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PLANAR SOBOLEV HOMEOMORPHISMS

AND HAUSDORFF DIMENSION DISTORTION

TAPIO RAJALA

(Communicated by Mario Bonk)

Abstract. We investigate how planar Sobolev-Orlicz homeomorphisms map
sets of Hausdorff dimension less than two. With the correct gauge functions
the generalized Hausdorff measures of the image sets are shown to be zero.

1. Introduction

We study Sobolev mappings f ∈ W 1,1
loc (Ω;R

2), where Ω is an open subset of R2.
This means that the components of the mapping f : Ω → R

2 have locally integrable
distributional partial derivatives. We would like to understand how much these
mappings can increase the size of small sets. There are many different ways to
define the size of a set. Here we will use the standard and generalized Hausdorff
measures. This approach is a natural continuation to the study of Lusin condition
(N), which requires that L2(f(A)) = 0 for every A ⊂ Ω with L2(A) = 0. By L2(A)
we mean the 2-dimensional Lebesgue measure of A.

Without assuming f ∈ W 1,1
loc (Ω;R

2) to be a homeomorphism, Lusin condition (N)
holds if we suppose that |Df |p ∈ L1

loc(Ω) with p > 2; see [8]. For a homeomorphism

f ∈ W 1,1
loc (Ω;R

2) a result by Reshetnyak [9] says that f satisfies Lusin condition (N)
under the weaker assumption |Df |2 ∈ L1

loc(Ω). Later this was improved in [4] by

showing that already |Df |2 log−1(e+ |Df |) ∈ L1
loc(Ω) suffices for a homeomorphism

f ∈ W 1,1
loc (Ω;R

2) to satisfy Lusin condition (N).
When we replace the Lebesgue measure with Hausdorff measures we have the

following result from [1]: Every homeomorphism f ∈ W 1,1
loc (Ω;R

2), with |Df |p ∈
L1
loc(Ω) for some p > 2, maps sets of Hausdorff dimension less than two to sets of

Hausdorff dimension less than two. Motivated by the results on Lusin condition
(N), here we study what happens to sets of Hausdorff dimension less than two when

we assume only that |Df |2 logλ−1(e + |Df |) ∈ L1
loc(Ω) for some λ > 0. It is clear

that sets of Hausdorff dimension less than two can be mapped to sets of Hausdorff
dimension two with such mappings; see for example [2, 5]. The usual Hausdorff
measures are therefore too rough to be used to measure the image sets. This is
where the generalized Hausdorff measures come into play. For them we obtain the
following result.
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Theorem 1.1. Let Ω be an open set in R
2 and f : Ω → f(Ω) a homeomorphism of

class W 1,1
loc (Ω;R

2) with

|Df |2 logλ−1(e+ |Df |) ∈ L1
loc(Ω)

for some λ > 0. Then, with hλ(t) = t2 logλ 1
t ,

Hhλ(f(E)) = 0

for every set E ⊂ Ω for which dimH(E) < 2.

Theorem 1.1 was proved in [5] for sets with Minkowski dimension less than two.
There the result was conjectured to hold also with sets of Hausdorff dimension less
than two. Theorem 1.1 proves this conjecture. The proof follows the approach
used in [5]. The paper [5] also contains an example which shows that the result
we prove here is sharp: There exists a homeomorphism f that maps a Cantor
set of Hausdorff dimension less than two to a set of positive Hhλ-measure, with
|Df |2 logt−1(e+ |Df |) ∈ L1

loc(Ω) for every t < λ.
A weaker distortion estimate was proved in [6], namely that for f ∈ W 1,1(Ω;R2)

with |Df |2 logλ(e + |Df |) ∈ L1
loc(Ω) sets with Hausdorff dimension less than two

are mapped to sets with Hhλ-measure zero.

2. Proof of Theorem 1.1

Let us first introduce some notation. An r-neighborhood of a set A is written as
A+ r = {x : dist(A, x) < r}. By Lk we mean the k-dimensional Lebesgue measure.
We also use the generalized Hausdorff measure Hh, which is defined for a set A as
Hh(A) = limδ→0 Hh

δ (A), where

Hh
δ (A) = inf

{ ∞∑
i=1

h(diamUi) : A ⊂
∞⋃
i=1

Ui, diam(Ui) ≤ δ

}

and h is a non-decreasing function with h(0) = 0. When the gauge function is
h(t) = ts, we have the usual s-dimensional Hausdorff measure which we also write
as Hs. The Hausdorff dimension of a set A is

dimH(A) = inf{s : Hs(A) = 0} = sup{s : Hs(A) = ∞}.

