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HOCHSCHILD COHOMOLOGY OF GROUP EXTENSIONS

OF QUANTUM SYMMETRIC ALGEBRAS

DEEPAK NAIDU, PIYUSH SHROFF, AND SARAH WITHERSPOON

(Communicated by Martin Lorenz)

Abstract. Quantum symmetric algebras (or noncommutative polynomial
rings) arise in many places in mathematics. In this article we find the multi-
plicative structure of their Hochschild cohomology when the coefficients are in
an arbitrary bimodule algebra. When this bimodule algebra is a finite group
extension (under a diagonal action) of a quantum symmetric algebra, we give
explicitly the graded vector space structure. This yields a complete description

of the Hochschild cohomology ring of the corresponding skew group algebra.

1. Introduction

The action of a group G on a vector space V induces an action on the corre-
sponding symmetric algebra S(V ) (a polynomial ring). The resulting skew group
algebra S(V ) � G is a noncommutative ring encoding the group action. Defor-
mations of such skew group algebras are related to deformations of corresponding
orbifolds, and some have appeared independently in several places under different
names: graded Hecke algebras, rational Cherednik algebras, and symplectic reflec-
tion algebras. Deformations of any algebra are intimately related to its Hochschild
cohomology. When G is finite the Hochschild cohomology of S(V ) � G was com-
puted independently by Farinati [F] and by Ginzburg and Kaledin [GK]. Its algebra
structure was first given by Anno [A].

In this paper we replace the symmetric algebra S(V ) with a quantum symmetric
algebra and explore its Hochschild cohomology. Our quantum symmetric algebra
is a noncommutative polynomial ring, denoted Sq(V ), in which the variables com-
mute only up to multiplication by nonzero scalars (encoded in the vector q). Non-
commutative polynomials have been of interest for some time. Our current work
incorporates group actions as well and is in part motivated by the recent appearance
of two articles. First, Kirkman, Kuzmanovich, and Zhang [KKZ] prove a version of
the classical Shephard-Todd-Chevalley Theorem, namely that the invariant subring
of Sq(V ) under a finite group action is again a quantum symmetric algebra. In the
setting of an ordinary polynomial ring, methods from invariant theory for finding
such subrings play a crucial role in computation of Hochschild cohomology (see, for
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example, [SW]). Around the same time, Bazlov and Berenstein [BB] introduced
braided Cherednik algebras, which are deformations of Sq(V )�G in some special
cases. Knowledge of Hochschild cohomology will provide insight into these and
other possible deformations.

More specifically, let � be a field of characteristic 0. Let N be a positive integer
and for each pair i, j of elements in {1, . . . , N}, let qi,j be a nonzero scalar such

that qi,i = 1 and qj,i = q−1
i,j for all i, j. Denote by q the corresponding tuple of

scalars, q := (qi,j)1≤i<j≤N . Let V be a vector space with basis x1, . . . , xN , and let

Sq(V ) := �〈x1, . . . , xN | xixj = qi,jxjxi for all 1 ≤ i, j ≤ N〉,

the quantum symmetric algebra determined by q. This is a Koszul algebra (see e.g.
[AS]), so there is a standard complex K �(Sq(V )) that is a resolution of Sq(V ) as an
Sq(V )-bimodule. This complex is given in Section 2.1 below; see [W] for details on
more general quantum symmetric algebras arising from braidings. Priddy [P] first
introduced Koszul algebras, and the theory was developed further, including such
complexes, in [BGS, BG, M].

We first compute cup products, using the resolution in Section 2.1, and obtain
the following theorem. Here

∧
q−1(V ∗) denotes a quantum exterior algebra, defined

in (9) below, on the dual vector space V ∗, and B is any algebra with a compatible
structure of an Sq(V )-bimodule. The two choices of algebra B in which we are
most interested are B = Sq(V ) and B = Sq(V ) � G, where G is a finite group of
graded automorphisms of Sq(V ).

Theorem 3.1. The Hochschild cohomology HH
�

(Sq(V ), B) is a subquotient algebra
of the tensor product B ⊗

∧
q−1(V ∗).

That is, the Hochschild cohomology is a vector subquotient of B ⊗
∧

q−1(V ∗),
and its cup product is determined by that of the tensor product of the two algebras
B and

∧
q−1(V ∗).

We next give the graded vector space structure of Hochschild cohomology in
the two cases B = Sq(V ) and B = Sq(V ) � G, when G acts diagonally on the
basis x1, . . . , xN of V . We adapt techniques developed in the context of Hochschild
homology by Wambst [W]. In the first case this gives the following technical result.
The notation will be explained in Section 4.

Corollary 4.3. For all m ∈ �,

HHm(Sq(V )) ∼=
⊕

β∈{0,1}N

|β|=m

⊕

α∈�N

α−β∈C

span�{xα ⊗ (x∗)
∧β}.

This result is a consequence of our more general Theorem 4.1 on Sq(V ) � G.
It should be compared with work of Richard [R], in which there are some results
on the Hochschild cohomology of a related ring of twisted differential operators on
quantum affine space. Richard obtains his results by first computing Hochschild
homology and then invoking a duality between homology and cohomology. In our
setting, such a duality does not hold in general; a comparison of our Example 4.2
below withWambst’s Corollary 6.2 [W] shows that there is no duality in our smallest
possible case. Other authors have used various techniques to compute Hochschild
homology of generalizations of Sq(V ) [GG, Gu, W].
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Since the characteristic of � is 0, the Hochschild cohomology of Sq(V ) � G is
the subalgebra of G-invariant elements of HH

�

(Sq(V ), Sq(V ) � G), and the mul-
tiplicative structure of this algebra is given by Theorem 3.1. To determine the
additive structure precisely, we specialize to diagonal actions of G on the chosen
basis x1, . . . , xN of V . This is the case to which Wambst’s techniques in [W] may
be most easily adapted to express the relevant cochain complex as the direct sum of
an acyclic complex and a complex in which all differentials are 0. This leads to our
description of the Hochschild cohomology as a graded vector space in the following
theorem. The notation will be explained in Section 4.

