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Abstract. Here we prove that Benford’s law holds for coefficients of an in-
finite class of modular forms. Expanding the work of Bringmann and Ono
on exact formulas for harmonic Maass forms, we derive the necessary asymp-
totics. This implies that the unrestricted partition function p(n), as well as
other natural partition functions, satisfies Benford’s law.

1. Introduction and statement of results

It has long been observed that many naturally occurring statistics and arithmetic
functions have some surprising properties. In 1881, astronomer Simon Newcomb
noticed that the earlier pages in logarithm tables were more worn than the later
ones. Instead of the a priori estimate that the first digit will be 1 one-ninth of the
time, he found in these instances that this frequency is approximately 30% for the
digit 1 and less than 5% for the digit 9 [10]. This phenomenon, known as Benford’s
Law, appears in a wide class of data including river lengths and population demo-
graphics. For a more detailed discussion on the history and previous work on the
subject, see [1], [6], [7].

Although this “law” is well known, it has only been proven to hold for a relatively
small class of arithmetic functions. For example, Miller and Kontorovich prove
Benford’s law for distributions of values of L-functions and the 3x+ 1 problem in
[8]. The purpose of this paper is to prove that the statistically observed frequencies
dictated by Benford’s law hold for an infinite class of sequences arising as the
coefficients of modular forms, including the partition function p(n).

We define a partition of a nonnegative integer n ∈ N to be any nonincreasing
sequence of positive integers which sum to n. The partition number p(n) is the
number of partitions of n. For a sequence of positive integers a(n), let
(1)

B(d, x, k; a(n)) =
# {n ≤ x : first digits of a(n) in base k are the string d}

x
.

We say that a(n) is Benford if lim
x→∞

B(d, x, k; a(n)) ≡ (logk(d+1)−logk(d)) (mod

1) for all integers k ≥ 2. We denote the space of Benford functions as B. Note
that for a function to belong to B, Benford’s Law must hold for any initial string
of digits in any base. We include this level of generality to study frequencies such
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as B(101, x, 2; a(n)) which counts the proportion of n ≤ x for which a(n) begins
with the string d =“101” in base 2. Since 1012 = 510 and log2(6)− log2(5) ≈ 0.263
(mod 1), the predicted frequency for members of a Benford sequence to begin with
1012 is about 26.3%.

The following data for initial digits illustrates the plausibility of Benford’s Law
for p(n) for k = 10.

Table 1. B(d, x, 10; p(n))

x d = 1 2 3 4 5 6 7 8 9

102 0.33 0.16 0.14 0.09 0.07 0.06 0.07 0.05 0.03
103 0.305 0.177 0.127 0.094 0.076 0.068 0.057 0.052 0.044
104 0.302 0.177 0.126 0.096 0.078 0.067 0.057 0.051 0.046
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

∞? 0.301 0.176 0.125 0.097 0.079 0.067 0.057 0.051 0.046

We also have the following data for the first three digits of p(n) in base 2.

Table 2. B(d, x, 2; p(n))

x d = 100 d=101 d=110 d=111

200 0.285 0.270 0.205 0.225
400 0.308 0.273 0.209 0.205
600 0.313 0.267 0.217 0.198
800 0.314 0.263 0.219 0.201
1000 0.315 0.262 0.220 0.200
5000 0.321 0.264 0.222 0.194
↓ ↓ ↓ ↓ ↓

∞? 0.322 0.263 0.222 0.192

To start, we begin with the following definition and theorem.

Definition. We say that an integer-valued function a(n) is good whenever

a(n) ∼ b(n)ec(n)

(where f(x) ∼ g(x) means that lim
x→∞

f(x)/g(x) = 1) and the following conditions

are satisfied:

(1) There exists some integer h ≥ 1 such that c(n) is h-differentiable and c(h)(n)
tends to zero monotonically for sufficiently large n.

(2) lim
n→∞

n|c(h)(n)| = ∞.

