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BERNSTEIN-TYPE THEOREMS

IN SEMI-RIEMANNIAN WARPED PRODUCTS

F. CAMARGO, A. CAMINHA, AND H. DE LIMA

(Communicated by Richard A. Wentworth)

Abstract. This paper deals with complete hypersurfaces immersed in the
(n + 1)-dimensional hyperbolic and steady state spaces. By applying a tech-
nique of S. T. Yau and imposing suitable conditions on both the r-th mean
curvatures and on the norm of the gradient of the height function, we obtain
Bernstein-type results in each of these ambient spaces.

1. Introduction

In this paper we are concerned with complete, connected Riemannian hypersur-
faces of bounded mean curvature in a class of (n+1)-dimensional semi-Riemannian
warped product spaces which includes the hyperbolic space H

n+1 and the steady
state space Hn+1 (cf. Remark 3.2).

Related to our work, L. J. Aĺıas and M. Dajczer [3] studied properly immersed
complete surfaces of the 3-dimensional hyperbolic space contained between two
horospheres, obtaining a Bernstein-type result for the case of constant mean cur-
vature between −1 and 1.

L. J. Aĺıas, M. Dajczer and J. Ripoll [4] extended the classical theorem of Bern-
stein for minimal graphs (that is, with zero mean curvature) in R

3 to complete
minimal surfaces in Riemannian ambient spaces of non-negative Ricci curvature
and endowed with a Killing field. This was done under the assumption that the
sign of the angle function between a global Gauss map and the Killing field remains
unchanged along the surface.

More recently, A. L. Albujer and L. J. Aĺıas [1] have proved that if a complete
spacelike hypersurface with constant mean curvature is bounded away from the
infinity of the steady state space Hn+1, then its mean curvature must be identically
1. As a consequence of this result, they concluded that the only complete spacelike
surfaces with constant mean curvature in H3 which are bounded away from the
infinity are the totally umbilical flat surfaces.
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In [8], the second and third authors have studied complete vertical graphs of con-
stant mean curvature in the hyperbolic and steady state spaces. They first derived
suitable formulas for the Laplacians of the height function h and of a support-like
function naturally attached to the graph. Then, under appropriate restrictions
on the values of the mean curvature and the growth of the height function, they
obtained necessary conditions for the existence of such a graph. Further, in the
3-dimensional case, they proved Bernstein-type results in each of these ambient
spaces.

Motivated by the works described above and using some of the analytical frame-
work of [19], we obtain in Section 3 Bernstein-type results for complete, connected
Riemannian hypersurfaces of the semi-Riemannian warped product space εI×etM

n

(cf. Section 2), under suitable conditions on both the mean curvature and the norm
of the gradient of the height function of the hypersurface.

As we said in the beginning, the spaces εI×etM
n include the (n+1)-dimensional

steady state space Hn+1 as well as the (n+1)-dimensional hyperbolic space H
n+1,

and we quote below the corresponding particular cases of the general results of
Theorems 3.1 and 3.4. In what follows, h stands for the height function of the
hypersurfaces in question.

Theorem 1.1. Let ψ : Σn → Hn+1 be a complete, connected spacelike hypersur-
face bounded away from the infinity on Hn+1 with (not necessarily constant) mean
curvature H ≥ 1. If ∇h has integrable norm on Σn, then Σn is a hyperplane of
Hn+1.

Theorem 1.2. Let ψ : Σn → H
n+1 be a complete, connected hypersurface of Hn+1,

bounded away from the infinity and with (not necessarily constant) mean curvature
0 < H ≤ 1. If ∇h has integrable norm on Σn, then Σn is a horosphere of Hn+1.

Finally, we also extend the previous theorems to the context of the r-th mean
curvatures under an additional assumption on the norm of the second fundamental
form (cf. Theorem 3.6 and Theorem 3.7).

2. Semi-Riemannian warped products

Let M
n+1

be a connected semi-Riemannian manifold with metric g = 〈 , 〉 of
index ν ≤ 1 and semi-Riemannian connection ∇. For a vector field X ∈ X(M), let
εX = 〈X,X〉; X is a unit vector field if εX = ±1 and is timelike if εX = −1.