Theorem 4.1. Assume that the finite group G acts diagonally on the chosen basis
of V . Then for all m ∈ �,

HHm(Sq(V ), Sq(V )�G) ∼=
⊕

g∈G

⊕

β∈{0,1}N

|β|=m

⊕

α∈�N

α−β∈Cg

span
�
{(xα#g)⊗ (x∗)

∧β},

and HHm(Sq(V )�G) is its G-invariant subspace.

We plan to address more general group actions, as well as related deformations
of the skew group algebra Sq(V )�G, in future articles.

Organization. This paper is organized as follows. Section 2 contains necessary
preliminary information, including the resolution of Sq(V ) that will be used. We
also give a chain map from this resolution to the bar resolution of Sq(V ), used in
Section 3 to compute cup products.

We prove Theorem 3.1 in Section 3. In Section 4 we prove Theorem 4.1 and
apply Theorem 3.1 to give the cup product on HH

�

(Sq(V )�G). As a special case,
when G = {1}, we obtain in Corollary 4.3 the Hochschild cohomology of Sq(V ).

2. Preliminaries

All tensor products and exterior powers are taken over the field � of characteristic
0.

Let A be an algebra over �, and let M be an A-bimodule. We identify M with
a (left) Ae-module, where Ae = A ⊗ Aop; Aop is the algebra A with the opposite
multiplication. The Hochschild cohomology of A with coefficients in M is

HH
�

(A,M) := Ext
�

Ae(A,M),

where A is considered to be an Ae-module under left and right multiplication. One
useful free Ae-resolution of A is the bar resolution

(1) · · · δ3−→ A⊗4 δ2−→ A⊗3 δ1−→ Ae mult−−−→ A −→ 0,

where δm(a0 ⊗ · · · ⊗ am+1) =
∑m

i=0(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ am+1 for all
a0, . . . , am+1 ∈ A, and the map from Ae to A is given by multiplication in A.
Suppose M = B is an A-bimodule algebra, that is B is an algebra and also an
A-bimodule and that these two structures are compatible in the sense that a(bb′) =
(ab)b′ and (bb′)a = b(b′a) for all a ∈ A and b, b′ ∈ B. Then HH

�

(A,B) has a
cup product defined at the cochain level as follows (e.g. see [G, p. 278]). Let f ∈
HomAe(A⊗(m+2), B), f ′∈HomAe(A(n+2), B). Then f�f ′∈HomAe(A⊗(m+n+2), B)



1556 DEEPAK NAIDU, PIYUSH SHROFF, AND SARAH WITHERSPOON

is determined by

f � f ′(a0 ⊗ a1 ⊗ · · · ⊗ am+n ⊗ am+n+1)

= f(a0 ⊗ a1 ⊗ · · · ⊗ am ⊗ 1)f ′(1⊗ am+1 ⊗ · · · ⊗ am+n ⊗ am+n+1).

Let G be a finite group acting on the algebra A by automorphisms. We denote by
ga the result of applying g ∈ G to a ∈ A. Then we may form the skew group algebra
A�G: Additively, it is the free A-module with basis G. We write A�G =

⊕
g∈G Ag,

where Ag = {a#g | a ∈ A}; that is, for each a ∈ A and g ∈ G we denote by
a#g ∈ Ag the a-multiple of g. Multiplication on A�G is determined by

(a#g)(b#h) := a(gb)#gh

for all a, b ∈ A, g, h ∈ G. Note that for each g ∈ G, Ag is a (left) Ae-module via
the action

(a⊗ b) · (c#g) := (a#1)(c#g)(b#1) = ac(gb)#g

for all a, b, c ∈ A, g ∈ G.
For convenience in what follows, we will sometimes denote the quantum sym-

metric algebra Sq(V ) simply by A.

2.1. A free resolution of Sq(V ). By [W, Proposition 4.1(c)], the following is a
free Ae-resolution of A = Sq(V ):

(2) · · · −→ Ae ⊗
∧2(V )

d2−→ Ae ⊗
∧1(V )

d1−→ Ae mult−−−→ A −→ 0.

That is, for 1 ≤ m ≤ N , the degree m term is Ae ⊗
∧m(V ), and dm is defined by

dm(1⊗2 ⊗ xj1 ∧ · · · ∧ xjm)

=
m∑

i=1

(−1)i+1

[(
i∏

s=1

qjs,ji

)

xji ⊗ 1−
(

m∏

s=i

qji,js

)

⊗ xji

]

⊗ xj1 ∧ · · · ∧ x̂ji ∧ · · · ∧ xjm

whenever 1 ≤ j1 < · · · < jm ≤ N . This is a twisted version of the usual Koszul
resolution for a polynomial ring.