(3) lim
n→∞

D(h) log b(n)

c(h)(n)
= 0, where D(h) denotes the hth derivative.

Our first result is the following theorem.

Theorem 1.1. If a(n) is good, then a(n) ∈ B.
As a special case of this result we obtain the following corollary.

Corollary 1.2. The partition function p(n) ∈ B.
Proof. Using the celebrated Hardy-Ramanujan asymptotic

p(n) ∼ 1

4n
√
3
· eπ

√
2n/3,

it immediately follows that p(n) is good and hence Benford. �
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Next, we explicitly demonstrate that a large class of arithmetic functions arising
from the coefficients of modular forms is Benford, as in the following theorem.

Theorem 1.3. Suppose that M(z) is a weakly holomorphic modular form (see §3.1
for the definition) of weight 1

2 ≥ k ∈ 1
2Z with integral Fourier coefficients and at

least one pole. Then the nonzero coefficients of M(z) are Benford.

Generalizing Corollary 1.2, we obtain the following corollary.

Corollary 1.4. For any positive integer we say that a partition is s-regular if it
has no part divisible by s. Denote by bs(n) the number of s-regular partitions. Then
Theorem 1.3 implies that bs(n) is Benford.

Applying Theorem 1.1 to generalized Dedekind eta-products, we have the fol-
lowing corollary.

Corollary 1.5. For δ ≥ 2 and 0 < g < 
 δ+1
2 �, define rg,δ(n) to be the number

of partitions of n into parts congruent to ±g (mod δ). This includes the famous
Rogers-Ramanujan functions

∞∑

n=0

qn
2+an

(q; q)n
=

∞∏

n=0

1

(1− q5n+a+1)(1− q5n+4−a)
,

for a = 0, 1, where for n > 0, (a; q)n :=

n−1∏

i=0

(1− aqi) is the q-Pochhammer symbol.

Note that these equalities are given by the celebrated Rogers-Ramanujan identities.
Then rg,δ(n) is Benford.

Remark. It is well known that every nonconstant weakly holomorphic modular
form with nonpositive weight has a pole. Though this is not true for weights k ≥ 1

2 ,

Theorem 1.3 applies to all weakly holomorphic modular forms of weight 1
2 with

a pole and essentially all weakly holomorphic modular forms with higher weight
which have a pole. See the discussion and example in §3.2 for more details. For a
more detailed discussion on weakly holomorphic modular forms, see §3.1 and [11].

2. Theorems on uniform distribution

2.1. Preliminaries on uniform distribution and properties of Benford
spaces. We first note that proving a sequence is Benford reduces to a problem
of uniform distribution. Using this formulation and some classical theorems on
uniform distribution, we derive a set of sufficient conditions for being Benford.

Definition. For a real sequence a(n), N ∈ N, and E ⊆ R, let A(E,N, a(n)) :=
#{n ≤ N | a(n) ∈ E}. Then a(n) is said to be uniformly distributed mod 1 if for
all intervals [a, b) ⊆ [0, 1),

lim
n→∞

A([a, b), n, {a(n)})
n

= b− a,

where {x} denotes the fractional part of x.

We begin by recalling a result of Diaconis that a(n) ∈ B if and only if logk(a(n))
is uniformly distributed mod 1 for all k [4]. To prove our results we need the
following preliminary theorem.
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Theorem 2.1 (Weyl’s Criterion). The sequence a(n) is uniformly distributed mod
1 if and only if

lim
N→∞

1

N

N∑

n=1

e2πk·a(n) = 0

for any 0 
= k ∈ Z.

As a corollary to Van der Corput’s Difference Theorem we recall the following
theorem:

Theorem 2.2 (Theorem 3.5 of [9]). Let k ∈ N and f(x) be a function defined for
x ≥ 1 which is k-times differentiable for all x ≥ x0 for some x0 ∈ R+. Suppose that
f (k) is eventually monotonic,

lim
x→∞

f (k)(x) = 0,

and

lim
x→∞

x|f (k)(x)| = ∞.

