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BINOMIAL COEFFICIENTS

AND THE RING OF p-ADIC INTEGERS

ZHI-WEI SUN AND WEI ZHANG

(Communicated by Wen-Ching Winnie Li)

Abstract. Let k > 1 be an integer and let p be a prime. We show that if
pa � k < 2pa or k = paq + 1 (with q < p/2) for some a = 1, 2, 3, . . ., then
the set {

(n
k

)
: n = 0, 1, 2, . . .} is dense in the ring Zp of p-adic integers; i.e., it

contains a complete system of residues modulo any power of p.

1. Introduction

Let p be an odd prime. In section F11 of Guy [Gu, p. 381] it is conjectured that
|{n! mod p : n = 1, 2, 3, . . .}| is about p(1− 1/e) asympototically. [CVZ] provided
certain evidence for the conjecture.

In [BLSS] the authors proved that for infinitely many primes p there are at least
log log p/ log log log p distinct integers among 0, 1, . . . , p−1 which are not congruent
to n! for any n ∈ Z

+ = {1, 2, 3, . . .}.
Garaev and Luca [GL] showed that for any ε > 0 there is a computable positive

constant p0(ε) such that for any prime p > p0(ε) and integers t > pε and s >
t+ p1/4+ε we have

{m1! · · ·mt! (mod p) : m1 + · · ·+mt = s} ⊇ {r (mod p) : r = 1, . . . , p− 1}.
Let p be any prime. As usual, we denote by Zp the ring of p-adic integers in

the p-adic field Qp. The reader may consult an excellent book [M] by Murty for
the basic knowledge of p-adic analysis. Any given p-adic integer α has a unique
representation in the form

α =

∞∑

j=0

ajp
j with aj ∈ [0, p− 1] = {0, 1, . . . , p− 1}.

For each b ∈ N = {0, 1, 2, . . .} we have

α ≡ r(b) (mod pb), i.e., |α− r(b)|p � 1

pb
,

where r(b) :=
∑

0�j<b ajp
j and | · |p is the p-adic norm.

In this paper we study the following new problem (which was actually motivated
by the first author’s paper [S]).
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Problem 1.1. Given a prime p and a positive integer k, is the set {
(
n
k

)
: n ∈ N}

dense in Zp? In other words, does the set contain a complete system of residues
modulo any power of p?

Definition 1.1. Let k ∈ N and m ∈ Z
+, and define

(1.1) Rm(k) :=

{(
n

k

)
(modm) : n ∈ N

}
.

If Rm(k) = Z/mZ, then we call m a k-universal number.

Clearly all positive integers are 1-universal and 1 is k-universal for all k ∈ Z
+.

If p is a prime, a, k, n, n′ ∈ N and n′ ≡ n (mod pa+ordp(k!)), then
(
n′

k

)
=

∏
0�j<k(n

′ − j)

k!
≡

∏
0�j<k(n− j)

k!
=

(
n

k

)
(mod pa).

Combining this observation with the Chinese Remainder Theorem we immediately
get the following basic proposition.

Proposition 1.1. Let k ∈ Z
+ and m = pa1

1 · · · par
r , where p1, . . . , pr are distinct

primes and a1, . . . , ar ∈ Z
+. Then m is k-universal if and only if pa1

1 , . . . , par
r are

all k-universal.

In view of Proposition 1.1, we may focus on those k-universal prime powers.
Let k > 1 be an integer. If p > k is a prime, then p is not k-universal since

{(
0

k

)
,

(
1

k

)
, . . . ,

(
p− 1

k

)}

is not a complete system of residues modulo p. (Note that
(
0
k

)
=

(
1
k

)
= 0.) Thus, if

m ∈ Z
+ is k-universal, then m has no prime divisor greater than k.

For an integer k > 1, a prime p > k and an integer r ∈ [1, p−1] = {1, . . . , p−1},
the congruence

(
x
k

)
≡ r (mod p) might have more than two solutions. For example,

(
12

5

)
≡

(
19

5

)
≡

(
22

5

)
≡

(
31

5

)
≡ 18 (mod 43)

and (
15

10

)
≡

(
21

10

)
≡

(
25

10

)
≡

(
30

10

)
≡ 14 (mod 61).