Let us write the above formula for dm in a more convenient form. We first
introduce some notation following Wambst [W]. Let �N denote the set of all N -
tuples of elements from �. For any α ∈ �N , the length of α, denoted |α|, is the

sum
∑N

i=1 αi. For all α ∈ �N , define xα := xα1
1 xα2

2 · · ·xαN

N . For all i ∈ {1, . . . , N},
define [i] ∈ �N by [i]j = δi,j , for all j ∈ {1, . . . , N}. For any β ∈ {0, 1}N , let x∧β

denote the vector xj1 ∧ · · · ∧xjm ∈
∧m

(V ) which is defined by m = |β|, βjk = 1 for
all k ∈ {1, . . . ,m}, and j1 < · · · < jm. Then, for any β ∈ {0, 1}N with |β| = m we
have

dm(1⊗2 ⊗ x∧β) =

N∑

i=1

δβi,1(−1)
∑i−1

s=1 βs

[(
i∏

s=1

qβs

s,i

)

xi ⊗ 1−
(

N∏

s=i

qβs

i,s

)

⊗ xi

]

⊗ x∧(β−[i]).

2.2. A chain map into the bar resolution of Sq(V ). We wish to define a chain
map from our complex Ae⊗

∧ �

(V ) to the bar resolution (1) for A = Sq(V ). Wambst
defined a more general chain map [W, Lemma 5.3 and Theorem 5.4]. Here we
introduce notation useful in our setting, and include some details for completeness.
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For each set of m distinct natural numbers j1, . . . , jm (m ≤ N) and each permu-
tation π ∈ Sm, the scalar qj1,...,jmπ is defined by the equation

qj1,...,jmπ xjπ(1)
· · ·xjπ(m)

= xj1 · · ·xjm

in A. That is, qj1,...,jmπ is the scalar arising when one applies the permutation π to
the variables in the product xj1 · · ·xjm , using the relations in A to rewrite it.

The following lemma is immediate from the definition.

Lemma 2.1. If π = στ in Sm, then

qj1,...,jmπ = q
jτ(1),...,jτ(m)
σ qj1,...,jmτ .

For each m ≥ 1, define the map φm : Ae ⊗
∧m

(V ) → A⊗(m+2) by

(3) φm(1⊗2 ⊗ xj1 ∧ · · · ∧ xjm) =
∑

π∈Sm

(sgnπ)qj1,...,jmπ ⊗ xjπ(1)
⊗ · · · ⊗ xjπ(m)

⊗ 1

for all distinct xj1 , . . . , xjm . Note that φm is injective: The image of a basis of∧m(V ) under φm is linearly independent, as may be seen by comparing the variables
involved. Set φ0 and φ−1 to be the identity maps on A⊗A and A, respectively.

Remark 2.2. By its definition, the image of φm is contained in

(4)
m−2⋂

i=0

(A⊗ V ⊗i ⊗R ⊗ V ⊗(m−i−2) ⊗A),

where R ⊂ V ⊗V is the vector subspace spanned by the relations xi⊗xj−qi,jxj⊗xi.

For example, to see that φm(1⊗2 ⊗ xj1 ∧ · · · ∧ xjm) is in A⊗R⊗ V ⊗(m−2) ⊗A, fix
π ∈ Sm. Let (12) denote the permutation transposing 1 and 2. The π- and π(12)-
terms of formula (3) above are (writing π(12) = (π(1), π(2))π in Sm and applying
the lemma):

(sgnπ)qj1,...,jmπ ⊗ xjπ(1)
⊗ · · · ⊗ xjπ(m)

⊗ 1 + (sgnπ(12))qj1,...,jmπ(12)

⊗ xjπ(2)
⊗ xjπ(1)

⊗ · · · ⊗ xjπ(m)
⊗ 1

= (sgnπ)qj1,...,jmπ ⊗ xjπ(1)
⊗ · · · ⊗ xjπ(m)

⊗ 1

− (sgnπ)q
jπ(1),...,jπ(m)

(π(1),π(2)) qj1,...,jmπ ⊗ xjπ(2)
⊗ xjπ(1)

⊗ · · · ⊗ xjπ(m)
⊗ 1

= (sgnπ)qj1,...,jmπ ⊗ (xjπ(1)
⊗ xjπ(2)

− q
jπ(1),...,jπ(m)

(π(1),π(2)) xjπ(2)
⊗ xjπ(1)

)

⊗ xjπ(3)
⊗ · · · ⊗ xjπ(m)

⊗ 1,

which is visibly in A⊗R⊗ V ⊗(m−2) ⊗A.

Lemma 2.3. The map φ defined in equation (3) is a chain map.

Proof. We must show that

(5) φm−1 ◦ dm(1⊗2 ⊗ xj1 ∧ · · · ∧ xjm) = δm ◦ φm(1⊗2 ⊗ xj1 ∧ · · · ∧ xjm)

for all j1, . . . , jm with j1 < · · · < jm, where δm is the differential on the bar complex
(1). This may easily be checked when m = 0.

By Remark 2.2, the formula (3) for φm and the formula for δm, the right side of
(5) is

∑

π∈Sm

(sgnπ)qj1,...,jmπ

(
xjπ(1)

⊗ · · · ⊗ xjπ(m)
⊗ 1 + (−1)m ⊗ xjπ(1)

⊗ · · · ⊗ xjπ(m)

)
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for all m ≥ 1. The left side of (5) is

φm−1

(
m∑

i=1

(−1)i+1

(

(

i∏

s=1

qjs,ji)xji ⊗ 1− (

m∏

s=i

qji,js)⊗ xji

)

⊗ xj1 ∧ · · · ∧ x̂ji ∧ · · · ∧ xjm

)

=

m∑

i=1

(−1)i+1

(

(

i∏

s=1

qjs,ji)xji ⊗ 1− (

m∏

s=i

qji,js)⊗ xji

)

⊗

⎛

⎝
∑

π′∈Si
m−1

(sgnπ′)qj1,...,ĵi,...,jmπ′ xjπ′(1) ⊗ · · · ⊗ xjπ′(m)

