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ON TRUNCATED WIENER-HOPF OPERATORS AND BMO(Z)

MARCUS CARLSSON

(Communicated by Michael T. Lacey)

ABSTRACT. We give a tractable estimate for the norm of a truncated Wiener-
Hopf operator in terms of the discrete BMO-space. We also improve earlier
norm estimates as well as obtain new, more tractable, criteria for compactness.

1. INTRODUCTION

The Wiener-Hopf operators are defined by the expression
o0
L*(RT) s F — J ®(y)F(z +y)dy € L*(RY),
0

where ® € L!(R) or, more generally, certain distributions. Given an interval I < R,
let CP(R) € C*(R) denote the set of C*-functions with support within I, and let
D'(I) denote the set of distributions on I. The truncated Wiener-Hopf operators,
Weo .o @ L?([0,a]) — L3([0,a]), are defined for any a € RT and any distribution
® € D'((—a,a)) by the expression

(1.1) CloayR)>F = @(F(-+z)), 0<z<a,

whenever ® is such that this extends to a bounded operator on L?([0, a]). Whenever
a is of no importance we will omit it from the notation. We abbreviate by saying
that Wg is a TW H-operator. These operators (or rather, unitarily equivalent ones)
also go under the name finite interval convolution operators, truncated Hankel
operators or Toeplitz operators on the Paley-Wiener space. See e.g. [II, 2] [8, 9] and
[10]). We will in this paper see that the properties of TW H-operators are more
similar to those of Hankel operators rather than Toeplitz operators. Let F denote
the Fourier transform on L?(R), defined as follows:

(12) AP = [ ey

We will also use the notation f = F(f) and f = F~1(f). We let L%O,a] (R) denote

the subspace of L?(R) of functions with (essential) support in [0,a], and we let

Ppo,q : L*(R) — L%O’a] (R) be the orthogonal projection onto L%O’a] (R). Finally, let
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L® D’'(R) be the image of L®(R) under F !, where the transform is interpreted
in the distributional sense. Given ® € L® it follows by standard results that

(1.3) WaF = Py . F(OF).

(In the above formula and the rest of the paper, we will without comment identify
L?([0,a]) and Lﬁ)’a] (R).) Let ®|(_,,q) denote the restriction of ® to C  (R). In
particular, setting

(1.4) Co = inf {| ] e : UeL® and |0 = P|( g0}

we immediately obtain
We| < Co.

It was shown by R. Rochberg that the two quantities above are comparable. This
fact has also recently appeared in [3], where compressions of Toeplitz operators are
studied in a more general setting. Based on results by Farforovskaya and Nikolskaya
we will improve the constant as follows.

Theorem 1.1. Given any ® € D'((—a,a)), the operator Wg is bounded if and only
if & = W|(_q,q) for some W e L®. In this case we have that

WoF = Py o F(UEF),
the infimum in (L4) is attained and

o < \wall < Ca.

However, Cg is not easy to compute. Another norm estimate is given in [I1],
which involves splitting ® into 3 parts: left, center and right. Loosely speaking, the
result says that |WW,]| is comparable with the BM O-norm of the Fourier transform
of certain translations of the left and right part, plus the L*-norm of the Fourier
transform of the center part. In [II] there is also given a norm estimate involving
breaking up We into two pieces and the discrete BMO(Z)-space, defined below.
The issue of finding a more tractable norm estimate was raised in [11], and this is
our next objective. Define BMO(Z) as the space of all sequences o such that the
following semi-norm is finite:

lolBao = sup {Il > lo(k) - 01|} :

kel
Here I c Z ranges over all sets of the form {K; < k < Ky} (K1,K> € Z), |I] =
K2 — Kl and or = |I|_1 Zke] O'(k')

Theorem 1.2. Given any ® € L'((—a,a)) set ®(z) = D). ¢re’™ /@ There
exist constants C1,Cy > 0 such that

Cral(=1)* )kl Breo@) < [Wal < Caal(=1)*¢w)klBro)-

Remark 1. The restriction to L! is for the introduction only, as there are some
complications involved in defining the Fourier series for general elements of L* n
D'(—a,a), which is treated in Section Bl
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Remark 2. The weight (—1)* is an effect of the definition of W such that the
midpoint of ® is at 0 and can easily be removed by a translation of ® to (0, 2a).