Then {f(n) : n ∈ N} is uniformly distributed mod 1.

Finally, we note a few basic facts regarding Benford spaces.

Lemma.

(1) If f(n) ∈ B and c ∈ R− {0}, then cf(n) ∈ B.
(2) If f(n) ∈ B is nonzero, then 1

f(n) ∈ B.
(3) If f(n) ∈ B and f(n) ∼ g(n), then g(n) ∈ B.

Note that (1) and (2) follow directly from the definition of a uniform distribution
and (3) follows easily using Weyl’s Criterion.

2.2. Proof of Theorem 1.1. Here we prove Theorem 1.1 using these results on
uniform distributions.

Proof. First note that by Part (3) of the lemma, it suffices to show that b(n)ec(n) is
Benford. This is equivalent to showing the uniform distribution of log(b(n)) + c(n)
(mod 1). We see that c(n) satisfies the limit conditions of Theorem 2.2 by definition.
By the order assumption on D(h)(log(b(n))), the limits are unaffected upon adding
log b(n). �

3. Proof of Theorem 1.3

3.1. Weakly holomorphic modular forms. Here we give some of the prelimi-
nary definitions and theorems on weakly holomorphic modular forms. For a more
detailed reference, see [11]. Throughout this discussion let q := e2πiz.

For any positive integer N , we define the level N congruence subgroups of SL2(Z)
by

Γ0(N) :=
{(a b

c d

)
∈ SL2(Z) : c ≡ 0 mod N

}
,

Γ1(N) :=
{(a b

c d

)
∈ SL2(Z) : a ≡ d ≡ 1 mod N and c ≡ 0 mod N

}
,

Γ(N) :=
{(

a b
c d

)
∈ SL2(Z) : a ≡ d ≡ 1 mod N and b ≡ c ≡ 0 mod N

}
.
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Suppose that Γ is a congruence subgroup of SL2(Z). A cusp is an equivalence
class of P1(Q) under the usual fractional linear action of Γ.

Let f(z) be a meromorphic function on the upper half-plane H, k ∈ Z, and Γ be
a congruence subgroup of level N . First, we define the “slash” operator by

(f |kγ)(z) := (det γ)k/2(cz + d)−kf(γz),

where γ ∈ SL2(Z) and γz := az+b
cz+d .

Then f(z) is said to be a meromorphic modular form with integer weight k on Γ
if the following hold:

(1) For all z ∈ H and all
(
a b
c d

)
∈ Γ we have that

f
(az + b

cz + d

)
= (cz + d)kf(z).

(2) If γ0 ∈ SL2(Z), then (f |kγ0)(z) has a Fourier expansion of the form

(f |kγ0)(z) =
∑

n≥nγ0

aγ0
(n)qn/N .

If k = 0, then f(z) is known as a modular function on Γ. We say that f(z) is a
weakly holomorphic modular form if its poles are supported at the cusps of Γ.

Here we recall the notion of a modular form of half-integral weight. First we

define
(

c
d

)
and εd. If d is an odd prime, let

(
c
d

)
be the usual Legendre symbol.

For positive odd d, define
(

c
d

)
by multiplicativity. For negative odd d, we let

( c

d

)
:=

⎧
⎨

⎩

(
c
|d|

)
if d < 0 and c > 0,

−
(

c
|d|

)
if d < 0 and c < 0.

Also let
(

0
±1

)
= 1. Define εd, for odd d, by

εd :=

{
1 if d ≡ 1 mod 4,

i if d ≡ 3 mod 4.