Recall the following useful result of Lucas.

Lucas’ Theorem (cf. [Gr] and [HS]). Let p be any prime, and let n0, k0, . . . , nr, kr
∈ [0, p− 1]. Then we have

(∑r
i=0 nip

i

∑r
i=0 kip

i

)
≡

r∏

i=0

(
ni

ki

)
(mod p).

Clearly Lucas’ theorem implies the following proposition.

Proposition 1.2. Let p be a prime and let k =
∑r

i=0 kip
i with ki ∈ [0, p−1]. Then

Rp(k) =
∏r

i=1 Rp(ki). In particular, when k0, . . . , kr ∈ {0, p− 2, p− 1} we have

Rp(k) ⊆ {r(mod p) : r = 0,±1}.
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Let p be a prime. As Rp(1) = Z/pZ, if the p-adic expansion of k ∈ Z
+ has a digit

1, then Rp(k) = Z/pZ by Proposition 1.2. In this spirit, Proposition 1.2 is helpful
to study when Rp(k) = Z/pZ. For an integer b > 1, to investigate whether pb is
k-universal (i.e., Rpb(k) = Z/pbZ) one might think that we should use an extended
Lucas theorem for prime powers. However, all known generalizations of Lucas’
theorem to prime powers are somewhat unnatural and complicated, e.g., Davis and
Webb [DW] proved that if p > 3 is a prime, a, b, n, k ∈ Z

+ and n0, k0 ∈ [0, pa − 1],
then (

npa+b + n0

kpa+b + k0

)
≡

(
np�b/3�

kp�b/3�

)(
n0

k0

)
(mod pb+1).

Therefore, we prefer to approach Problem 1.1 by an induction argument which can
be easily understood.

Our first result is as follows.

Theorem 1.1. Let p be a prime and let a ∈ N = {0, 1, 2, . . .}. Let k be an integer
with pa � k < 2pa. Then, for any b ∈ N and r ∈ Z there is an integer n ∈
[0, pa+b − 1] with n ≡ k (mod pa) such that

(
n
k

)
≡ r (mod pb).

Remark 1.1. For a prime p and a positive integer k having a digit 1 in its p-adic
expansion, p is definitely k-universal (i.e., Rp(k) = Z/pZ) but pb might not be for
some integer b > 1. For example, 21 = 4× 5 + 1 and ord5(21!) = 4. Thus

{(
n

21

)
(mod 52) : n ∈ N

}
=

{(
n

21

)
(mod 52) : n ∈ [0, 56 − 1]

}

={r (mod 52) : r = 0,±1,±3,±5,±10},
and hence R52(21) �= Z/52Z.

Here is a consequence of Theorem 1.1.

Corollary 1.1. Let p be a prime and let k ∈ Z
+ with logp(k/2) < �logp k�. Then

1, p, p2, . . . are k-universal numbers, and the set {
(
n
k

)
: n ∈ N} is a dense subset of

the ring Zp of p-adic integers.

Proof. Set a = �logp k�. Then pa � k < 2pa. By Theorem 1.1, pb is k-universal for

every b = 0, 1, 2, . . .. Therefore {
(
n
k

)
: n ∈ N} is dense in Zp. This concludes the

proof. �
For any k ∈ Z

+ there is a unique a ∈ N such that 2a � k < 2a+1. Thus
Theorem 1.1 or Corollary 1.1 implies the following result.

Corollary 1.2. Let k ∈ Z
+. Then any power of two is k-universal, and hence the

set {
(
n
k

)
: n ∈ N} is a dense subset of the 2-adic integral ring Z2.

Definition 1.2. A positive integer k is said to be universal if any power of a prime
p � k is k-universal, i.e., {

(
n
k

)
: n ∈ N} is a dense subset of Zp for any prime p � k.

Theorem 1.1 implies that 1, 2, 3, 4, 5, and 9 are universal numbers. To obtain
other universal numbers, we need to extend Theorem 1.1.