As an example, consider ® = d,, where 0, denotes the Dirac distribution at
x. With z = 0 we obtain Wg(F) = F, so |[Wg| = 1. With a suitable inter-

pretation of its Fourier series we get ¢, = o and al|((—=1)*¢x)k|smo0@) = 1/2.
On the other hand, setting x = a we obtain Wg = 0 as well as ¢y, = (;Z)k, SO

I((=1)*¢x)kl Brro(z) = O

We also show that W is compact if and only if ((—1)¥¢y)x is in CMO(Z), the
closure in BMO(Z) of the sequences with finite support. The proof of this result
and Theorem goes via a new class of “discrete” Hankel operators, which we
now introduce. Let T denote the unit circle and set TT = {¢ € T : Im { > 0},
T~ ={CeT:Im¢ <0} Let F~! denote the inverse Fourier transform F~! :
L*(T) — 1%(Z) defined via F~1(f)(k) = gﬂ f(e®)ei*tdt/(2m). (Note that we use the
same symbol as in (2); the type of f will determine which one is intended.) The
common denominator of the various Hardy spaces is that the Fourier transform of
the elements is in some sense one-sided. It therefore makes some sense to define the
discrete Hardy space H?(Z) as F~ (L, (T)) and similarly H2(Z) = F~'(L2_(T))
(where L?(T) is defined with normalized arc-length measure and L2, (T) denotes the
subspace of functions with support in T"). In analogy with the classical definition,
given o € [°(N) we define the Hankel operator H, : H*(Z) — H?(Z) via

(1.5) Ho(f) = Pyz (o f),

where (o - f)(k) = o(k)f(k), Vk € Z. (A more general definition includes certain
unbounded symbols, but we omit this in the introduction.) Using the notation
of Theorem [[L2] we show that %W@ is equivalent with H((_1)kg,) under unitary
transformations. Moreover, we show

Theorem 1.3. H, is bounded if and only if 0 € BMO(Z) and the norms are
comparable.

The proof relies on a characterization in [I1] of the BM O(Z)-norm of a given o

in terms of the operator-norm of an “infinite matrix” R, whose “(,7)” 'th entry is
a(i)=a(j)

given by =

2. A NEHARI-TYPE THEOREM FOR TRUNCATED WIENER-HOPF OPERATORS

Given N € N and ¢ € CI=NN} e define the Toeplitz matrix by

b0 o1 $2 o ON

-1 ®o o1 PNt

Ty = b2 D1 ®o o PN—2
¢—.N ¢—1~v+1 ¢—J'V+2 o ¢'0

We introduce yet a third meaning of F; when acting on ¢ € L*(T) we set
F(¢)(k) = §;¢(z)27%dm(z), where m denotes the normalized arc-length mea-
sure on the unit circle T. We will without comment let the type of a func-
tion/sequence/distribution s determine the meaning of F(s) = § and § = F1(s).
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For convenience, we provide a table of the various Fourier transforms used in this
paper:
f LA(R) — L*(R), F(F)(x) = §, F(y)e™"=dy; F~1(F)(x) = § F(y)e'™? g2
: L2(T) — 1X(Z), F(F)(k) = §; F(2)2*dm(2); F~*(0)(= ) 20 ( )
F lQ(Z) — L*(T), F(0)(2) = Xy o(k)z=" FH(EF) (k) = §; F(2)2"dm(2)

\/

For any ¢ as above we set
(2.1) Cy = nf{lg|re(r) : g € L*(T) and §(k) = éx}.
We recall the following theorem by Yu. B. Farforovskaya and L. N. Nikolskaya [7].
Theorem 2.1.
—C¢ ITs <

This theorem was first obtained, albeit with a different constant, in [11]. Note
that the right inequality is immediate because T} is the compression of the Toeplitz
operator with symbol g, for any ¢ that appears in (21]). It is an open problem
whether 1/3 is the best possible constant, but it is known that it is not 1 (see [7]).
We will now prove Theorem [ILTl It is easy to see that it suffices to show Theorem

[T for a fixed value of a, so we set a = 1. For p > 1 and any N € N let the sampling
operator Sy : C([—1,1]) — C{=N+L-N=1} he defined by

o= (3 ()

Let x(S,-) denote the characteristic function of a set S. For each N € N, set
kE k+1
N — A/
bic (@) = VINX ([N N >x>

and let Py : L?([0,1]) — L?([0,1]) be the orthogonal projection on the subspace

spanned by {blY }7_ L. Note that {bf } 2! is an orthonormal set in L?([0, 1]). Define
3+ €N =1 S 2([0,1]) by

(2.3) In(®) = Z Piby -

Note that ZyZ} Py = Py and that, given ® € C([—1,1]), the compression of the
operator ZnTs,aZy to the subspace Ran Py is represented by the matrix Ts o
in the basis {b}};,'. We shall show that for & € C'([-1,1]), the operators
InTsyaLy converge to We as N — o0. In order to simplify the notation we set

W = INTs,a T
For any € > 0 let p. : C1([—1,1]) — C([—1,1]) be defined by
pe(®)(x) = P{\q"( )z =yl < e}

Proposition 2.2. Let ® € C*(]

[Wa — W, (1 >\/j (P (@) () .

