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Abstract. In this paper we give a criterion for a left Gorenstein algebra to be

AS-regular. Let A be a left Gorenstein algebra such that the trivial module Ak
admits a finitely generated minimal free resolution. Then A is AS-regular if

and only if its left Gorenstein index is equal to− inf{i |ExtdepthAA
A (k, k)i �= 0}.

Furthermore, A is Koszul AS-regular if and only if its left Gorenstein index is

depthAA = − inf{i |ExtdepthAA
A (k, k)i �= 0}.

As applications, we prove that the category of AS-regular algebras is a
tensor category and that a left Noetherian p-Koszul, left Gorenstein algebra
is AS-regular if and only if it is p-standard. This generalizes a result of Dong
and the second author.

Introduction

A connected graded algebra is called left (resp. right) Gorenstein if the Ext-group
from the trivial left (resp. right) module to itself is 1-dimensional. Gorenstein al-
gebras have a multitude of connections to algebraic topology, representation theory
and non-commutative algebraic geometry. In the last twenty years, Gorenstein alge-
bras have been intensively studied in literature. AS-regular (resp. AS-Gorenstein)
algebras, which were introduced by Artin and Schelter ([AS]), are Gorenstein alge-
bras with finite global (resp. injective) dimension. AS-regular algebras are thought
to be the coordinate rings of the corresponding non-commutative projective spaces
in the non-commutative projective geometry. One of the central questions in non-
commutative projective geometry is to classify non-commutative projective spaces,
or equivalently, to classify the corresponding AS-regular algebras. In [DW], Dong
and the second author proved that any Noetherian Koszul standard AS-Gorenstein
algebra is AS-regular by using Catelnuovo-Mumford regularity. The motivation of
this paper is to study when left Gorenstein algebras are AS-regular. The following
result is Theorem 2.2 and Corollary 2.4.

Theorem A. Let A be a left Gorenstein algebra such that the trivial module Ak
admits a finitely generated minimal free resolution. Then A is AS-regular if and
only if

GorAA = − inf{i |ExtdepthAA
A (k, k)i �= 0}.
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Furthermore, A is Koszul and AS-regular if and only if

GorAA = depthAA = − inf{i |ExtdepthAA
A (k, k)i �= 0}.

For the definition of GorAA, see Definition 2.1. Note that Ak admits a finitely
generated minimal free resolution of graded A-modules if A is a left Noetherian
graded algebra. By using the above theorem, we prove that the tensor product
of two AS-regular graded algebras is also AS-regular, and we prove the following
proposition in Proposition 3.3.

Proposition B. Let A be a left Noetherian p-Koszul left Gorenstein algebra (p ≥
2). Then A is AS-regular if and only if A is p-standard.

This proposition is a generalization of [DW, Theorem 4.10]. The p-standard left
Gorenstein algebra is defined in Definition 3.2.

1. Preliminaries

Throughout this paper, k is a fixed field. A k-algebra A is called N-graded if
A has a k-vector space decomposition A =

⊕
i≥0 Ai such that AiAj ⊆ Ai+j for

all i, j ≥ 0. An N-graded algebra is called connected graded if A0 = k. In the
following, A will always be a connected graded k-algebra if no special assumption
is emphasized and m will be its maximal graded ideal

⊕
i>0 Ai.

A left A-module M , with a decomposition M =
⊕

i∈Z
Mi of k-vector spaces,

is called graded if AiMj ⊆ Mi+j for all i, j. Graded right A-modules are defined
similarly. Obviously the residue field k has a trivial graded left or right A-module
structure via the canonical surjection ε : A → k. The opposite algebra of A is
denoted by Aop. Any graded right A-module can be identified with a graded left
Aop-module.