Theorem 1.2. Let p be a prime and let a ∈ N. Let k = k0+pak1 with k0 ∈ [0, pa−1]
and k1 ∈ [1, p− 1]. Suppose that for each r = 1, . . . , p− 1 there are n0 ∈ [k0, p

a− 1]
and n1 ∈ [k1, p− 1] such that

(1.2)

(
n1

k1

)(
n0

k0

)
≡ r (mod p) and Pk1

(n1) �≡ 0 (mod p),



1572 ZHI-WEI SUN AND WEI ZHANG

where

(1.3) Pk1
(x) =

k1∑

j=1

(−1)j−1

j

(
x

k1 − j

)
.

Then, for any b ∈ N, the set {
(
n
k

)
: n ∈ [0, pa+b − 1]} contains a complete system

of residues modulo pb.

Remark 1.2. Let p be an odd prime. Then

Pp−1(p− 1) =

p−1∑

j=1

(−1)j−1

j

(
p− 1

j

)

≡−
p−1∑

j=1

1

j
= −

(p−1)/2∑

j=1

(
1

j
+

1

p− j

)
≡ 0 (mod p).

Thus, for k1 = p− 1 there is no n1 ∈ [k1, p− 1] with Pk1
(n1) �≡ 0 (mod p).

Corollary 1.3. Let p be an odd prime and q ∈ {1, . . . , (p − 1)/2}. Then, for any
a ∈ Z

+ and b ∈ N, the number pb is (paq + 1)-universal.

Proof. Let k1 = q, k0 = 1, and k = pak1 + k0 = paq + 1. As Pk1
(x) ≡ 0 (mod p)

cannot have more than degPk1
(x) = k1 − 1 solutions (see, e.g., [IR, p. 39]), there

exists n1 ∈ [k1, 2k1 − 1] ⊆ [k1, p − 1] such that Pk1
(n1) �≡ 0 (mod p). Note that(

n1

k1

)
�≡ 0 (mod p). For any r ∈ [1, p− 1] there is a unique n0 ∈ [1, p− 1] such that

(
n1

k1

)(
n0

k0

)
= n0

(
n1

k1

)
≡ r (mod p).

Applying Theorem 1.2, we immediately obtain the desired result. �
From Theorem 1.2 we can deduce the following result.

Theorem 1.3. The integers 11, 17 and 29 are universal numbers.

We have the following conjecture based on our computation via the software
Mathematica.

Conjecture 1.1. There are no universal numbers other than 1, 2, 3, 4, 5, 9, 11,
17, and 29.

In Sections 2, 3 and 4 we will prove Theorems 1.1, 1.2 and 1.3 respectively.

2. Proof of Theorem 1.1

We use induction on b. The case b = 0 is trivial, so we proceed to the induction
step.

Now fix b ∈ N and r ∈ Z. Suppose that m ∈ Z, n = k + pam ∈ [0, pa+b − 1] and(
n
k

)
≡ r (mod pb). Let q be the smallest nonnegative residue of (r−

(
n
k

)
)/pb modulo

p.
Set n′ = n+ pa+bq. Then

n′ < pa+b(q + 1) � pa+b+1 and n′ ≡ n ≡ k (mod pa).

By the Chu-Vandermonde identity (cf. (5.22) of [GKP, p. 169]),
(
n′

k

)
=

(
n+ pa+bq

k

)
=

k∑

j=0

(
pa+bq

j

)(
n

k − j

)
.
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If 1 � j � k and j �= pa, then pa � j and hence
(
pa+bq

j

)
=

pa+bq

j

(
pa+bq − 1

j − 1

)
≡ 0 (mod pb+1).

Note also that
(
pa+bq

pa

)
= pbq

pa−1∏

t=1

pa+bq − t

t
≡ pbq(−1)p

a−1 ≡ pbq (mod pb+1).

Therefore(
n′

k

)
≡

(
n

k

)
+ pbq

(
n

k − pa

)
≡ r − pbq + pbq

(
n

k − pa

)
(mod pb+1).

So it suffices to show that (
n

k − pa

)
≡ 1 (mod p).

As 0 � k − pa < pa, Lucas’ theorem implies that
(

n

k − pa

)
=

(
(m+ 1)pa + (k − pa)

0pa + (k − pa)

)
≡

(
m+ 1

0

)(
k − pa

k − pa

)
= 1 (mod p).

Combining the above we have completed the proof by induction.