⎞

⎠

=
m∑

i=1

(−1)i+1
∑

π′∈Si
m−1

(

(sgnπ′)(
i∏

s=1

qjs,ji)q
j1,...,ĵi,...,jm
π′ xji⊗ xjπ′(1)⊗ · · · ⊗ xjπ′(m)

⊗ 1

− (sgnπ′)(
m∏

s=i

qji,js)q
j1,...,ĵi,...,jm
π′ ⊗ xjπ′(1) ⊗ · · · ⊗ xjπ′(m)

⊗ xji

)

,

where for each i, Si
m−1 denotes the symmetric group on {1, . . . , î, . . . ,m}. In the

first set of summands above, if π := π′(i, i−1, . . . , 1), then sgn π′ = (−1)i+1 sgnπ,
and we may replace (sgnπ′)xji ⊗xjπ′(1) ⊗· · ·⊗xjπ′(m)

⊗1 by (−1)i−1(sgnπ)xjπ(1)
⊗

· · · ⊗ xjπ(m)
⊗ 1. Similarly, in the second set of summands, let π = π′(i, i + 1,

. . . ,m), and replace (sgnπ′) ⊗ xjπ′(1) ⊗ · · · ⊗ xjπ′(m)
⊗ xji by (−1)m−i(sgnπ) ⊗

xjπ(1)
⊗ · · · ⊗ xjπ(m)

. Again, for the first set of summands, notice that qj1,...,jmπ =

(
∏i

s=1 qjs,ji)q
j1,...,ĵi,...,jm
π′ , and for the second set qj1,...,jmπ =(

∏m
s=i qji,js)q

j1,...,ĵi,...,jm
π′ .

Making all such replacements, we find that the left side of (5) is indeed equal to
the right side. �

Remark 2.4. The image of φm is a free Ae-submodule of A⊗(m+2) that is a direct
summand of A⊗(m+2) as an Ae-module: Take a vector space complement in � ⊗
V ⊗m ⊗ � to the image of � ⊗ � ⊗

∧m(V ) under φm and extend to the required
complementary Ae-module direct summand of A⊗(m+2). It follows that there is a
chain map ψ from the bar resolution to Ae ⊗

∧ �

(V ) for which ψφ is the identity
map.

3. The cup product

As before, let A denote the quantum symmetric algebra Sq(V ) and let Ae denote
the enveloping algebra A⊗ Aop. Let B denote an A-bimodule. In this section, we
will describe the cup product on Hochschild cohomology HH

�

(A,B) = Ext
�

Ae(A,B),
when B additionally has a compatible algebra structure.

We begin by applying HomAe(·, B) to (2), dropping the term HomAe(A,B) to
obtain the complex
(6)

0 −→ HomAe(Ae, B)
d̃1−→ HomAe(Ae⊗

∧1(V ), B)
d̃2−→ HomAe(Ae⊗

∧2(V ), B) −→ · · · .
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That is, the degree m term is HomAe(Ae ⊗
∧m(V ), B), and d̃m is defined by

d̃m(F ) = F ◦ dm, for all F ∈ HomAe(Ae ⊗
∧m−1

(V ), B).
We identify the spaces HomAe(Ae ⊗

∧m
(V ), B) and B ⊗

∧m
(V ∗) via the map

Θm : HomAe(Ae ⊗
∧m(V ), B) → B ⊗

∧m(V ∗),

F →
∑

β∈{0,1}N

|β|=m

F (1⊗2 ⊗ x∧β)⊗ (x∗)
∧β

.

We thus obtain the following complex, which is equivalent to the complex in (6):

(7) 0 −→ B
d∗
1−→ B ⊗

∧1(V ∗)
d∗
2−→ B ⊗

∧2(V ∗) −→ · · · .
That is, the degree m term is B ⊗

∧m
(V ∗), and d∗m is defined by d∗m = Θm ◦ d̃m ◦

Θ−1
m−1, where Θ−1

0 takes b ∈ B to F ∈ HomAe(Ae, B) defined by F (1⊗2) = b.

Let us describe d∗m explicitly. For any b ∈ B and β ∈ {0, 1}N with |β| = m − 1
we have

d∗m(b⊗ (x∗)∧β)

= (Θm ◦ d̃m ◦Θ−1
m−1)(b⊗ (x∗)

∧β
)

= Θm(Θ−1
m−1(b⊗ (x∗)

∧β
) ◦ dm)

=
∑

β′∈{0,1}N

|β′|=m

(Θ−1
m−1(b⊗ (x∗)

∧β
) ◦ dm)(1⊗2 ⊗ x∧β′

)⊗ (x∗)
∧β′

=

N∑

i=1

δβi,0(Θ
−1
m−1(b⊗ (x∗)

∧β
) ◦ dm)(1⊗2 ⊗ x∧(β+[i]))⊗ (x∗)

∧(β+[i])

=
N∑

i=1

δβi,0(Θ
−1
m−1(b⊗ (x∗)∧β))

(

(−1)
∑i

s=1 βs

[(
i∏

s=1

qβs

s,i

)

xi ⊗ 1−
(

N∏

s=i

qβs

i,s

)

⊗ xi

]

⊗ x∧β

)

⊗ (x∗)
∧(β+[i])

.

Using the Ae-linearity of Θ−1
m−1(b ⊗ (x∗)∧β) and the definition of Θ, the above

expression may be rewritten to show that d∗m(b⊗ (x∗)∧β) is equal to

(8)

N∑

i=1

δβi,0(−1)
∑i

s=1 βs

[(
i∏

s=1

qβs

s,i

)

xib−
(

N∏

s=i

qβs

i,s

)

bxi

]

⊗ (x∗)
∧(β+[i])

.