) be given. Then
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Proof. Assume that ® is real-valued. We shall first give an estimate of Wg — W2
restricted to Ran Py. For each fixed 0 < x < 1 we have

hil_

(24 Wabf! (@) =V [ 7 @)y = N2y, - o),

for some N <Yz < % by the mean value theorem. On the other hand, note that
ZEbY = e, (where (ex)p_, denotes the standard basis in C{0N=1}) 5o

-1 _ k—1,
Wby (z) = (InTsyoer)(z ZN 1@( >bz (z) = N9 (T)’
where [, € N is such that I,/N <z < (I, + 1)/N. Since |y, — z — 55le| < 1/N we

have
(2.5)

k—1, 1 k
Wat (2)- W )= ot )~ & (55 ) | < @) (3 ).

Now, let a € C10N=1} be arbitrary but satisfy |la| = 1. Then

) ( Wo — W§) (Eakbk )) (x)‘ = 'Zak (Wo — W) by) (x)‘
< N2 Y (@) (o —0)] = %¢ ¥ 2 (@ - x>)2

%J 2 f; (poy (D) (y — @) dy = %\/L (p2yn (@) (y — ) dy.

Finally, we obtain

e~ W) (St} 112 < g\/j [ Gan@ro - o) avie

= % f (pZ/N((I))(U))Q%dudU < %\/J_l (pQ/N((I))(U))2dv,

O<u+v<2
O<u—v<2

which, upon noting that | > arbillL, = 1, yields

(2.6 I(We — W3 Pl < \/ [
We turn to the estimate for (Wg — W) (I — Py) = Wa (I — Py). Define subsets
c[£, 5L for 0<Sk<N,j>1and0<i<2 —1by
k i k141
N

Sk = [N NN T ZﬁN] ’
and let dﬁ{ ;,; be functions defined by

dk zg( ) 20-IN ( (Sljc\{%,ﬁx) - X(Sllc\,/v2i+1,j7x)>
for 0<k<N,j>1and0<i<2~!—1. Itis easy to see that (for N fixed),

Span ({bff bo (Y, ;)) = Span ({xsp, ).

St

’L
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and it follows from basic integration theory that the right hand side is dense in
L?([0,1]). Moreover, {bX} u {dk ;.;1 1s clearly an orthonormal set, and hence it is

a basis for L*([0,1]). Thus Ran (I — Py) = Span {d}, ;}. In a similar fashion as in
24) and (1) we obtain that

V2i-IN k 21 ko 2i+1
|W<1>dkz,j( )|_Wi¢<N+W+51_$>_¢<N+ - +52—x>’
! 1 k V2 E
S Vo g @) <N‘x>i TN p1/n (D) <N—x>‘,

where 0 < 01,02 < (27N)~'. Now let ag,;; € C be any numbers (indexed by
the same index set as {d’kvw}) such that Y |ak,; ;|> = 1. By repeated use of the

Cauchy-Schwarz and Minkowski inequalities we get
N—-1 oo 2/~ \/* k
Wo (Zak i, z,]) I< Z Z Z la kl,] )3/2 pl/N((I)) <N - > H
N—1 o
/ G-n2_V2 k_
< > Z|ak,, 2200~ @IN)E p1/n ( )(N >'
k=0 j=1
' 1
< \/Ziaklji 22 23 N3/2
0
[ k 2
Z | kz,g| N3/2 ZJ (pl/N <_ _l')) dx
k,j,i
—2)) dydz < ))2d
MW e e | N

k=0 j=1 i=
@ ()
Jj=1
It follows that

@1 |Wa - W - Py < ﬁ\/ | a@@)’as

which combined with (2.6]) yields the first part of the proposition in the case when ®
is real-valued, but with constant (1+1/4/3). For the general case, write ® = ®;+i®
where ®; and ®, are real-valued. Then

[Wo = W'l < [Wa, = Wa | + [Wa, — Wa|

< (1 + \/9 % (\/Jl (P2 (®1) () dar + \/J1 (P2/N(‘I’2)(x))2d$>
1
< (1 + \/%) %\/Jl (Pz/N(‘I’)(x))Zd%

as desired. 0

Corollary 2.3. For every ® € C1([—1,1]) there exists a C > 0 such that

c
[Tsval < [Wel + -
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We are now in a position to prove the lower estimate in Theorem [II] for ® €
C([-1,1]). For standard results and definitions concerning distributions, we refer
to [0]. We omit the proofs of simple results such as that L*(R) can be considered

as temperate distributions, so that L is well defined.