A graded A-module M is called locally finite if each graded piece Mi is a finite-
dimensional k-vector space; M is called bounded below if Mi = 0 for i � 0. Let M
and N be two graded left A-modules. An A-module homomorphism f : M → N
is said to be a graded homomorphism of degree l if f(Mi) ⊆ Ni+l for all i ∈ Z.
Let GrA be the category of graded left A-modules and graded homomorphisms
of degree 0, and let HomGrA(−,−) be the hom-functor in the category GrA. If
M ∈ GrA, M(n) is the n-th shift of M , with M(n)i = Mn+i. The graded vector
space of all graded A-homomorphisms from M to N is denoted by

HomA(M,N) =
∞⊕

n=−∞
HomGrA(M,N(n)).

For any complex X of graded A-modules and d ∈ Z, we denote X[d] as the d-th
twisting of X such that (X[d])i = Xd+i.

The derived category of GrA is denoted by D(GrA). The full subcategories of
D(GrA) consisting of objects which are cohomologically bounded below, bounded
above and bounded respectively are denoted by D+(GrA), D−(GrA) and Db(GrA).
The right derived functor of HomA(−,−) is denoted by RHomA(−,−), and the left
derived functor of −⊗A − is denoted by −L ⊗A −. The Ext and Tor are defined as

ExtiA(X,Y ) = Hi(RHomA(X,Y )) and TorAi (X,Y ) = H−i(XL ⊗A Y ).

A bounded above complex L of graded free left A-modules is called minimal if
diL(L

i) ⊆ mLi+1. In this case, the differentials in HomA(L, k) and k⊗A L are zero.
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A bounded below complex I of graded injective A-modules is called minimal if
ker(diI) is graded essential in Ii for each i ∈ Z. In this case, the complex HomA(k, I)
has zero differential.

For any graded A-module M , its depth is depthAM = inf{i |ExtiA(k,M) �= 0}.
The projective dimension and injective dimension of M are defined respectively as

pdAM = sup{i |ExtiA(M,N) �= 0 for some N ∈ GrA},
idAM = sup{i |ExtiA(N,M) �= 0 for some N ∈ GrA}.

If M is bounded below, then pdAM = sup{i |ExtiA(M,k) �= 0} and pdAM co-
incides with the usual (ungraded) projective dimension of M by the existence of
minimal free resolution. The graded global dimension of A, defined via the (graded)
projective dimensions of graded modules, coincides with the usual global dimension
of A, and it is well known that gl.dim(A) = pdAk = pdAopk.

2. Main theorem

Let A be a connected graded algebra. We say that A is left (resp. right) Goren-
stein if dimk Ext

∗
A(k,A) = 1 (resp. dimk Ext

∗
Aop(k,A) = 1), where Ext∗A(k,A) =⊕

i∈Z
ExtiA(k,A). For a left Gorenstein graded algebra A, there is some integer l

such that

(1) ExtiA(k,A) =

{
0, i �= depthAA,

k(l), i = depthAA.

A left (resp. right) Gorenstein graded algebra A is called left (resp. right) AS-
Gorenstein (AS stands for Artin-Schelter) if idAA < ∞ (resp. idAopA < ∞). If,
further, gl.dimA < ∞, then we say A is left (resp. right) AS-regular.

The usual definition of AS-regular algebras in the literature in the late 1980s and
early 1990s requires the algebra to have finite Gelfand-Kirillov dimension. Note that
our definition of AS-regular algebra differs from this. By [SZ, Theorem 2.4], any
left (or right) Noetherian connected graded algebra with finite global dimension has
finite Gelfand-Kirillov dimension. Hence there is no difference between our defini-
tion and the original definition of AS-regular algebra for left (or right) Noetherian
connected graded algebras.

Definition 2.1. Let A be a left Gorenstein algebra. The number l as in (1) is
called the left Gorenstein index of A, denoted by GorAA.

For right Gorenstein graded algebras, we can define right Gorenstein index sim-
ilarly. Note that the left (resp. right) Gorenstein index was called the Artin-
Schelter index in [LPWZ]. For any left Gorenstein graded algebra A, GorAA is
closely related to A’s AS-regularity. The following theorem gives a criterion for a
left Gorenstein graded algebra to be AS-regular.