We denote the weak differential of the function f by Df : R2 → R
2 and its

operator-norm as |Df(x)| = sup{|Df(x)ξ| : |ξ| = 1}. The Jacobian determinant is
written as Jf (x) = detDf(x).

We are now ready to start with the proof. The main auxiliary ingredient in the
proof is the following lemma from [5].

Lemma 2.1. Let Ω be an open set in R
2 and f : Ω → f(Ω) a homeomorphism in

W 1,1
loc (Ω,R

2). Then there exists a set F ⊂ f(Ω) with H3/2(F ) = 0 such that for all
y ∈ f(Ω) \ F there exist constants Cy > 0 and ry > 0 such that

diam(f−1(B(y, r))) ≤ Cyr
1/2

for all 0 < r < ry.

Using the previous lemma we are able to cover almost all of the target f(Ω) with
a countable collection of sets where the homeomorphism f maps uniformly nicely.
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Lemma 2.2. Let Ω be an open set in R
2 and f : Ω → f(Ω) a homeomorphism in

W 1,1
loc (Ω,R

2). Then there exists a decomposition f(Ω) =
⋃∞

i=0 Fi, where H3/2(F0) =
0 and where for each Fi, i = 1, 2, . . . , there exist constants 1 ≤ Ci < ∞ and Ri > 0
such that

f−1

(
(f(A) ∩ Fi) +

(
r

Ci

)2
)

⊂ A+ r

for every A ⊂ Ω and every r ∈ (0, Ri).

Proof. As in [5, Lemma 3.2] we may represent f(Ω) as

f(Ω) = F0 ∪
∞⋃
j=1

∞⋃
k=1

{
y ∈ f(Ω)

∣∣∣∣ diam(f−1(B(y, r))) ≤ kr
1
2 for all r ∈ (0,

1

j
)

}
,

where F0 = F is the set in Lemma 2.1. �

Proof of Theorem 1.1. Take s so that dimH(E) < s < 2. Let Fi, Ci and Ri be as
in Lemma 2.2. We will show that Hhλ(Fi ∩ f(E)) = 0 for all i ∈ N. This clearly
holds for F0. Let i ≥ 1.

Because we are considering a homeomorphism f ∈ W 1,1
loc (Ω,R

2), its Jacobian is
either non-negative almost everywhere in Ω or non-positive almost everywhere in
Ω; see for example [7, Chapter 1]. We may assume that Jf ≥ 0 almost everywhere
in Ω. Because

|Df |2 logλ−1(e+ |Df |) ∈ L1
loc(Ω)

we have by [3, Corollary 9.1] that Jf log
λ(e + Jf ) ∈ L1

loc(Ω). Now take ε > 0. By
the absolute continuity of the integral there is δ > 0 so that∫

A

Jf (x) log
λ(e+ Jf (x))dx < ε

for every A ⊂ Ω for which L2(A) < δ. Write σ = 2−s
2 . Let 0 < r0 < 1 be so

small that 2 logλ(Ci

r ) ≤ r−σ for all 0 < r < r0. Because Hs(E) = 0, there exists a

countable collection of balls {B(xj , rj)}∞j=1 with radii less than min{r0, Ri,
1
Ci

} so
that

∞∑
j=1

4πrsj < min {ε, δ}

and E ⊂
⋃∞

j=1 B(xj , rj).

Now write Fi,j = Fi∩f(B(xj , rj)) for every j ∈ N. Then by Lemma 2.2 we have
f−1(Fi,j +Ri,j) ⊂ B(xj , 2rj), where Ri,j = (

rj
Ci

)2 ≤ r0.
Next we use the 5r-covering theorem on the target side to find a pairwise disjoint

collection of balls {B(yk, Ri,j(k))}k∈K from

{B(x,Ri,j) : x ∈ Fi,j , j ∈ N}

so that

Fi ∩ f(E) ⊂
⋃
k∈K

B(yk, 5Ri,j(k)).
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By estimating that any ball of radius 10r in R
2 can be covered by 1000 balls of

radius r we see that

1

1000
Hhλ

r0
(Fi ∩ f(E)) ≤

∑
k∈K

R2
i,j(k) log

λ(
1

Ri,j(k)
)