Proposition 2.4. Given a > 0 and ® € C'([—a,a]) there exists a ¥ € L% with
\If|(_a7a) =& and

1.4
S 191 < [Wad

Proof. As noted earlier, it suffices to consider a = 1. By Corollary 2.3 we have
ITsya| < |[Wa| + % for some C and every N € N, and by Theorem 2Tl we get that
there exists ¢ € L®(T) such that

—~ 1 k
: =-0(), - <k<N-
(2.8) ¥y (k) N@(N), N+1<k<N-1

and 30

[¥nlze < 3[Tsyel < 3|Wel + -
Let U € D'(R) be defined by U = Z,zo:_oc@(k)dk/]\,, where 6, is the Dirac
distribution at x, and note that

Un() = Y, n(k)e N = gy(eV),

k=—0

so in fact ¥y € LJOO(]R) and H‘I/’\NHLf < 3|We| + 3¢. By standard theorems of
functional analysis there exists a subsequence of (\1712)2021
star topology to some W € L?(R) with U] - < 3|We|. Given F € C1)(R) we
have, using (2.8),

(2.9) f@F = lim | Uy, F=lim | Uy F = fpr = fpr

J—0 j—0

convergent in the weak-

which shows that W[_; 1y = @, and the proof is complete. Note that we use the
notation { ¥y F even if ¥y is not a function, as opposed to the formally correct
Un(F) or (¥, F). We will in the remainder do this without comment. O

Theorem 2.5. Given any a > 0 and ® € D'((—a, a)), the operator Wy, is bounded
if and only if ® = W|(_, q) for some ¥ € L. In this case,
WeF = Ppo o F(VF),
the infimum in (L4) is attained and
Cy
3
Proof. All claims in the statement follow by standard arguments once we show
that given a ® € D'((—1,1)) such that Wg is bounded, there exists a ¥ € L® such
that [¥]z= < 3[Ws| and ¥|_,,,) = ®. Take a positive function 7 e 0(331,1)(R)
that is symmetric around 0 and satisfies ||n|z: = 1, take a sequence of positive
functions vy, € C(@‘Oil’l)(R) such that yg(z) = 1 for =1 +47% <2 <1 —-47% set
nk(z) = 4%n(4kz) and define @, € C*(R) via
Dy () = () * 1k,

< [We| < Co.
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which is well-defined as +y;,® has a natural extension to R that is “zero on R\(—1, 1)”
(see [9], Sec 2.3 for details). We have, for any F € L[2 k1o k]( ), that ng = F' €

a0
C4k14k)

(R) and 7, F = Tlje * F, which follows by the symmetry of . Moreover,
by standard properties of distributions with compact support (see [9], Chs. 2 and

7) we get <f>; = (7, ®)7), where (%/E) is a function that grows polynomially since

distributions with compact support have finite order. Thus, for F € C(‘Sl 1)(].R) we
get,

We, (F) = P[o,l]}-((%/a)ﬁkp) = P[o,l]]:((%/a)(nf x F))
e (e * F) = Wa (g # F).

Now let @y (t) = @4 (27 + t) for |t| < 1 —2'=F. The above identity yields, for any

Fe Lfo 91— k](R), the following estimate:

[Wa, 1—a1-r) )| < [Wa 1 (F( = 278)) | = [Waa (e = F(- = 275))]
< [Waalllnel | F >
In particular, [Wg, _si-x)|| < [We,[. By Proposition 2.4 we get the existence of

U, € E&: with \I’k(t) = (I)k(2_k + t) for |t| <1- 21—k and H(I\kaLoo < 3HW<I>,1H' For
any I € C(:Em)(R) and k large enough that supp F < [—1+ 2% 1 —217%] we get

fw#@w(-ffk)=<I>(w(nk* (—279)) = B+ (F(-—274))).