Theorem 2.2. Let A be a left Gorenstein algebra such that the trivial graded
A-module Ak admits a minimal free resolution consisting of finitely generated A-
modules. Then the following are equivalent:

(1) A is left AS-regular.
(2) A is AS-regular.

(3) GorAA ≥ − inf{i |ExtdepthAA
A (k, k)i �= 0}.
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(4) The d-th part Fd of the minimal free resolution of Ak has a free basis con-
centrated in degrees ≤ GorAA, where d = depthAA.

(5) The d-th part Fd of the minimal free resolution of Ak is generated by one
element in degree GorAA, where d = depthA A.

If one of the above holds, then GorAA = − inf{i |ExtdepthAA
A (k, k)i �= 0}.

Proof. (1) ⇒ (5). Let A be a left AS-regular algebra with global dimension d. Then

Ak admits a minimal free resolution

0 → Fd
∂→ Fd−1

∂→ · · · ∂→ F1
∂→ F0

ε→ Ak → 0,

where each Fi is finitely generated and F0 = A. Since pdAk = gl.dimA = d, it is
easy to see that depthA A = pdAk = d. Let GorAA = l. Then

0 → (F0)
† (∂)†→ · · · (∂)

†

→ (Fd)
† → k(l) → 0

is a finitely generated minimal free resolution of kA(l), where M† = HomA(M,A)
for any graded A-module M . Hence (Fd)

† ∼= A(l) and Fd
∼= AA(−l).

(5) ⇒ (4). Obvious.

(4) ⇔ (3). It follows from ExtdA(k, k) = HomA(Fd, k).
(3) ⇒ (2). Let A be a left Gorenstein algebra with depthAA = d and GorAA =

l ≥ − inf{i |ExtdepthAA
A (k, k)i �= 0}. By the assumption, Ak admits a finitely gen-

erated minimal free resolution

· · · ∂→ Fi
∂→ · · · ∂→ F1

∂→ A
ε→ Ak → 0,(2)

where Fi = A ⊗ Vi, each Vi is a finite-dimensional graded space and Vd is concen-
trated in degrees ≤ l.

The short exact sequence

0 → m
ι→ A

ε→ k → 0(3)

induces the following long exact sequence:

· · · → ExtdA(k,m)−l → ExtdA(k,A)−l
ExtdA(k,ε)−l→ ExtdA(k, k)−l → · · · .

As a sub-quotient of HomA(Fd,m), ExtdA(k,m) is concentrated in degrees > −l.

Hence ExtdA(k,m)−l = 0. Since ExtdA(k,A)−l
∼= kA �= 0, ExtdA(k, ε)−l �= 0.

There exists f ∈ HomA(Fd, A) such that f ∂ = 0 and ε f �= 0. As HomA(Fd, k) ∼=
Homk(Vd, k), there exists v ∈ Vd such that ε f(v) = 1. This implies that f(v) = 1
for some v ∈ Vd and f : Fd → A is surjective. Therefore, f splits and Fd =
kerf ⊕ (A⊗ kv). Since kerf is graded free, kerf = A ⊗Xd for some graded space
Xd. Then Fd = A⊗ (kv ⊕Xd). Since f ∂ = 0, we have ∂(Fd+1) ⊆ A⊗Xd.

Let Qi = HomA(Fi, A) and δ = HomA(∂,A). Since (2) is a finitely generated
minimal free resolution, the complex

(Q•, δ) : 0 → Q0 δ→ Q1 δ→ · · · δ→ Qi δ→ · · ·
consisting of finitely generated graded free right A-modules is minimal. Obviously,

Qd ∼= (kf ⊗A)⊕ (Homk(Xd, k)⊗A) and δ(f) = 0.