3. Proof of Theorem 1.2

We claim that for each b = 0, 1, 2, . . . the set {
(
n
k

)
: n ∈ S(b)} contains a complete

system of residues modulo pb, where

S(b) =

{
n ∈ [0, pa+b − 1] :

(
{n}pa

k0

) k1∑

j=1

(−1)j−1

j

(
�n/pa�
k1 − j

)
�≡ 0 (mod p)

}

and {n}pa denotes the least nonnegative residue of n mod pa.
The claim is trivial for b = 0 since

(
{k0}pa

k0

) k1∑

j=1

(−1)j−1

j

(
�k0/pa�
k1 − j

)
=

(−1)k1−1

k1
�≡ 0 (mod p).

As degPk1
(x) < k1, there exists n1 ∈ [0, k1 − 1] such that Pk1

(n1) �≡ 0 (mod p).
Combining this with the supposition in Theorem 1.2, we see that for any r ∈ [0, p−1]
there are n0 ∈ [0, pa − 1] and n1 ∈ [0, p − 1] satisfying (1.2) and the congruence(
n0

k0

)
�≡ 0 (mod p). Taking n = pan1 + n0 ∈ [0, pa+1 − 1] we find that

(
n

k

)
≡

(
n1

k1

)(
n0

k0

)
≡ r (mod p)

by Lucas’ theorem. This proves the claim for b = 1.
Now let b ∈ Z

+ and assume that {
(
n
k

)
: n ∈ S(b)} contains a complete system

of residues modulo pb. We proceed to prove the claim for b+ 1.
Let r be any integer. By the induction hypothesis, there is an integer n ∈

[0, pa+b − 1] such that

(
n

k

)
≡ r (mod pb) and

(
n0

k0

) k1∑

j=1

(−1)j−1

j

(
�n/pa�
k1 − j

)
�≡ 0 (mod p),
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where n0 = {n}pa . Hence, for some q ∈ [0, p− 1] we have

q

(
n0

k0

) k1∑

j=1

(−1)j−1

j

(
�n/pa�
k1 − j

)
≡

r −
(
n
k

)

pb
(mod p).

Clearly, n′ = n+ pa+bq ∈ [0, pa+b+1 − 1] and

(
{n′}pa

k0

) k1∑

j=1

(−1)j−1

j

(
�n′/pa�
k1 − j

)

=

(
n0

k0

) k1∑

j=1

(−1)j−1

j

(
�n/pa�+ pbq

k1 − j

)

≡
(
n0

k0

) k1∑

j=1

(−1)j−1

j

(
�n/pa�
k1 − j

)
�≡ 0 (mod p).

As in the proof of Theorem 1.1, we have
(
n′

k

)
−

(
n

k

)
=

k∑

j=1

(
pa+bq

j

)(
n

k − j

)

≡
�k/pa�∑

j=1

(
pa+bq

paj

)(
n

k − paj

)
(mod pb+1).

By Lucas’ theorem, for 1 � j � �k/pa� = k1 we have
(
pa+bq

paj

)
≡

(
pbq

j

)
=

pbq

j

∏

0<i<j

pbq − i

i
≡ pbq

(−1)j−1

j
(mod pb+1)

and (
n

k − paj

)
=

(
pa�n/pa�+ n0

pa(k1 − j) + k0

)
≡

(
�n/pa�
k1 − j

)(
n0

k0

)
(mod p).

Therefore
(
n′

k

)
−

(
n

k

)
≡ pbq

(
n0

k0

) k1∑

j=1

(−1)j−1

j

(
�n/pa�
k1 − j

)
≡ r −

(
n

k

)
(mod pb+1),

and hence
(
n′

k

)
≡ r (mod pb+1). This concludes the induction step.

In view of the above we have proved the claim, and hence the desired result
follows.

4. Proof of Theorem 1.3

(I) We first prove that 11 is universal.
Since

23 < 11 < 24, 32 < 11 < 2× 32, 7 < 11 < 2× 7,

and 11 = 2 × 5 + 1 with 2 � (5 − 1)/2, by Theorem 1.1 and Corollary 1.3, 11 is
universal.