Let D(—1,1) denote the set of test functions on (—1,1) with the usual topology
It is a standard matter to check that ny, * (F(- — 27%)) goes to F in D((—1,1)) as
k — oo, and hence the ¥y converge to ® in D'((—1,1)). The proof is now easily
completed with a similar calculation as in ([229)); we omit the details. O

3. TECHNICALITIES

We will in this section collect a number of definitions and results, mainly from
distribution theory, that would otherwise disrupt the flow of the text. The first 7
chapters of [9] contain all the necessary background material.

Lemma 3.1. Given any ® € D'(—a,a) such that Wy is bounded, there exists a
sequence W1, Uy, ... such that U € CP(R), | V| re < 3|Ws| and limg_,oo Up, = P
in D'(—a,a).

Proof. The proof of Theorem almost provides such a sequence; the only issue
is that we do not know that the Wj’s produced there are functions near the edges.
However, it is easily seen that this issue can be resolved by considering the sequence
(¥g = ny)j, instead. O

Given an open interval I, let I denote its closure and let H'(I) denote the usual
Sobolev space, i.e. the space of functions in L?(I) whose first (weak) derivative is in
L%(I) (for basic references see e.g. [6] or [9]). We use H' as opposed to H' to avoid
confusion with the Hardy spaces. Note that each equivalence class in H!(I) has a
continuous representative on I, so we will treat the elements of H! () as continuous
functions on I. Let ’H%(]R) denote the set of functions with support within I such

that f]z € H'(I), and let H% o[R) = H%(R) be those functions that are continuous
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at the endpoints of I. In particular, 7—[% oR) = H!(R), and we have that C¥(R) is
dense in ’H% o(R). We omit the proof of the following basic lemma.

Lemma 3.2. Given any interval (a,b), G € L*([a,b]) is the weak derivative of
F e HY([a,b]) if and only if

T

F(z) = F(a) + J G(y)dy, =z € (a,b).

a

Let |I| denote the length of the interval I.
Lemma 3.3. Given any interval I and F € H%)O(R) we have F' e LY(R) and
|E]zr < (2 + IIIB/Q)
Proof. For F € H%o( ) we have F(z) = {*  F'(y)dy, so |F|r= < |F'||z2+/|I] by

Holder’s inequality and therefore HFHLw < |I|‘°’/2 | E||z2. Moreover F\’(ﬁ) = iEF(€),
so by Parseval’s formula and the Cauchy-Schwarz inequality we get

0
f P (€)|de = () Jelde < /2] 246 || 2 < 2 F| 1o
|f‘>1/2 §‘>1/2 1/2

These combine easily to give the desired inequality. O

|2

Lemma 3.4. Let I be an open interval and let ® € D'(I) be such that ® = ¥|; for
some W e L®. Then U determines a continuous extension of ® to H%O(R) via

ym:fiﬁ

R

This extension is independent of V.

Proof. By Lemma B3] we clearly have that 7—[% 0 2F— S\ilﬁ' defines a continuous
linear functional on the space ’H,l Since {F'|7: F € 7—[1 o(R)} has codimension 1
in L2(I) and HFHle \® is comparable with [|[F'| 2, it follows that there exists a

function v e L2(1) such that

(3.1) L@F:LFW

for all F' e 'H% o Moreover, v is clearly uniquely defined by ¥ modulo the constant
functions on I. Since we clearly have ®(F) = { F'v for all F € C{*(R) and C(R)

is dense in 7—[7 o We see that v is uniquely defined by ® (modulo constants). O

Given ® € D'(I) such that ® = U|; for some ¥ € L, due to the above lemma

we will in the future identify ® with its extension to ’Hl o(R).

Lemma 3.5. Let U € L® be given and set & = U|(—a,a)- For any F,G € 1], [0 a]( )
we have

fFﬁ+wG@MyeHhm@dK
and

amﬂamm@=w0ﬁ«wmm@)
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Proof. Let us write F o G for { F(- + y)G(y)dy. By the location of supports of
F, G, it is easy to see that F' o G is continuous on R with support in [—a,a]. Let
He L ( ) be such that Hg 1] is the weak derivative of G|[o17. By LemmaBEL

FoG e 'HE ( ) follows once we establish that

B2 FoG) = [ (-FoM)+ Fla+ )6l - Fu)GO) dy

which follows by careful use of Fubini’s theorem. For the second part, we first note
that when F € C{ , (R), then L FoG = F' oG, so using Lemma B4, we can
show the formula by approximating the integrals with Riemann sums. We omit the
details and assume that this has been established. To get the general statement,
let (F)y_, be a sequence in Cd.a) (R) converging to F. By ([B2) it is easily seen
that F, oG — F oG in H[l—a,a],O(R)’ so by the continuity of ¥ (Lemma B4]) we
get