We will use these expressions for the differentials in the sequel.
Let q be a tuple of scalars as in the introduction. We define the quantum exterior

algebra

(9)
∧

q(V ) = T (V )/(xixj + qi,jxjxi | 1 ≤ i, j ≤ N),

where T (V ) is the tensor algebra on V . Note that the relations corresponding to
i = j are 2x2

i = 0 since qii = 1; that is, x2
i = 0 in

∧
q(V ). It follows that the

dimension of
∧

q(V ) as a (graded) vector space is the same as that of the exterior

algebra
∧
(V ).

Let q−1 denote the tuple consisting of all inverses of components of q, that
is, q−1 = {q−1

i,j }1≤i,j≤N . Using this notation, we have the following cup product
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theorem. Our main applications are to the cases B = Sq(V ) and B = Sq(V ) �G
for some finite group G in the next section.

Theorem 3.1. Let B be an Sq(V )-bimodule algebra. Then the Hochschild co-
homology algebra HH

�

(Sq(V ), B) is a subquotient algebra of the tensor product
B ⊗

∧
q−1(V ∗). That is, the cup product on HH

�

(Sq(V ), B) descends from the

product on B ⊗
∧

q−1(V ∗).

Proof. Letting A = Sq(V ), by Remark 2.4 there is a chain map ψ : A⊗(m+2) →
Ae⊗

∧m
(V ) such that ψφ is the identity map. (We will not need an explicit formula

for ψ.)
We will use the cup product as defined on the bar complex, together with the

chain maps φ and ψ: For two cocycles μ and ν defined on Ae ⊗
∧
(V ), in degrees

m and n respectively, their cup product is given by

φ∗(ψ∗(μ) � ψ∗(ν)).

This function is defined by its action on all elements of the form 1⊗2 ⊗ xj1 ∧ · · · ∧
xjm+n

, which we calculate next. Let Sm,n denote the set of all m,n-shuffles, that
is, all ρ ∈ Sm+n for which ρ(1) < · · · < ρ(m) and ρ(m + 1) < · · · < ρ(m + n).
Note that these shuffles form a set of coset representatives of the subgroup Sm×Sn

of Sm+n, where Sm acts on {1, . . . ,m} and Sn acts on {m + 1, . . . ,m + n}. Thus
we may write each π ∈ Sm+n as π = ρστ , where ρ ∈ Sm,n, σ ∈ Sm, τ ∈ Sn. By
Lemma 2.1, writing ρστ = (ρσρ−1)(ρτρ−1)ρ, we have

φ∗(ψ∗(μ) � ψ∗(ν))(1⊗2 ⊗ xj1 ∧ · · · ∧ xjm+n
)

= (ψ∗(μ) � ψ∗(ν))

⎛

⎝
∑

π∈Sm+n

(sgnπ)qj1,...,jm+n
π ⊗ xjπ(1)

⊗ · · · ⊗ xjπ(m+n)
⊗ 1

⎞

⎠

=
∑

π∈Sm+n

(sgnπ)qj1,...,jm+n
π ψ∗(μ)(1⊗ xjπ(1)

⊗ · · · ⊗ xjπ(m)
⊗ 1)

· ψ∗(ν)(1⊗ xjπ(m+1)
⊗ · · · ⊗ xjπ(m+n)

⊗ 1)

=
∑

ρ∈Sm,n

∑

σ∈Sm,τ∈Sn

(sgn ρστ )qj1,...,jm+n
ρστ ψ∗(μ)(1⊗ xjρστ(1)

⊗ · · · ⊗ xjρστ(m)
⊗ 1)

· ψ∗(ν)(1⊗ xjρστ(m+1)
⊗ · · · ⊗ xjρστ(m+n)

⊗ 1)

=
∑

ρ∈Sm,n

(sgn ρ)qj1,...,jm+n
ρ

·
(

∑

σ∈Sm

(sgnσ)q
jρ(1),...,jρ(m)

ρσρ−1 ψ∗(μ)(1⊗ xjρσ(1)
⊗ · · · ⊗ xjρσ(m)

⊗ 1)

)

·
(

∑

τ∈Sn

(sgn τ )q
jρ(m+1),...,jρ(m+n)

ρτρ−1 ψ∗(ν)(1⊗ xjρτ(m+1)
⊗ · · · ⊗ xjρτ(m+n)

⊗ 1)

)

=
∑

ρ∈Sm,n

(sgn ρ)qj1,...,jm+n
ρ φ∗ψ∗(μ)(1⊗2 ⊗ xjρ(1) ∧ · · · ∧ xjρ(m)

)

· φ∗ψ∗(ν)(1⊗2 ⊗ xjρ(m+1)
∧ · · · ∧ xjρ(m+n)

).

Since ψφ is the identity map, φ∗ψ∗(μ) = μ and φ∗ψ∗(ν) = ν. Now replacing μ by

b⊗ (x∗)∧β and ν by b′ ⊗ (x∗)∧β′
, where b, b′ ∈ B, we see that only one summand in
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the above can be nonzero and that is the summand corresponding to ρ for which

x∧β = xjρ(1) ∧ · · · ∧ xjρ(m)
and x∧β′

= xjρ(m+1)
∧ · · · ∧ xjρ(m+n)

.