Let λ be a nonnegative integer and N a positive integer. Furthermore, suppose
that χ is a Dirichlet character modulo 4N . A meromorphic function g(z) on H is
said to be a modular form with Nebentypus χ and weight λ+ 1

2 if it is meromorphic
at the cusps of Γ and if

g
(az + b

cz + d

)
= χ(d)

( c

d

)2λ+1

ε−1−2λ
d (cz + d)λ+

1
2 g(z)

for all
(a b
c d

)
∈ Γ0(4N).

Remark. As in the integral case, we say that a meromorphic modular form M(z) is
weakly holomorphic if its poles are supported on the cusps (that is, M is holomorphic
on H).

For example, consider Dedekind’s eta-function,

η(z) := q1/24
∞∏

n=1

(1− qn),
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which is a nonvanishing, weakly holomorphic modular form with weight 1/2. The
following theorem becomes useful in generating more examples of modular forms
(see, for example, [11]).

Theorem 3.1. Let f(z) =
∏

δ|N η(δz)rδ be an eta-quotient with k = 1
2

∑
δ|N rδ ∈ Z.

Then if ∑

δ|N
δrδ ≡ 0 (mod 24)

and ∑

δ|N

N

δ
rδ ≡ 0 (mod 24),

then f(z) satisfies (az + b

cz + d

)
= χ(d)(cz + d)kf(z)

for every
(
a b
c d

)
∈ Γ0(N). Here the character χ is defined by χ(d) :=

( (−1)ks)
d

)
,

where s :=
∏

δ|N δrδ .

3.2. Proof of Theorem 1.3. We are now in a position to prove Theorem 1.3.

Proof. We first consider the case where k is nonpositive. By hypothesis, M has at
least one pole at a cusp of the relevant subgroup Γ ⊆ SL2(Z). Recall that a harmonic
Maass form is a function defined in a similar manner as a modular form, but with
relaxed growth conditions and the additional requirement that it lies in the kernel
of a certain weight k Laplacian operator. Every such harmonic Maass form can be
decomposed as a sum of a holomorphic part f (+) and a nonholomorphic part f (−).
It is well known that every weakly holomorphic modular form is a harmonic Maass
form. In addition, the nonholomorphic part f (−) is identically zero. By a recent
paper of Bringmann and Ono [3], we have exact formulas for the holomorphic part
of harmonic Maass forms for k ≤ 1

2 . Because in our setting f (−) is identically zero,
these give us exact formulas for the Fourier coefficients of M . The explicit formulas
are quite complicated, so for brevity note that if we write M :=

∑
n≥n0

m(n)qn, it
is easy to show that there exists an integer t ≥ 1 such that for all 0 ≤ r ≤ t the
nonzero coefficients satisfy

m(tn+ r) ∼ K(M, r, t) · (tn+ r)
k−1
2 · I1−k(α(M, r, t)

√
tn+ r),

where K(M, r, t) and α(M, r, t) are constants and I denotes the modified Bessel
function of the first kind. Using the standard asymptotics for Bessel functions,
namely that

Iα(x) ∼
ex√
2πx

·
(
1 +

(1− 2α)(1 + 2α)

8x
+ . . .

)
,

we see that the sequence of nonzero coefficients is good and hence Benford.
If k = 1/2, then by Theorem 1.2 in [3], we have a new exact formula of the

same form with the addition of a finite number of terms which do not affect the
asymptotic. �
Remark. Although we have stated and proved Theorem 1.3 for weights k ≤ 1

2 ,
it turns out that a suitably modified version holds for all weights. Let M(z) be
a weakly holomorphic modular form with weight k > 1

2 with integral coefficients
and at least one pole, which by definition must be at a cusp. We can decompose
M(z) = P (z) +H(z), where P (z) is a linear combination of Maass-Poincaré series
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and H(z) is a holomorphic modular form. Note that by [3] this decomposition is
stated only for the case 1/2 ≥ k ∈ 1

2Z, but in fact it will hold for all k ∈ 1
2Z. When

k ≤ 0, it follows that H(z) = 0, and when k = 1/2, H(z) is a linear combination of
readily understood theta functions by the Serre-Stark basis theorem [3]. Therefore,
when k ≤ 1