Since A is left Gorenstein, by (1), there is an integer d such that

Hi(Q•, δ) = ExtiA(k,A) =

{
0, i �= d,

kf, i = d.
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In the following, we show by induction on j (0 ≤ j ≤ d) that Qd−j admits a
decomposition

Qd−j = (W d−j ⊕Rd−j)⊗A

with
{
W d = kf, Rd = Homk(Xd, k),

δ(W d−j) ⊆ W d−j+1 ⊗A, δ(Rd−j) ⊆ Rd−j+1 ⊗A, j = 1, · · · , d.

Suppose this is true for j − 1. We choose a graded free right A-module decom-
position Qd−j = (E ⊕ F ⊕ S)⊗A of Qd−j such that

δ(E) ⊆ W d−j+1 ⊗A, δ(F ) ⊆ Rd−j+1 ⊗A,(4)

and dimk(E ⊕ F ) is maximal among all such graded free right A-module decom-
positions of Qd−j satisfying (4). Since Qd−j is finitely generated, such a maximal
decomposition exists. We claim that S = 0.

Suppose on the contrary that S �= 0. Since S is finite-dimensional, there is a
non-zero element x ∈ S with the minimal degree, i.e., |x| = min{|s| | s ∈ S}. Let

δ(x) = δ1(x) + δ2(x), with δ1(x) ∈ W d−j+1 ⊗A, δ2(x) ∈ Rd−j+1 ⊗A.

Then δ(δ1(x)) = −δ(δ2(x)) ∈ (W d−j+2⊗A)∩ (Rd−j+2⊗A) = 0. Hence both δ1(x)
and δ2(x) are cocycles. When j = 1, δ1(x) ∈ kf⊗m and δ2(x) ∈ Homk(Xd, k)⊗m by
the minimality of (Q•, δ). Since Hd(Q•, δ) = kf , both δ1(x) and δ2(x) are cobound-
aries. When j ≥ 2, δ1(x) and δ2(x) are coboundaries since Hd−j+1(Q•, δ) = 0.
Hence there exist α1, α2 ∈ Qd−j such that δ(α1) = δ1(x) and δ(α2) = δ2(x).

For any α ∈ T ⊗ A, we denote α = α + α′ with α ∈ T ⊗ k and α′ ∈ T ⊗ m. It
follows from the minimality of |x| that α′

1 ∈ (E⊕F )⊗m. Clearly, ᾱ1 either belongs
to E ⊕ F or it does not.

If ᾱ1 ∈ E ⊕ F , then (k(x − α1) ⊗ A) ∩ ((E ⊕ F ⊕ S/kx) ⊗ A) = 0. Indeed,
if for any a ∈ A, (x − α1) ⊗ a ∈ (E ⊕ F ⊕ S/kx) ⊗ A, then we have x ⊗ a =
(x − α1) ⊗ a + ᾱ1 ⊗ a + α′

1 ⊗ a ∈ ((E ⊕ F ⊕ S/kx) ⊗ A) ∩ (kx ⊗ A) = 0. Hence
(k(x−α1)⊕E⊕F ⊕S/kx)⊗A = (E⊕F ⊕S)⊗A. But then δ(x−α1) = δ2(x) ∈
Rd−j+1 ⊗ A and dimk(k(x− α1)⊕ E ⊕ F ) = dimk(E ⊕ F ) + 1, which contradicts
the maximality property of the chosen decomposition.

In the case of ᾱ1 �∈ E ⊕ F , let ᾱ1 = e1 + f1 + s1, where e1 ∈ E, f1 ∈ F and
0 �= s1 ∈ S. Then (kα1⊗A)∩((E⊕F )⊗A) = 0. Indeed, if α1⊗a ∈ (E⊕F )⊗A, then
ᾱ1⊗a = α1⊗a−α′

1⊗a ∈ (E⊕F )⊗A, which implies that s1⊗a = (ᾱ1−e1−f1)⊗a ∈
((E⊕F )⊗A)∩ (S⊗A) = 0. Hence (kα1 ⊕E⊕F )⊗A is a graded free submodule
of (E⊕F ⊕S)⊗A. Since s1 = α1 −α′

1 − e1 − f1 ∈ (kα1 ⊕E⊕F )⊗A, there exists
a homomorphism of graded right A-modules

g : (E ⊕ F ⊕ S)⊗A → (kα1 ⊕ E ⊕ F )⊗A

such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g(e) = e, for any e ∈ E,

g(f) = f, for any f ∈ F,

g(s) = 0, for any s ∈ S/ks1,

g(s1) = s1.