For this summand, we obtain (sgn ρ)q
j1,··· ,jm+n
ρ bb′. Comparing, we also find that

(bb′ ⊗ (x∗)∧β ∧ (x∗)∧β′
)(1⊗2 ⊗ xj1 ∧ · · · ∧ xjm+n

) = (sgn ρ)qj1,··· ,jm+n
ρ bb′,

by permuting the exterior factors in (x∗)∧β ∧ (x∗)∧β′
via ρ before applying the

function and by using the identity q
jρ(1),...,jρ(m+n)

ρ−1 = (q
j1,...,jm+n
ρ )−1 (a consequence

of Lemma 2.1). Therefore the product is as claimed. �

Remark 3.2. It is not necessary that the characteristic of � be 0 for Theorem 3.1:
While Wambst’s proof that complex (2) is exact requires characteristic 0, a similar
resolution may be obtained in positive characteristic by using a twisted tensor
product construction [BO] or general theory for Koszul algebras [BG]. Our proof
of Theorem 3.1 uses only resolution (2) and its embedding into the bar resolution.

4. The Hochschild cohomology algebra of Sq(V )�G

Let G be a finite group acting on A = Sq(V ) by graded algebra automorphisms.
We are interested in the cohomology of the skew group algebra A � G. Since
the characteristic of � is zero, this is known to be isomorphic to the G-invariant
subalgebra of the cohomology HH

�

(A,A � G) of A with coefficients in A � G.
(See for example [S].) In this section we will compute this latter cohomology,
HH

�

(A,A � G) = Ext
�

Ae(A,A � G), in the case when G acts diagonally on the
basis x1, . . . , xN of V . Note that each g-component Ag is a (left) Ae-module (see
Section 2). Also note that since A�G =

⊕
g∈G Ag as an Ae-module,

Ext
�

Ae(A,A�G) ∼=
⊕

g∈G

Ext
�

Ae(A,Ag).

We will compute the summands Ext
�

Ae(A,Ag).
Fix g ∈ G. In Section 3 we applied the Hom functor HomAe(·, B), for any A-

bimodule B, to the Ae-resolution of A in (2), and we made appropriate identification
to obtain the complex (7). When we specialize this complex to B = Ag, we obtain

(10) 0 −→ Ag
d∗
1−→ Ag ⊗

∧1(V ∗)
d∗
2−→ Ag ⊗

∧2(V ∗) −→ · · · ,
where formula (8) yields the fact that d∗m((a#g)⊗ (x∗)∧β) is equal to
(11)

N∑

i=1

δβi,0(−1)
∑i

s=1 βs

[((
i∏

s=1

qβs

s,i

)

xia−
(

N∏

s=i

qβs

i,s

)

a(gxi)

)

#g

]

⊗ (x∗)∧(β+[i]),

for all a ∈ A and β ∈ {0, 1}N with |β| = m− 1.

4.1. Additive structure. Suppose G acts diagonally on the basis x1, . . . , xN of
V . That is, there exist scalars λg,i ∈ � such that gxi = λg,ixi for all g ∈ G, i ∈
{1, . . . , N}.

For each g ∈ G, define
(12)

Cg :=

{

γ ∈ (� ∪ {−1})N | for each i ∈ {1, . . . , N},
N∏

s=1

qγs

i,s = λg,i or γi = −1

}

.
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The following theorem gives the structure of the Hochschild cohomology as a graded
vector space. Recall definition (9) of the quantum exterior algebra.

Theorem 4.1. If G acts diagonally on the chosen basis of V , then we have that
HH

�

(Sq(V ), Sq(V )g) is the graded vector subspace of Sq(V )g ⊗
∧

q−1(V ∗) given by

HHm(Sq(V ), Sq(V )g) ∼=
⊕

β∈{0,1}N

|β|=m

⊕

α∈�N

α−β∈Cg

span
�
{(xα#g)⊗ (x∗)∧β},

for all m ∈ �, g ∈ G. Therefore,

HHm(Sq(V ), Sq(V )�G) ∼=
⊕

g∈G

⊕

β∈{0,1}N

|β|=m

⊕

α∈�N

α−β∈Cg

span
�
{(xα#g)⊗ (x∗)

∧β},

for all m ∈ �, and HHm(Sq(V )�G) is its G-invariant subspace.

Example 4.2. Fix g ∈ G. We wish to describe HH
�

g := HH
�

(Sq(V ), Sq(V )g) when
N = 2. We will work out two special cases. When q1,2 is not a root of unity and
λg,1, λg,2 are not both equal to 1, we have

HH0
g

∼= {0},
HH1

g
∼= {0},

HH2
g

∼= span�{(1#g)⊗ x∗
1 ∧ x∗

2}.
For the second case, assume q1,2 is simultaneously a primitive �th root of unity, a

�1th root of λg,1, and a �2th root of λ−1
g,2. Also assume q1,2 �= λg,2 and q−1

1,2 �= λg,1.
Then we have

HH0
g

∼= span
�
{xα1

1 xα2
2 #g | α1, α2 ∈ �, � divides both α1 − �2 and α2 − �1},

HH1
g

∼= span�{(xα1
1 xα2

2 #g)⊗ x∗
1 | α1, α2 ∈ �, � divides both α2 − �1

and α1 − �2 − 1}
⊕

span�{(xα1
1 xα2

2 #g)⊗ x∗
2 | α1, α2 ∈ �, � divides both α1 − �2

and α2 − �1 − 1},
HH2

g
∼= span

�
{(1#g)⊗ x∗

1 ∧ x∗
2}

⊕
span�{(xα1

1 xα2
2 #g)⊗ x∗

1 ∧ x∗
2 | α1, α2 ∈ �, � divides α1 − �2 − 1

and α2 − �1 − 1}.
Thus HH0

g is the free module over Z(Sq(V )) generated by x
2
1 x
1

2 #g, HH1
g is the

free Z(Sq(V ))-module generated by (x
2+1
1 x
1

2 #g) ⊗ x∗
1 and (x
2

1 x
1+1
2 #g) ⊗ x∗

2,

and HH2
g is the direct sum of the �-linear span of (1#g) ⊗ x∗

1 ∧ x∗
2 and the free

Z(Sq(V ))-module generated by (x
2+1
1 x
1+1

2 #g)⊗ x∗
1 ∧ x∗

2.