In all that follows, we consider Riemannian immersions ψ : Σn → M
n+1

, namely,
immersions from a connected, n-dimensional orientable differentiable manifold Σn

into M such that the induced metric g = ψ∗(g) turns Σ into a Riemannian manifold
(in the Lorentz case ν = 1, we refer to (Σn, g) as a spacelike hypersurface of M),
with Levi-Civita connection ∇. We orient Σn by the choice of a unit normal vector
field N on it.

In this setting, if we let A denote the corresponding shape operator, then, at
each p ∈ Σn, A restricts to a self-adjoint linear map Ap : TpΣ → TpΣ.

For 0 ≤ r ≤ n, let Sr(p) denote the r-th elementary symmetric function on the
eigenvalues of Ap. This way one gets n smooth functions Sr : Σn → R such that

det(tI −A) =
n∑

k=0

(−1)kSkt
n−k,
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where S0 = 1 by definition. If p ∈ Σn and {ek} is a basis of TpΣ formed by
eigenvectors of Ap, with corresponding eigenvalues {λk}, one immediately sees that

Sr = σr(λ1, . . . , λn),

where σr ∈ R[X1, . . . , Xn] is the r-th elementary symmetric polynomial on the
indeterminates X1, . . . , Xn.

Also, we define the r-th mean curvature Hr of ψ, 0 ≤ r ≤ n, by
(
n

r

)
Hr = εrNSr = σr(εNλ1, . . . , εNλn).

We observe that H0 = 1 and H1 is the usual mean curvature H of Σn.
For 0 ≤ r ≤ n, one defines the r-th Newton transformation Pr on Σn by setting

P0 = I (the identity operator) and, for 1 ≤ r ≤ n, via the recurrence relation

(2.1) Pr = εrNSrI − εNAPr−1.

A trivial induction shows that

Pr = εrN (SrI − Sr−1A+ Sr−2A
2 − · · ·+ (−1)rAr),

so that the Cayley-Hamilton theorem gives Pn = 0. Moreover, since Pr is a poly-
nomial in A for every r, it is also self-adjoint and commutes with A. Therefore, all
bases of TpΣ diagonalizing A at p ∈ Σn also diagonalize all of the Pr at p. Let {ek}
be such a basis. Denoting by Ai the restriction of A to 〈ei〉⊥ ⊂ TpΣ, it is easy to
see that

det(tI −Ai) =

n−1∑

k=0

(−1)kSk(Ai)t
n−1−k,

where

Sk(Ai) =
∑

1≤j1<...<jk≤n

j1,...,jk �=i

λj1 · · ·λjk .

It is also immediate to check that Prei = εrNSr(Ai)ei, so that an easy computa-
tion (cf. Lemma 2.1 of [6]) gives the following:

Lemma 2.1. With the above notation, the following formulas hold:

(a) Sr(Ai) = Sr − λiSr−1(Ai).
(b) tr(Pr) = εrN

∑n
i=1 Sr(Ai) = εrN (n− r)Sr = brHr.

(c) tr(APr) = εrN
∑n

i=1 λiSr(Ai) = εrN (r + 1)Sr+1 = εN brHr+1.
(d) tr(A2Pr) = εrN

∑n
i=1 λ

2
iSr(Ai) = εrN (S1Sr+1 − (r + 2)Sr+2),

where br = (n− r)
(
n
r

)
.

Associated to each Newton transformation Pr one has the second order linear
differential operator Lr : D(Σ) → D(Σ), given by

Lr(f) = tr(Pr Hess f).

In particular, L0 = Δ and, if M has constant sectional curvature, H. Rosenberg
proved in [17] that Lrf = div(Pr∇f), where div stands for the divergence on Σ.