(Wo F, G} = klim (We F, G) = klim U(FroG)=V(FoQG),
—00 —00
as desired. O

It will be convenient to move the discussion to the circle, so we will introduce a
new class of operators, unitarily equivalent with the TWH-operators, which resem-
ble Hankel operators. Recall that m denotes the normalized arc-length measure on
the unit circle T. As before we will let the meaning of expressions such as F~1(f)
be determined by the type of f; if f € 12(Z), then F~1(f)(z) = Y. f(k)2*, z € T,
and if f € L*(T), then F~*(f)(k) = §; f2"dm, k € Z. Given © € D'(T\{1}) we
define the operator I'e : L2, (T) — L2_(T) by

(3.3) F5C%(T) - { (5)9 F(20)dm(¢), T

whenever this extends to a bounded operator on L?(T"). Formally, we should write
O(F(z -)) instead of §©O(¢)F(2¢)dm(¢), but we believe that the latter notation is
more readable and therefore we will continue to abuse notation in the above way.
The reader should keep in mind that © is not necessarily a function.

We now show that this new class is equivalent under unitary transformations with
the set of TWH-operators (for any fixed a). It will be convenient to set the value of a
to 1/2. Thus let ® € D'(—1/2,1/2) be given such that Wg : L%0,1/2] (R) — L[0 12 (R)
is bounded. Set

(3.4) O(e?™) = d(1/2—y), 0<y<l1.

Given any F € L, | ,1(R) we also define F' € L3, (T) via F(e*™) = F(1/2 — t)
(0 < t < 1) and note that this transformation is unitary. Moreover, for any
0<z<1/2 andFeC(Ol/Q( ) we have

(3.5)

WaF)(@) = |

0

1/2 1/2

By — ) F(y)dy = j B(1/2—y — 2)F(1/2 — y)dy
1/2 ) ) B ) B B )
— [ ey = [ 00 F(Qdm(Q) = o, F)(z), z = 2.

0 T+
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Thus I'e and Wg are equivalent under simple unitary transformations. Endow
C1(T) with the norm

[Ellcrry = [z + [ F] -

Here, and in the remainder of the paper, F'(z) denotes lim;_,q(F(ze®) — F(2)/t)
whenever F is a function on T. By Theorem 2.5l and the proof of Lemma [3.4] we
conclude that it is no restriction to assume that © is of the form

(3.6) O(F) = fF’u dm, pe L*(T),

in the definition of I'g, [B3). The expression ([B.0) clearly defines an element of
(CY(T))*, which we will call the canonical extension of ©, and we shall use the
same symbol for it. Whenever ® and © are related as above, we shall write C(®)
for the canonical extension of ©. The following lemma is immediate from the above
construction.

Lemma 3.6. Let U € L® be given and set © = C(¥|(—1/2,1/2))- Given {F € C'(T):
F(1) = 0} we define F via F(1/2 —t) = F(e*™™). Then

where U(F) is defined as in Lemma B4l

Let z : T — T denote the identity function z(¢) = ¢. Given a distribution
© € D'(T) we define the Fourier transform as the sequence © € CZ given by

O(j) =6(="),

and similarly ©(j) = ©(z7). For © € D'(T\{1}) such that T'g is bounded, we define
© to be the Fourier transform of the canonical extension. Note that in the case
when © is a function in L(T), this definition can disagree with the traditional
definition by a constant sequence. Similarly, given ®(z) = ZZO:_OC ore? kT and
O = C(¢[(=1/2,1/2)), a short calculation shows that

(3.7) (-1)*¢_ = O(k) mod 1,

where 1 is the constant sequence. For distributions ® such that Wg is bounded,
one can use ([B.7) to define its Fourier series. Again, for functions ® this definition
can be off by a constant sequence with respect to the usual definition. Note that
this formula combined with the material in the next section proves Theorem
for a = 1/2 and that the corresponding statement for any a easily follows from this
one. Let D% denote the set of distributions of order k. We omit the proof of the
next result.

Lemma 3.7. If © € D'*(T), then there exists C > 0 such that |0(j)| < C|j|*.
Conversely, if o = (0;)72_, € CZ satisfies |oj| < C|j|* for some C >0 and k € N,

then there is a unique © € D'**2(T) such that o = ©.