Define
(13)

C :=

{

γ ∈ (� ∪ {−1})N | for each i ∈ {1, . . . , N},
N∏

s=1

qγs

i,s = 1 or γi = −1

}

.

Taking G to be the trivial group with one element, we immediately obtain the
following:
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Corollary 4.3. HH
�

(Sq(V )) is the graded vector subspace of Sq(V ) ⊗
∧

q−1(V ∗)
given by

HHm(Sq(V )) ∼=
⊕

β∈{0,1}N

|β|=m

⊕

α∈�N

α−β∈C

span
�
{xα ⊗ (x∗)∧β},

for all m ∈ �.

Example 4.4. WhenN = 2, the description of HH
�

(Sq(V )) simplifies considerably.
In this case, if q1,2 is not a root of unity, then

HH0(Sq(V )) ∼= �,

HH1(Sq(V )) ∼= span
�
{x1 ⊗ x∗

1, x2 ⊗ x∗
2},

HH2(Sq(V )) ∼= span�{1⊗ x∗
1 ∧ x∗

2, x1x2 ⊗ x∗
1 ⊗ x∗

2},
and if q1,2 is a primitive �th root of unity, � ≥ 2, then

HH0(Sq(V )) ∼= span�{xα1
1 xα2

2 | α1, α2 ∈ �, � divides both α1 and α2},
HH1(Sq(V )) ∼= span�{xα1

1 xα2
2 ⊗ x∗

1 | α1, α2 ∈ �, � divides both α1 − 1 and α2}
⊕

span
�
{xα1

1 xα2
2 ⊗ x∗

2 | α1, α2 ∈ �, � divides both α1

and α2 − 1},
HH2(Sq(V )) ∼= span�{1⊗ x∗

1 ∧ x∗
2},

⊕
span�{xα1

1 xα2
2 ⊗ x∗

1 ∧ x∗
2 | α1, α2 ∈ �, � divides α1 − 1

and α2 − 1}.
Note that in the first case, the center of Sq(V ) is Z(Sq(V )) = �, while in the second

case, Z(Sq(V )) is generated by x

1 and x


2. Thus in either case, HH0(Sq(V )) =

Z(Sq(V )) as expected, HH1(Sq(V )) is the free Z(Sq(V ))-module generated by x1⊗
x∗
1 and x2⊗x∗

2, and HH2(Sq(V )) is the direct sum of the �-linear span of 1⊗x∗
1∧x∗

2

and the free Z(Sq(V ))-module generated by x1x2 ⊗ x∗
1 ∧ x∗

2. Similar expressions
may be obtained when N ≥ 3, but there are more cases to consider due to the
many more parameters involved.

We introduce some notation and lemmas before proving Theorem 4.1.
Fix g ∈ G. For any α ∈ �N , β ∈ {0, 1}N , and i ∈ {1, . . . , N}, define

Ωg(α, β, i) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, if
N∏

s=1

qαs−βs

i,s = λg,i,

0, if βi = 1,

ε(β, i)

(
i∏

s=1

qαs−βs

i,s − λg,i

N∏

s=i

qαs−βs

s,i

)

, otherwise,

where ε(β, i) = (−1)
∑i

s=1 βs .
Then, using formula (11) for d∗m we see that

(14) d∗m((xα#g)⊗ (x∗)∧β) =
N∑

i=1

Ωg(α, β, i)(x
α+[i]#g)⊗ (x∗)∧(β+[i]),

for all α ∈ �N and β ∈ {0, 1}N with |β| = m− 1.
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For any γ ∈ (� ∪ {−1})N and m ∈ �, define

Km
g,γ := span�{(xα#g)⊗ (x∗)

∧β | α ∈ �N , β ∈ {0, 1}N , |β| = m, and α− β = γ}.

Let K
�

g,γ denote the subcomplex of (10) whose mth term is given by Km
g,γ . That

K
�

g,γ is indeed a subcomplex of (10) follows from (14). We immediately obtain:

Lemma 4.5. The complex (10) admits a grading by (� ∪ {−1})N . Precisely, the

mth term of complex (10) decomposes as
⊕

γ∈(�∪{−1})N
Km

g,γ , for all m ∈ �.

We now handle separately the cases where γ is or is not in the set Cg defined
in (12). For the proof of the next lemma, we will need some notation: For any
γ ∈ (� ∪ {−1})N , define

‖γ‖g := #

{

i ∈ {1, . . . , N} |
N∏

s=1

qγs

i,s �= λg,i and γi �= −1

}

.

Lemma 4.6. Let γ ∈ ((� ∪ {−1})N\Cg). Then, the subcomplex K
�

g,γ of (10) is
acyclic.

Proof. We will show that the identity chain map of the complex K
�

g,γ is null-

homotopic. First, define the following scalar. Let α ∈ �
N , β ∈ {0, 1}N , and

i ∈ {1, . . . N}. Define

ωg(α, β, i) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, if

N∏

s=1

qαs−βs

i,s = λg,i,

0, if αi = 0,

0, if βi = 0,

Ωg(α− [i], β − [i], i)−1, otherwise.

Now, fix m ∈ � and suppose that |β| = m and α− β = γ. Define

hm : Km
g,γ → Km−1

g,γ

by

hm((xα#g)⊗ (x∗)∧β) :=
1

‖γ‖g

N∑

i=1

ωg(α, β, i)(x
α−[i]#g)⊗ (x∗)∧(β−[i]).