For a smooth ϕ : R → R and h ∈ D(Σ), it follows from the properties of the
Hessian of functions that

(2.2) Lr(ϕ ◦ h) = ϕ′(h)Lr(h) + ϕ′′(h)〈Pr∇h,∇h〉.
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In order to study semi-Riemannian warped products, we define conformal fields

vectors. A vector field V on M
n+1

is said to be conformal if

(2.3) LV 〈 , 〉 = 2φ〈 , 〉

for some function φ ∈ C∞(M), where L stands for the Lie derivative of the metric
of M . The function φ is called the conformal factor of V .

Since LV (X) = [V,X] for all X ∈ X(M), it follows from the tensorial character
of LV that V ∈ X(M) is conformal if and only if

(2.4) 〈∇XV, Y 〉+ 〈X,∇Y V 〉 = 2φ〈X,Y 〉,

for all X,Y ∈ X(M). In particular, V is a Killing vector field relative to g if φ ≡ 0.
Let Mn be a connected, n-dimensional oriented Riemannian manifold, I ⊆ R an

interval and f : I → R a positive smooth function. In the product differentiable

manifold M
n+1

= I × Mn, let πI and πM denote the projections onto the I and
M factors, respectively. A particular class of semi-Riemannian manifolds having
conformal fields is the one obtained by furnishing M with the metric

〈v, w〉p = ε〈(πI)∗v, (πI)∗w〉+ f(p)2〈(πM )∗v, (πM )∗w〉,

for all p ∈ M and all v, w ∈ TpM , where ε = ε∂t
and ∂t is the standard unit vector

field tangent to I. Moreover (cf. [13] and [14]), the vector field

V = (f ◦ πI)∂t

is conformal and closed (in the sense that its dual 1-form is closed), with conformal
factor φ = f ′ ◦ πI , where the prime denotes differentiation with respect to t ∈ I.
Such a space is a particular instance of a semi-Riemannian warped product, and,

from now on, we shall denote it by M
n+1

= εI ×f Mn.
If ψ : Σn → εI ×f Mn is a Riemannian immersion, with Σ oriented by the unit

vector field N , one obviously has ε = ε∂t
= εN . We let h denote the (vertical)

height function naturally attached to Σn, namely, h = (πI)|Σ.
Let ∇ and ∇ denote gradients with respect to the metrics of εI ×f Mn and Σn,

respectively. A simple computation shows that the gradient of πI on εI ×f Mn is
given by

(2.5) ∇πI = ε〈∇πI , ∂t〉 = ε∂t,

so that the gradient of h on Σn is

(2.6) ∇h = (∇πI)
� = ε∂�

t = ε∂t − 〈N, ∂t〉N.

In particular, we get

(2.7) |∇h|2 = ε
(
1− 〈N, ∂t〉2

)
,

where | | denotes the norm of a vector field on Σn.
In the Lorentz setting, the following result is a particular case of one obtained

by L. J. Aĺıas and A. G. Colares (cf. [2], Lemma 4.1). For sake of completeness, we
present an alternative proof in a semi-Riemannian version.

Lemma 2.2. Let ψ : Σn → εI×f M
n be a Riemannian immersion. If h = (πI)|Σ :

Σn → I is the height function of Σn, then

(2.8) Lr(h) = (log f)′(εtrPr − 〈Pr∇h,∇h〉) + 〈N, ∂t〉tr(APr).
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Proof. Fix p ∈ M , v ∈ TpM and write v = w + ε〈v, ∂t〉∂t so that w ∈ TpM is

tangent to the fiber of M passing through p. Therefore, by repeated use of the
formulas of item (2) of Proposition 7.35 of [16], we get

∇v∂t = ∇w∂t + ε〈v, ∂t〉∇∂t
∂t = ∇w∂t

= (log f)′w = (log f)′(v − ε〈v, ∂t〉∂t).
Thus, from (2.6), we obtain that

∇v∇h = ∇v∇h− ε〈Av,∇h〉N
= ∇v(ε ∂t − 〈N, ∂t〉N)− ε〈Av,∇h〉N
= ε(log f)′w − v(〈N, ∂t〉)N + 〈N, ∂t〉Av − ε〈Av,∇h〉N
= ε(log f)′w + (〈Av, ∂t〉 − 〈N,∇v∂t〉)N + 〈N, ∂t〉Av − ε〈Av,∇h〉N
= ε(log f)′w + (〈Av, ∂�

t 〉 − 〈N, (log f)′w〉)N + 〈N, ∂t〉Av − ε〈Av,∇h〉N
= ε(log f)′w + ε(log f)′〈v, ∂t〉〈N, ∂t〉N + 〈N, ∂t〉Av