Then g(α1) = α1, and g is a surjective homomorphism of graded right A-modules
which splits. It is easy to see that the inclusion map from (kα1 ⊕ E ⊕ F ) ⊗ A to
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(E ⊕ F ⊕ S)⊗A is a right inverse of g. Then

(E ⊕ F ⊕ S)⊗A = (kα1 ⊕ E ⊕ F )⊗A⊕ ker(g).

Since ker(g) is bounded below, it is free. Now δ(α1) ∈ W d−j+1 ⊗A and

dimk(kα1 ⊕ E ⊕ F ) = dimk(E ⊕ F ) + 1.

This also contradicts the maximality property of the chosen decomposition.
Therefore, S = 0.
Now let W d−j = E and Rd−j = F . Then Qd−j admits a decomposition

Qd−j = (W d−j ⊕Rd−j)⊗A,

with δ(W d−j) ⊆ W d−j+1 ⊗A and δ(Rd−j) ⊆ Rd−j+1 ⊗A.
By induction, we have proved that for any j = 0, · · · , d, Qd−j admits a decom-

position

Qd−j = (W d−j ⊕Rd−j)⊗A,

with δ(W d−j) ⊆ W d−j+1 ⊗A and δ(Rd−j) ⊆ Rd−j+1 ⊗A for all j ≥ 1.
For any i = 0, · · · , d, let P i = W i ⊗ A. Then the subcomplex

(P •, δ) : 0 → P 0 δ→ P 1 δ→ · · · δ→ P d−1 δ→ P d → 0

of (Q•, δ) satisfies that

Hi(P •, δ) =

{
0, i �= d,

kf, i = d.

This shows that (P •, δ) is a minimal free resolution of kA. Hence A is a left AS-
regular graded algebra with gl.dimA = d. This implies that

0 → Fd
∂→ Fd−1

∂→ · · · ∂→ F1
∂→ A

ε→ Ak → 0

is a finitely generated minimal free resolution of Ak. The left Gorensteinness of A
implies that

0 → (F0)
† (∂)†→ · · · (∂)

†

→ (Fd)
† → k(l) → 0

is a finitely generated minimal free resolution of k(l) as a right A-module. Hence

ExtiAop(k(l), A) =

{
0, i �= d,

Ak, i = d
and ExtiAop(k,A) =

{
0, i �= d,

Ak(l), i = d,

so A is AS-regular.
(2) ⇒ (1). Obvious. �

The proof of (3) ⇒ (2) in Theorem 2.2 is modified from the proof of [FM,
Theorem 1]. For any left Noetherian connected graded algebra A, Ak admits a
finitely generated minimal free resolution of graded A-modules. So we have the
following corollary.

Corollary 2.3. Let A be a left Noetherian, left Gorenstein algebra. Then A is
AS-regular if and only if

GorAA = − inf{i |ExtdepthAA
A (k, k)i �= 0}.

A connected graded algebra A is called Koszul if for each i ≥ 0, the i-th part
Fi of the minimal free resolution of Ak is generated in degree i. For more details
about Koszul algebras, please see [BGS] and [Sm].
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Corollary 2.4. Let A be a left Gorenstein algebra such that the trivial graded A-
module Ak admits a finitely generated minimal free resolution. Then A is Koszul
and AS-regular if and only if

GorAA = depthAA = − inf{i |ExtdepthAA
A (k, k)i �= 0}.

Proof. If A is Koszul and AS-regular, then by Theorem 2.2 and the Koszulity of A,

GorAA = depthAA = − inf{i |ExtdepthAA
A (k, k)i �= 0}.