Sequences o as in the above lemma will be called polynomially bounded.
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4. DISCRETE HARDY SPACES, HANKEL OPERATORS AND BMO(Z)

Recall the definition of H?(Z) and the discrete Hankel operators defined in ().
We extend this definition to polynomially bounded sequences o by setting

(4.1) Ho(f) = Pu2zy(o - f), feFH(CF(T)),
whenever this extends to a bounded operator from H2(Z) to H2(Z). Given © €

D'(T) and F € C3, (T), we will in the next calculation use the notation ©(F(z -)) =
O(F(z()); i.e., we think of © as acting on functions in the variable . We have

F H Te(F)) = fﬁlPLQ 1 (O(F(2())) = Py F 1 (O(F(2()))

= P2z (( kdm(z));)
(o JM ),
(¢

(4.2)

OO

= Pu2 z) k—foc> = Pu2 z) (@ ' F) )

which gives

(4.3) FlTegF = Hg

in analogy with the classical theory. Conversely, given H, for some polynomially
bounded sequence o, we can define a distribution © € D'(T) via Lemma [B7 and by

@E2) we get F'I'eF = H,. We summarize a number of elementary observations
in the following three propositions.

Proposition 4.1. Let ® € D'((—1/2,1/2)) be such that Wg is bounded, set © =
C(®) and set 0 = ©. Then We, Te and H, are equivalent via (35) and @3).
Moreover ® € D' ((—1/2,1/2)). If T'g is bounded for some © € Ran C or if o € CZ
satisfies limg_,1 oo 0(k)/k = 0, 0(0) = 0 and H, is bounded, then there ezists a
unique ® € D'((—1/2,1/2)) such that the first statement is true.

Proof. The only part of the proposition that is not immediate from the previous
developments is that the first statement is true if limg_. 1+, o(k)/k = 0, 0(0) = 0
and H, is bounded. By Lemma[B7and ([@3)) there exists a © € D'(T) such that I'g
and H, are unitarily equivalent, with ¢ = ©. Moreover, by B3) and Theorem
there is a ¥ € I\/gc‘, ® = W[(_y/2,1/2) such that Wg is equivalent with T'e via (B.5).
But setting 7 = C(®), Wy is also equivalent with I'¢() and H,. Let u be the
function that gives C(®) via ([B.6]). By the Riemann-Lebesgue lemma it follows that
limg 400 fi(k) = 0. Thus

k) . C@k) o
k—too T - kl—lgloo T B kl—lgloo leu(k) =0
We are done if we show that o = 7. Since I'g = I'¢(4), it follows by Proposition
below that o = 7 + ¢o1 for some ¢g € C, (where 1 = (...,1,1,1,1,...)), and since

o(0) = 7(0) = 0, we get ¢ = 0. O
Proposition 4.2. Let © € D'(T) be such that I'e is bounded. Then there ezists a
unique © € Ran C such that I'e = I'g. Moreover, there is an N € N and co, ..., cn
such that

©—0 =cody + 18, + -+ enoN)
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Proof. Any distribution on a compact set is a distribution of finite order (Theo-
rem 2.3.1 in [9]). If T'e = I'g, then clearly (© — (:))|T\{1} = 0,50 © — O is a finite
order distribution with support in {1}. By Theorem 2.3.4 in [J], it is necessarily of
the form cody + 10 + -+ + cNégN). O

The next proposition follows immediately from the previous two.

Proposition 4.3. Let o0 € C% be polynomially bounded such that H, is bounded.
Then there exists a unique & such that limg_, 4o d(k)/k = 0, 6(0) = 0 and Hs =
H,. Moreover, there is an N € N and ¢y, ...,cn such that

o—5=co)Pip+cr(B)P s+ +en (0 (z7F)) 7

k=—00"

We will now begin the proof that |T'e| and |©|zar0 are comparable for © €
Ran C. Define Rg : 1?>(Z) — 12(Z) via

<R()a b> Z i _]

In the above formulas we interpret 0/0 as 0. Let Z. and Z, be the even/odd
integers respectively, and let {ep}rez denote the standard basis for 12(Z), (i.e.
ex(j) = 8(k — j), where § is the Kronecker symbol). Define P, : [2(Z) — [*(Z)
via Po(Ypey a(k)er) = Yoy, a(k)er and set P, = I — P.. Define f;" € L3, (T) via
fiH(z) = V227 'x(T*,2) for all | € Z and define f; € L2 (T) analogously. Note
that each of the sets {f; }rez., {fi trez, forms an orthonormal basis for L2, (T)
and the same is true if + is exchanged with — everywhere.

Lemma 4.4. Given © € Ran C, a € Ran P, and b € Ran P, we have

T ) = * (Rea, b).