= ε(log f)′{v − 〈v, ∂t〉(ε ∂t − 〈N, ∂t〉N)}+ 〈N, ∂t〉Av

= (log f)′(ε v − ε〈v, ∂�
t 〉∇h) + 〈N, ∂t〉Av

= (log f)′(ε v − 〈v,∇h〉∇h) + 〈N, ∂t〉Av.

Now, by fixing p ∈ Σ and an orthonormal frame {ei} at TpΣ, one gets

Lr(h) = tr(PrHess(h)) =
n∑

i=1

〈∇ei∇h, Prei〉

=
n∑

i=1

〈(log f)′(ε ei − 〈ei,∇h〉∇h) + 〈N, ∂t〉Aei, Prei〉

= (log f)′(εtrPr − 〈Pr∇h,∇h〉) + 〈N, ∂t〉tr(APr).

�

For t0 ∈ R, we orient the slice Σn
t0 = {t0}×Mn by using the unit normal vector

field ∂t. According to [5], Σt0 has constant r-th mean curvatureHr = −ε

(
f ′(t0)

f(t0)

)r

with respect to ∂t. Since our applications in the next sections all deal with semi-
Riemannian warped products with warping function f(t) = et, all slices will have
r-th mean curvature Hr = −ε with respect to ∂t.

In order to prove our Bernstein-type results, we shall use the following result of
S. T. Yau (cf. Corollary on page 660 of [19]).

Lemma 2.3. Let Σn be an n-dimensional complete Riemannian manifold. If g :
Σn → R is a smooth subharmonic or superharmonic function whose gradient norm
is integrable on Σn, then g must be actually harmonic.

In [9], the first and the second authors jointly with P. Sousa proved an extension
of above lemma to the context of the Lr operators.

Lemma 2.4. Let M
n+1

have constant sectional curvature, and let ψ : Σn →
M

n+1
be an n-dimensional complete Riemannian immersion with bounded second

fundamental form. Also let g : Σn → R be a smooth function whose gradient norm
is integrable on Σn. If Lrg does not change sign on Σn, then Lrg = 0 on Σn.



1846 F. CAMARGO, A. CAMINHA, AND H. DE LIMA

3. Applications

In this section we assemble all of the above to obtain Bernstein-type theorems in
semi-Riemannian warped products εI×et M

n, where Mn is a complete Riemannian
manifold.

First of all, we consider (according to [1]; see also Remark 3.2) steady state-type
spacetimes, i.e., Lorentzian warped products

(3.1) −R×et M
n,

where Mn is an n-dimensional complete, connected Riemannian manifold (see Re-
mark 3.8).

As we pointed out by the end of Section 2, each slice Σt0 = {t0} × Mn is a
complete, connected spacelike hypersurface with r-th mean curvature equal to 1 if
we take the orientation given by the unit normal vector field N = ∂t.

Following [1], we say that a spacelike hypersurface ψ : Σn → −R ×et M
n is

bounded away from the future infinity of −R×et M
n if there exists t > 0 such that

ψ(Σ) ⊂ {(t, x) ∈ −R×et M
n; t ≤ t}.

Analogously, we say that Σn is bounded away from the past infinity of −R×et M
n

if there exists t > 0 such that

ψ(Σ) ⊂ {(t, x) ∈ −R×et M
n; t ≥ t}.

Finally, Σn is said to be bounded away from the infinity of −R×et M
n if it is both

bounded away from the past and future infinity of −R ×et M
n. In other words,

Σn is bounded away from the infinity if there exist 0 < t < t such that ψ(Σ) is
contained in the slab bounded by the slices {t} ×Mn and {t} ×Mn.

Now, we present our Bernstein-type theorem in the steady state-type space. As
before, h is the height function of Σ.