Conversely, if GorAA = depthAA = − inf{i |ExtdepthAA
A (k, k)i �= 0}, then A is

AS-regular by Theorem 2.2. We claim that A is Koszul. Let d = gl.dimA. Then

ExtiA(k,A) =

{
0, i �= d,

k(d), i = d.

By assumption, d = − inf{i |ExtdA(k, k)i �= 0}. Hence the trivial module Ak admits
a finitely generated minimal free resolution

0 → Fd
∂→ Fd−1

∂→ · · · ∂→ F1
∂→ A

ε→ Ak → 0,(5)

where Fd is generated in degrees ≤ d. On the other hand, each Fi is generated in
degrees ≥ i by the minimality of (5). Hence Fd is generated in degree d.

We show by induction on n, n = 1, · · · , d, that Fd−n is generated in degree d−n.

Suppose this is true for n − 1. Then Extd−n+1
A (k,m) is concentrated in degrees

> n − d − 1, since it is a sub-quotient of HomA(Fd−n+1,m). By the long exact
sequence

· · · → ExtiA(k,m)j → ExtiA(k,A)j → ExtiA(k, k)j → Exti+1
A (k,m)j → · · ·

induced from the short exact sequence (3), we conclude that Extd−n
A (k, k) is con-

centrated in degrees > n− d− 1. So Fd−n is generated in degrees ≤ d− n. On the
other hand, Fd−n is generated in degrees ≥ d− n by the minimality of (5). Hence
Fd−n is generated in degree d− n. By induction, every Fi is generated in degree i.
Therefore A is Koszul. �

3. Applications

In [DW, Theorem 4.10], Dong and Wu proved that any Noetherian Koszul stan-
dard AS-Gorenstein algebra is AS-regular by using Catelnuovo-Mumford regularity.
Now we generalize it to the higher Koszul case. First, we recall the definition of
p-Koszul algebras ([Be], [HL], [YZ]).

Let p > 1 be an integer. Denote αp : N → N as the map

αp(n) =

{
pq, n = 2q,

pq + 1, n = 2q + 1.

Definition 3.1. A connected graded algebra is called p-Koszul if for each i ≥ 0,
the graded vector space ExtiA(k, k) is concentrated in degree −αp(i).

A connected graded algebra A is p-Koszul if and only if the i-th part Fi of the
minimal free resolution of Ak is generated in degree αp(i) for each i ≥ 0. If p = 2,
then a p-Koszul algebra is just a Koszul algebra.

Definition 3.2. A left Gorenstein algebraA is p-standard if GorAA=αp(depthAA).
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Obviously, 2-standard left Gorenstein algebra is just the standard left Gorenstein
algebra as defined in [DW].

Proposition 3.3. Let A be a left Noetherian, p-Koszul algebra. Then A is p-
standard left Gorenstein if and only if A is AS-regular.

Proof. If A is p-standard left Gorenstein, then GorAA = αp(depthAA). Since A

is p-Koszul, the graded vector space Ext
depthAA
A (k, k) is concentrated in degree

−αp(depthAA). Hence GorAA = − inf{i |ExtdepthAA
A (k, k)i �= 0}. By Corollary

2.3, A is AS-regular.

Conversely, if A is AS-regular, then GorAA = − inf{i |ExtdepthAA
A (k, k)i �= 0}

by Corollary 2.3. Since A is p-Koszul, the graded vector space Ext
depthAA
A (k, k)

is concentrated in degree −αp(depthAA). Hence, GorAA = −αp(depthAA). This
implies that A is p-standard left Gorenstein. �

It is easy to see that Proposition 3.3 is a generalization of [DW, Theorem 4.10].
In the remainder of this section, we prove that the tensor product of two AS-
regular algebras is AS-regular. First, we have the following proposition on the left
Gorensteinness of algebras under tensor product.