(II) Now we want to show that 17 is universal.
Observe that

24 < 17 < 25, 32 < 17 < 2× 32, 11 < 17 < 2× 11,
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and 13 < 17 < 3 × 13. By Theorem 1.1, pb is 17-universal for any p = 2, 3, 11, 13
and b ∈ N.

Note that

�17/5�∑

j=1

(−1)j−1

j

(
x

�17/5� − j

)
=

x2 − 2x

2
+

1

3
≡ (x− 1)2 − 2

2
�≡ 0 (mod 5).

Also, 17 = 3× 5 + 2 and

(
3

3

)(
2

2

)
≡ 1 (mod 5),

(
3

3

)(
3

2

)
≡ 3 (mod 5),

(
4

3

)(
2

2

)
≡ 4 (mod 5),

(
4

3

)(
3

2

)
≡ 2 (mod 5).

So, by Theorem 1.2, 5b is 17-universal for any b ∈ N.
Clearly,

�17/7�∑

j=1

(−1)j−1

j

(
x

�17/7� − j

)
= x− 1

2
≡ x− 4 (mod 7).

Also, 17 = 2× 7 + 3 and

(
2

2

)(
3

3

)
≡ 1 (mod 7),

(
2

2

)(
4

3

)
≡ 4 (mod 7),

(
2

2

)(
5

3

)
≡ 3 (mod 7),

(
2

2

)(
6

3

)
≡ 6 (mod 7),

(
3

2

)(
4

3

)
≡ 5 (mod 7),

(
3

2

)(
5

3

)
≡ 2 (mod 7).

Thus, 7b is also 17-universal for any b ∈ N.

(III) Finally, we prove that 29 is universal.
By Theorem 1.1, it remains to prove that pb is 29-universal for any p = 7, 11, 13

and b ∈ N.
Note that 29 = 4× 7 + 1. It is easy to check that

4∑

j=1

(−1)j−1

j

(
4

4− j

)
�≡ 0 (mod 7).

For any r ∈ [1, 6], we have
(
4
4

)(
r
1

)
≡ r (mod 7). So, by Theorem 1.2, 7b is 29-

universal for any b ∈ N.
Clearly 29 = 2× 11 + 7 and

2∑

j=1

(−1)j−1

j

(
x

2− j

)
= x− 1

2
≡ x− 6 (mod 11).
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Observe that (
2

2

)(
7

7

)
≡ 1 (mod 11),

(
2

2

)(
8

7

)
≡ −3 (mod 11),

(
2

2

)(
9

7

)
≡ 3 (mod 11),

(
2

2

)(
10

7

)
≡ −1 (mod 11),

(
3

2

)(
8

7

)
≡ 2 (mod 11),

(
3

2

)(
9

7

)
≡ −2 (mod 11),

(
4

2

)(
7

7

)
≡ −5 (mod 11),

(
4

2

)(
10

7

)
≡ 5 (mod 11),

(
4

2

)(
8

7

)
≡ 4 (mod 11),

(
4

2

)(
9

7

)
≡ −4 (mod 11).

Applying Theorem 1.2 we see that 11b is 29-universal for any b ∈ N.
Observe that 29 = 2× 13 + 3 and

2∑

j=1

(−1)j−1

j

(
x

2− j

)
= x− 1

2
≡ x− 7 (mod 13).

Also,
(
2

2

)(
3

3

)
≡ 1 (mod 13),

(
2

2

)(
4

3

)
≡ 4 (mod 13),

(
2

2

)(
5

3

)
≡ −3 (mod 13),

(
2

2

)(
6

3

)
≡ −6 (mod 13),

(
2

2

)(
7

3

)
≡ −4 (mod 13),

(
2

2

)(
9

3

)
≡ 6 (mod 13),

(
2

2

)(
10

3

)
≡ 3 (mod 13),

(
2

2

)(
12

3

)
≡ −1 (mod 13),

(
3

2

)(
6

3

)
≡ −5 (mod 13),

(
3

2

)(
9

3

)
≡ 5 (mod 13),

(
4

2

)(
4

3

)
≡ −2 (mod 13),

(
4

2

)(
7

3

)
≡ 2 (mod 13).

Thus, with the help of Theorem 1.2, 13b is 29-universal for any b ∈ N.

By the above, we have completed the proof of Theorem 1.3.
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