∈ Cn such that lim �i = �. Hence one
endpoint, say xi of �i, must converge to ϕU (θ). Note that if the hyperbolic leaf �i
is contained in the maximal ball Bi, then limBi = B is a maximal ball containing
� (see [5, Section 4]). It now follows easily that ϕ−1

U (xi) must converge to θ in the
Mazurkiewicz metric. On the other hand, suppose that ϕU (θ) is not the endpoint
of any hyperbolic leaf in H. Consider the external ray Rθ which runs from ∞ to
ϕU (θ) = xθ. By Theorem 2.2, there is either a single hyperbolic gap Γ of H which
contains a terminal segment of Rθ, or there exists a sequence of hyperbolic leaves
�i ∈ H such that lim �i = xθ. In the latter case, since each �i is approximated by
hyperbolic leaves in some Cn, there exists a sequence of points θi ∈ E such that
θ = lim θi. In the first case, since θ ∈ AU \ J , ϕU (θ) is not the endpoint of a
hyperbolic leaf and xθ is contained in the closure of a single hyperbolic gap Γ, there
exists a countable sequence of hyperbolic leaves �i ⊂ ∂Γ which converges to ϕU (θ).
By construction of the collections Cn, the hyperbolic leaves �i are approximated
by hyperbolic leaves from

⋃
n Cn. It now follows easily that also in this case there

exists a sequence of points θi ∈ E such that θ = lim θi in the Mazurkiewicz metric.
This completes the proof. �
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