Proposition 3.4. Let A and B be two left Gorenstein algebras. If either A is
finite-dimensional or Bk has a finitely generated minimal free resolution of finite
length, then A⊗B is left Gorenstein with

depthA⊗BA⊗B = depthAA+ depthBB

and

GorA⊗BA⊗ B = GorAA+GorBB.

Proof. Let (F •, δA) and (G•, δB) be minimal free resolutions of Ak and Bk re-
spectively. Then the tensor product (P •, δ) of (F •, δA) and (G•, δB) is a minimal
complex of graded A ⊗ B-modules, and it is a minimal free resolution of k as a
graded A⊗B-module. By assumption, we have

dimk H(HomA(F
•, A)) = dimk H(HomB(G

•, B)) = 1,

HomA(F
•, A) � kA[−depthAA](GorAA)

and

HomB(G
•, B) � kB [−depthBB](GorBB).

Here we use the twisting of complexes and the shift of graded modules. The readers
can see the explanations of this two notations in Section 1. If either dimk A < ∞
or (G•, δB) is a bounded complex of finitely generated B-modules, then

HomB(G
•, A⊗B) ∼= A⊗HomB(G

•, B).

Hence

H(RHomA⊗B(k,A⊗B)) = H(HomA⊗B(F
• ⊗G•, A⊗B))

∼= H(HomA(F
•,HomB(G

•, A⊗B)))

∼= H(HomA(F
•, A⊗HomB(G

•, B)))

∼= H(HomA(F
•, A[−depthBB](GorBB)))

∼= k[−depthAA− depthBB](GorAA+GorBB).
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Hence A⊗B is left Gorenstein with

depthA⊗BA⊗B = depthAA+ depthBB

and
GorA⊗BA⊗ B = GorAA+GorBB.

�
For any connected graded algebra A, dimk Ext

∗
A(k, k) < ∞ if and only if A has

finite global dimension and Ak has a finitely generated minimal free resolution. If
A is left Gorenstein with finite global dimension, i.e., A is left AS-regular, then Ak
has a finitely generated minimal free resolution by [SZ, Proposition 3.1], and so
Ext∗A(k, k) is finite dimensional. Using Proposition 3.4, we can prove the following
proposition.

Proposition 3.5. If A and B are two AS-regular algebras, then A⊗B is AS-regular
with

gl.dim(A⊗B) = gl.dimA+ gl.dimB.

Proof. Since A and B are AS-regular, both Ak and Bk admit bounded finitely
generated minimal free resolutions (F •, δA) and (G•, δB) respectively. Therefore
dimk Ext

∗
A(k, k) and dimk Ext

∗
B(k, k) are finite, and (P •, δ) = F •⊗G• is a minimal

free resolution of k as a graded A⊗B-module. Let gl.dimA = dA and gl.dimB =
dB . Then

dA + dB = − inf{i |P i �= 0} = gl.dim(A⊗ B).

Since A and B are AS-regular, by Theorem 2.2,

dA = depthAA, GorAA = − inf{i |ExtdA

A (k, k)i �= 0}
and

dB = depthBB, GorBB = − inf{i |ExtdB

B (k, k)i �= 0}.
By Proposition 3.4, A⊗B is left Gorenstein with

depthA⊗BA⊗B = depthAA+ depthBB = dA + dB

and

GorA⊗BA⊗B = GorAA+GorBB

= − inf{i |ExtdA

A (k, k)i �= 0} − inf{i |ExtdB

B (k, k)i �= 0}.
On the other hand,

− inf{i |ExtdA+dB

A⊗B (k, k)i �= 0} = − inf{i |HomA⊗B(F
−dA ⊗G−dB , k)i �= 0}

= − inf{i |ExtdA

A (k, k)i �= 0} − inf{i |ExtdB

B (k, k)i �= 0}.

Hence GorA⊗BA⊗B = − inf{i |ExtdA+dB

A⊗B (k, k)i �= 0}. �

Proposition 3.5 indicates that the category of AS-regular algebras is a tensor
category.
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