Theorem 3.1. Let ψ : Σn → −R ×et Mn be a complete, connected spacelike
hypersurface bounded away from the infinity on −R ×et M

n with (not necessarily
constant) mean curvature H ≥ 1. If ∇h has integrable norm on Σn, then Σn is a
slice of −R×et M

n.

Proof. If N is the Gauss map such that 〈N, ∂t〉 < 0, then, by applying the reverse
Cauchy inequality, we have

(3.2) 〈N, ∂t〉 ≤ −1.

On the other hand, standard computations give Δeh = eh(|∇h|2 +Δh). Thus,
with the aid of Lemmas 2.1, 2.2 and inequality (3.2), we get

(3.3) Δeh = −neh(1 +H〈N, ∂t〉) ≥ 0,

for H ≥ 1 on Σ. Now, since |∇h| is integrable and h is bounded on Σ (this last
assertion is due to the fact that Σn is bounded away from the infinity of −R×etM

n),
we get |∇eh| = eh|∇h| also integrable on Σ.

Consequently, eh is a subharmonic function on Σ whose gradient has integrable
norm. Since Σ is complete, it follows from Lemma 2.3 that eh is actually harmonic.
Back to formula (3.3) we get

−1 = H〈N, ∂t〉 ≤ −H ≤ −1,

so that 〈N, ∂t〉 = −1 and H ≡ 1.
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Finally, it follows from (2.7) and the connectedness of Σn that the hypersurface
is a slice of −R×et M

n. �

Remark 3.2. An interesting special case is that of the (n + 1)-dimensional steady
state space, i.e., the warped product

Hn+1 = −R×et R
n,

which is isometric to an open subset of the de Sitter space S
n+1
1 . In this case, the

slice Σt0 is isometric to R
n and is called a hyperplane of Hn+1.

The importance of considering Hn+1 comes from the fact that, in cosmology, H4

is the steady state model of the universe proposed by H. Bondi and T. Gold [7], and
F. Hoyle [11], when looking for a model of the universe which looks the same, not
only at all points and in all directions (that is, spatially isotropic and homogeneous),
but also at all times (cf. [18], Section 14.8, and [10], Section 5.2).

Among other interesting results related to ours, S. Montiel (cf. [15]) proved
that, under an appropriate restriction on their hyperbolic Gauss maps (i.e., on N),
complete spacelike hypersurfaces immersed in the de Sitter space and with constant
mean curvature greater than or equal to 1 must actually have mean curvature 1.

Remark 3.3. Let Mn be of nonnegative sectional curvature. As a consequence of
the classical Bonnet-Myers theorem, if a complete spacelike hypersurface ψ : Σn →
−R×et M

n has (not necessarily constant) mean curvature H satisfying

|H| ≤ c <
2
√
n− 1

n

(c a positive real constant), then Σn has to be compact. In fact, if we let RicΣ
stand for the Ricci tensor of Σn, then inequality (16) of [1], together with the
nonnegativity of the sectional curvature of M and the above bound on H, gives

RicΣ ≥ (n− 1)− n2H2

4
> 0.

We observe that 2
√
n−1
n ≤ 1 for n ≥ 2.

However, in the case Mn = R
n (so that −R×et M

n = Hn+1), if Σn is bounded
away from the future infinity, then Lemma 1 of [1] assures that Σn is diffeomor-
phic to R

n; in particular, Hn+1 does not possess any compact (without boundary)
spacelike hypersurface.

On the other hand, it follows from the classification of totally umbilical spacelike
hypersurfaces of the de Sitter space (cf. [12], Example 1) that there exists no totally
umbilical complete immersed spacelike hypersurfaces with mean curvature 0 ≤ H <
1 in the steady state space.

It follows from all of the above that, in a certain sense, it is natural to restrict
our attention to mean curvature H ≥ 1.