2 this decomposition gives exact formulas for the coefficients. For other
k, we do not have a good theory for the possible H(z); therefore we typically can-
not obtain exact formulas for the coefficients of M(z). However, it is well known
that the coefficients of all such H(z) are bounded by a fixed power of n. To see
this, note that the space of holomorphic modular forms is spanned by Eisenstein
series and cusp forms. From the expansion of Eisenstein series in terms of divisor
functions, it is easily seen that the coefficients are bounded by a polynomial. Cusp
forms are also bounded by a power of n by Proposition 8 on page 23 of [13]. Conse-
quently, we obtain sufficient asymptotics for all coefficients which are nonvanishing
in P (z). These asymptotics will have subexponential growth, which will dominate
the coefficients from H(z).

Example. To illustrate the above remark, consider the weight 12 weakly holomor-
phic modular form M(z) := j(z) · E4(z)

3, where j(z) is the j-modular invariant
and E4(z) is the Eisenstein series of order 4. The first few terms are

M(z) = q−1 + 1464 + 911844q + 313589120q2 + · · · .
This function has a pole at ∞, so the above remark applies, as is illustrated in the
base 3 case below.

Table 3. B(d, x, 3; j(z) · E4(z)
3)

x d = 10 d=11 d=12 d=20 d=21 d=22

500 .2440 .2020 .1700 .1320 .1300 .1220
1000 .2590 .2050 .1610 .1360 .1270 .1120
1500 .2627 .2027 .1633 .1373 .1273 .1067
2000 .2635 .2030 .1660 .1375 .1245 .1055
↓ ↓ ↓ ↓ ↓ ↓ ↓

∞? .2619 .2031 .1660 .1403 .1215 .1072

4. Proof of Corollaries 1.4 and 1.5

In this section we use Theorem 1.1 to prove new examples of Benford sequences
in interesting cases.

4.1. Proof of Corollary 1.4. First note that
∞∑

n=0

bs(n)q
n =

∞∏

n=1

1− qsn

1− qn
.

Then in terms of Dedekind’s eta function, η(z), we have that
∞∑

n=0

bs(n)q
24n+s−1 =

η(24sz)

η(24z)
.

Then by Theorem 1.64 [11], we see that bs(n) is obtained as the coefficients
of a nonconstant modular form of weight zero on Γ0(576s). Moreover, as η(z) is
nonvanishing on H, the given modular form is weakly holomorphic and hence bs(n)
is Benford.
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4.2. Proof of Corollary 1.5. It is easy to see that
∞∑

n=0

rg,δ(n)q
n =

∏

1≤n≡g (mod δ)

1

(1− qn)

∏

1≤n≡−g (mod δ)

1

(1− qn)
.

For example, we have the Rogers-Ramanujan functions
∞∑

n=0

qn
2+an

(q; q)n
=

∞∏

n=0

1

(1− q5n+a+1)(1− q5n+4−a)
,

for a = 0, 1.
Our claim is that for all g and δ satisfying the above restrictions, rg,δ is Benford.

To see this, define the generalized Dedekind eta-product ηg,δ(z) by

ηg,δ(z) := e2πiP2(
g
δ )δz

∏

1≤n≡g (mod δ)

(1− qn)
∏

1≤n≡−g (mod δ)

(1− qn).

Here P2(t) is the second Bernoulli function P2(t) := {t}2−{t}+ 1
6 , and {t} denotes

the fractional part of t. Then by [12], for g 
= 0, 12δ, it follows that ηg,δ(z) is a
modular form of weight zero which is nonvanishing on H. The generating functions
for rg,δ are then given by the Fourier expansion of 1

ηg,δ(z)
shifted by an integral

power of q. As this is a nonconstant weakly holomorphic modular form of weight
zero, it follows that rg,δ(n) is Benford.
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