Note that ‖γ‖g �= 0, as γ �∈ Cg.
We contend that

(hm+1 ◦ d∗m+1 + d∗m ◦ hm)((xα#g)⊗ (x∗)∧β) = (xα#g)⊗ (x∗)∧β .
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Note that the lemma is proved if this equality is sustained. The left hand side
of this equality is equal to

1

‖γ‖g

N∑

i=1

N∑

j=1

Ωg(α, β, i)ωg(α+ [i], β + [i], j)(xα+[i]−[j]#g)⊗ (x∗)∧(β+[i]−[j])

+
1

‖γ‖g

N∑

j=1

N∑

i=1

ωg(α, β, j)Ωg(α− [j], β − [j], i)(xα+[i]−[j]#g)⊗ (x∗)
∧(β+[i]−[j])

=
1

‖γ‖g

N∑

i=1

[
Ωg(α, β, i)ωg(α+ [i], β + [i], i) + ωg(α, β, i)Ωg(α− [i], β − [i], i)

]

× (xα#g)⊗ (x∗)
∧β

+
1

‖γ‖g
∑

i 	=j

[
Ωg(α, β, i)ωg(α+ [i], β + [i], j) + ωg(α, β, j)Ωg(α− [j], β − [j], i)

]

× (xα+[i]−[j]#g)⊗ (x∗)
∧(β+[i]−[j])

.

It follows from the definition of Ωg and ωg that

N∑

i=1

Ωg(α, β, i)ωg(α+ [i], β + [i], i) + ωg(α, β, i)Ωg(α− [i], β − [i], i) = ‖γ‖g.

Therefore, it only remains to show that

Ωg(α, β, i)ωg(α+ [i], β + [i], j) + ωg(α, β, j)Ωg(α− [j], β − [j], i) = 0

whenever i �= j. To this end, define

Ξg(i, j) := Ωg(α, β, i)ωg(α+ [i], β + [i], j)

and
Ξ′
g(i, j) := ωg(α, β, j)Ωg(α− [j], β − [j], i).

Suppose i �= j. Then it is clear from definition of Ωg and ωg that Ξg(i, j)
and Ξ′

g(i, j) are simultaneously zero or nonzero, so we may assume that they are
nonzero. In this case, we have

Ξg(i, j) = ε(β, i)ε(β + [i]− [j], j)

(
i∏

s=1

qαs−βs

i,s − λg,i

N∏

s=i

qαs−βs

s,i

)

×

⎛

⎝
j∏

s=1

qαs−βs

j,s − λg,j

N∏

s=j

qαs−βs

s,j

⎞

⎠

−1

and

Ξ′
g(i, j) = ε(β − [j], i)ε(β − [j], j)

⎛

⎝
j∏

s=1

qαs−βs

j,s − λg,j

N∏

s=j

qαs−βs

s,j

⎞

⎠

−1

×
(

i∏

s=1

qαs−βs

i,s − λg,i

N∏

s=i

qαs−βs

s,i

)

.

Therefore, the desired equality Ξg(i, j) = −Ξ′
g(i, j) is equivalent to the equality

ε(β − [j], i)ε(β − [j], j) = −ε(β, i)ε(β + [i]− [j], j),
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which may be easily verified using the definition of ε, the corresponding conditions
under which Ωg and ωg are nonzero, and the condition i �= j. �

Proof of Theorem 4.1. Observe that the restriction of d∗� to K
�

g,γ is zero for all
γ ∈ Cg. The theorem now follows immediately from Lemmas 4.5 and 4.6. �

4.2. Cup product. Assume that G acts diagonally on the basis x1, . . . , xN of V .
The following is immediate from Theorem 3.1 when we put B = Sq(V )�G. Recall
the definition of Cg in (12) and of

∧
q−1(V ∗) given by (9).

Theorem 4.7. HH
�

(Sq(V ), Sq(V )�G) is a subquotient algebra of (Sq(V )�G)⊗∧
q−1(V ∗). Thus the cup product on HH

�

(Sq(V ), Sq(V )�G) is given by

((xα#g)⊗ (x∗)∧β) � ((xα′
#h)⊗ (x∗)∧β′

) = (xα#g)(xα′
#h)⊗ (x∗)∧β ∧ (x∗)∧β′

for all g, h ∈ G, α, α′ ∈ �N and β, β′ ∈ {0, 1}N such that α−β ∈ Cg and α′−β′ ∈
Ch. Moreover HH

�

(Sq(V )�G) is the G-invariant subalgebra of HH
�

(Sq(V ), Sq(V )�
G).

Remark 4.8. Note that the above product is zero when the supports of β and β′

intersect nontrivially. Furthermore, we understand the above product to be zero
(i.e., a coboundary) if α+ α′ − (β + β′) is not in Cgh.

Recall the definition of C in (13). Taking G to be the trivial group with one
element, we immediately obtain the following:

Corollary 4.9. HH
�

(Sq(V )) is a subquotient algebra of Sq(V )⊗
∧

q−1(V ∗). Thus

the cup product on HH
�

(Sq(V )) is given by

(xα ⊗ (x∗)∧β) � (xα′ ⊗ (x∗)∧β′
) = xαxα′ ⊗ (x∗)∧β ∧ (x∗)∧β′

for all α, α′ ∈ �N and β, β′ ∈ {0, 1}N such that α− β ∈ C and α′ − β′ ∈ C.

Remark 4.10. As before, the above product is zero when the supports of β and β′

intersect nontrivially. Furthermore, we understand the above product to be zero
(i.e., a coboundary) if α+ α′ − (β + β′) is not in C.
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