≤
∑
k∈K

L2(B(yk, Ri,j(k))) log
λ(

1

Ri,j(k)
)

≤
∑
k∈K

∫
f−1(B(yk,Ri,j(k)))

logλ(
1

Ri,j(k)
)Jf (x)dx

≤
∑
k∈K

(∫
{z∈f−1(B(yk,Ri,j(k))):Jf (z)<r−σ

j(k)}
logλ(

1

Ri,j(k)
)Jf (x)dx

+

∫
{z∈f−1(B(yk,Ri,j(k))):Jf (z)≥r−σ

j(k)}
logλ(

1

Ri,j(k)
)Jf (x)dx

)

≤
∑
k∈K

r−2σ
j(k)L

2(f−1(B(yk, Ri,j(k))))

+
∑
k∈K

logλ(1/Ri,j(k))

logλ(e+ 1/rσj(k))

∫
f−1(B(yk,Ri,j(k)))

Jf (x) log
λ(e+ Jf (x))dx,

where in the third inequality we have used [4, Lemma 3.2] and in the last one the

fact that logλ( 1
Ri,j(k)

) = 2 logλ( Ci

rj(k)
) ≤ r−σ

j(k).

Our task is to estimate the two remaining sums. By grouping the balls according
to j(k), we get for the first sum an estimate

∑
k∈K

r−2σ
j(k)L

2(f−1(B(yk, Ri,j(k)))) =

∞∑
j=1

rs−2
j

∑
k∈K

j(k)=j

L2(f−1(B(yk, Ri,j)))

≤
∞∑
j=1

rs−2
j L2(B(xj , 2rj)) =

∞∑
j=1

4πrsj < ε.

To estimate the second sum, first note that for every k ∈ K we have

logλ(1/Ri,j(k))

logλ(e+ 1/rσj(k))
=

2λ logλ(Ci/rj(k))

logλ(e+ 1/rσj(k))
≤

2λ logλ(1/r2j(k))

logλ(1/rσj(k))
=

4λ

σλ
.

From this we get

∑
k∈K

logλ(1/Ri,j(k))

logλ(e+ 1/rσj(k))

∫
f−1(B(yk,Ri,j(k)))

Jf (x) log
λ(e+ Jf (x))dx

≤ 4λ

σλ

∑
k∈K

∫
f−1(B(yk,Ri,j(k)))

Jf (x) log
λ(e+ Jf (x))dx

≤ 4λ

σλ

∫
⋃

k∈K f−1(B(yk,Ri,j(k)))

Jf (x) log
λ(e+ Jf (x))dx

≤ 4λ

σλ

∫
⋃∞

j=1 B(xj ,2rj)

Jf (x) log
λ(e+ Jf (x))dx ≤ 4λ

σλ
ε,
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since the sets {f−1(B(yk, Ri,j(k)))}k∈K are pairwise disjoint and

L2

⎛
⎝ ∞⋃

j=1

B(xj , 2rj)

⎞
⎠ ≤

∞∑
j=1

4πr2j ≤
∞∑
j=1

4πrsj < δ.

The proof is now finished, as we have shown that

Hhλ
r0 (Fi ∩ f(E)) ≤ 1000

(
1 +

4λ

σλ

)
ε

for every r0, ε > 0 and i ∈ N. �
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of Jyväskylä, Finland

E-mail address: tapio.m.rajala@jyu.fi

http://www.ams.org/mathscinet-getitem?mr=0324028
http://www.ams.org/mathscinet-getitem?mr=0324028
http://www.ams.org/mathscinet-getitem?mr=2037001
http://www.ams.org/mathscinet-getitem?mr=2037001
http://www.ams.org/mathscinet-getitem?mr=1693625
http://www.ams.org/mathscinet-getitem?mr=1693625
http://www.ams.org/mathscinet-getitem?mr=1827080
http://www.ams.org/mathscinet-getitem?mr=1827080
http://www.ams.org/mathscinet-getitem?mr=2529891
http://www.ams.org/mathscinet-getitem?mr=0344463
http://www.ams.org/mathscinet-getitem?mr=0344463
http://www.ams.org/mathscinet-getitem?mr=0322651
http://www.ams.org/mathscinet-getitem?mr=0322651
http://www.ams.org/mathscinet-getitem?mr=0203013
http://www.ams.org/mathscinet-getitem?mr=0203013

	1. Introduction
	2. Proof of Theorem 1.1
	Acknowledgment
	References