In analogy to the Lorentz case, we now turn our attention to hyperbolic-type
spaces, i.e., warped products

R×et M
n,

whereMn is a complete, connected Riemannian manifold (see Remarks 3.5 and 3.8).
According to the material of Section 2, these hypersurfaces have constant mean
curvature 1 if we take the orientation given by the unit normal vector field N = −∂t.
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Similarly to the Lorentz case, we say that a complete hypersurface ψ : Σn →
R ×et M

n is bounded away from the infinity of R ×et M
n if there exist t < t such

that ψ(Σ) is contained in the slab bounded by the slices Σt and Σt.
We can finally state and prove, in the Riemannian setting, the analogue of The-

orem 3.1.

Theorem 3.4. Let ψ : Σn → R ×et M
n be a complete, connected hypersurface

of Hn+1, bounded away from the infinity and with (not necessarily constant) mean
curvature 0 < H ≤ 1. If ∇h has integrable norm on Σn, then Σn is a slice of
R×et M

n.

Sketch of the proof. If we choose the Gauss mapN of Σ in such a way that 〈N, ∂t〉 <
0, then Cauchy-Schwarz inequality gives

(3.4) 〈N, ∂t〉 ≥ −1.

Since the mean curvature H of Σ satisfies 0 < H ≤ 1, inequality (3.4) gives
1 +H〈N, ∂t〉 ≥ 0. From here, the same arguments that led to (3.3) give

Δeh = neh(1 +H〈N, ∂t〉) ≥ 0.

Finally, if we follow essentially the same arguments employed in the last part of
the proof of Theorem 3.1, we get that Σn is a slice of R×et M

n. �
Remark 3.5. A motivation for considering the spaces R ×et M

n comes from the
fact that the (n+ 1)-dimensional hyperbolic space H

n+1 is isometric to R×et R
n,

with an explicit isometry between the half-space model and this warped product
model as found in [3]. It can easily be seen from such isometry that the slices
Σt0 = {t0}×R

n of the warped product model of the hyperbolic space are precisely
the horospheres.

At this point, a natural idea would be to extend the above results to the r-th
mean curvatures of the hypersurface, and we do this below. However, since the
analytical tool at our disposal (i.e., Lemma 2.4) asks εR ×et M

n to have constant
sectional curvature, it follows from Proposition 7.42 of [16] that the sectional cur-
vatures of Mn must vanish identically. Moreover, since our hypersurfaces are to
be complete, Remark 3.8 shows that Mn must be also complete; i.e., Mn must be
a space form of zero sectional curvature. This being said, we have the following
results.

Theorem 3.6. Let Mn be a Riemmanian space form of zero sectional curvature and
ψ : Σn → −R×et M

n be a complete, connected spacelike hypersurface with bounded
second fundamental form and bounded away from the infinity of −R ×et M

n. If
|∇h| in integrable and 0 < Hr ≤ Hr+1 on Σn, then Σn is a slice of −R×et M

n.

Sketch of the proof. Again, we assume Σn is oriented by normal unit vector field N
such that 〈N, ∂t〉 < 0. The assumptions on Hr and Hr+1, together with the reverse
Cauchy-Schwarz inequality and formulas (2.2) and (2.8), give

Lr(e
h) = −bre

h(Hr + 〈N, ∂t〉Hr+1) ≥ 0.

Since h and the second fundamental form are bounded on Σn, it follows from
Lemma 2.4 that Lr(e

h) = 0 on Σn. Therefore,

Hr = −〈N, ∂t〉Hr+1 ≥ −〈N, ∂t〉Hr ≥ Hr,

so that 〈N, ∂t〉 = −1 and Σn must be a slice. �
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We omit even a sketch of the proof of our last result, due to the fact that it
closely parallels the proof of the previous result.

Theorem 3.7. Let Mn be a Riemannian space form of zero sectional curvature
and let ψ : Σn → R ×et M

n be a complete, connected hypersurface with bounded
second fundamental form and bounded away from the infinity of R×et M

n. If |∇h|
is integrable and Hr ≥ Hr+1 > 0 on Σn, then Σn is a slice of R×et M

n.

Remark 3.8. As the referee pointed out to us, according to Lemma 7 of [1], if
εR ×et M

n is to admit a complete hypersurface bounded away from the infinity,
then Mn must necessarily be complete.
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