< oY aif, Y bif; —(Rea,b)

The corresponding formula with o and e switched also holds. In particular,
|PoRe Pe| = | PeRo Po| = | Te].

Proof. Assume first that © € L*(T). These formulas can of course be obtained
by evaluating some multiple integrals, but this provides little intuition for what is
going on. We therefore prefer the following argument. By (£3) and some simple
calculations we have

(44) Cofi £y ={O- 15 g7y =2 (6 £ 7)) =X (6 £ - 177 ) (m),
The assumption ©ell (T) ensures that the sum is absolutely convergent. We have

fo = 60+ZmEZ ™m

= - =i =i 1 Qi
v 0, o, b2 Yo, Lo, ).
f() \/7< I y Yy I 7T27T 3a 57‘(7

om 3w i
By the formula f,}( )= 2] kf(m ) fo (m — k) for all m,k € Z we see that any
fi is obtained by a translation of fo . We thus get

(4.5) fk fz

T_ie—e
o k—1
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whenever k — [ is an odd number, which combined with ([£4) yields the desired
formula.

If © is not in L', let ® € D'((—1/2,1/2)) be such that © = C(®) and W is
bounded. Lemma [3.1] shows that there exists a sequence ¥y, ¥s, ... € C®(R) such
that Wy, [z < 3[Wa|, and ®(F) = limp—o § Uo7 for all F € CF 5 | o) (R).
By standard functional analysis, we can choose a subsequence (V¥,,;)7Z; such that
(@n\j);ozl is convergent in the weak*-topology of L®. Denote the limit by ¥ and
note that ® = W|_q/5,12). Put O, = C(¥pn|(_12,1/2)) and note that ©,, € L'
Moreover, for any [ € Z, we have by Lemmas [3.3] and that

_— _— 1/2 ,
Om, () — O, (0) = O, (Z—l —1) = J v, (z) (e—Zml(l/2—w) _ 1)
—1/2

= J‘ifmj}"_l((@_%il(m_x) — 1)x(1/2,1/2) (7))
- J-‘I'}_ _QW“(l/Z_x) - 1)X(—1/2,1/2)($))
T((e —Emi/2me) )y X(—1/2,1/2)(2)), as j— oo.
But © = C(®), so the right hand side equals ©(l) — ©(0), again by Lemma
Let k € Z, and [ € Z, be fixed. By a calculation similar to (81), it is easy to see

that there exist functions A, B € H[10,1/2] such that (Te f, f; ) = (WsA, B). By
Lemmas B3] B0 and the first part of the proof we thus get

@eﬁlﬁ7=GVwLB>=W(JAC+yﬂﬂwd) Iz (JA (-+) ()mo

lim | ¥, F! <JA(~ + y)md@ = Jim, o, fi 1)

J—0

J—00 T k—l
i 3O (B) =6, (0) = O, () + 6, (0) i B(k) — ()
T iSwom k—1 T k—1

The calculation leading to ({.5) also shows why the “00” and “ee” cases are not
part of Lemma .4l infinitely many terms would appear on the right hand side of
(#E). Nevertheless we have

Lemma 4.5. Given © € Ran C we have

37r+7r

|PeRe Fe| < ITel.-

Upon replacing e with o, the formula is still true.
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Proof. We only do the ee case; the other is identical. As earlier, we interpret /0
as 0, regardless of x. Let a,b € Ran P, be arbitrary. Then

[(Re Pea, Pb)| = | ) Wa(i)@
1,J€Le
we -| T i;i;je(ii__li:?(j)a(i)er N %%@j(.i_l)a(i)m'
1,J€Le 1,J€Le
1—1
< swp { 2L IP R P lallbl + 5 | o

where a(l) = a(20)(©(21) — 6(21 — 1)) and b(k) = b(2k). Clearly ||b| = |b| and,
moreover, by Lemma 4] we have sup;.;{|©(21) — ©(21 — 1)|} < 7|Te], so

lall < 7[Tollal.
Let Im log denote the imaginary part of the logarithm defined in the right half

plane and note that Y, —z%/k = 2ilm log(1 — 2) for z € T. By these calculations
and Lemma [£.4] we may continue the above calculation as follows:

3 ) 2, 3
[(BePea, Peb)| < 5m|Tellal o] + <Z|m log(1 — Z)G(Z),b(2)>

L2(T)
3T + 2

ITellllal o]
O

371' * x
< 7HP®H lal[[o] + [[Im log(1 — Z)HLoo(T)Ha”L2(’1T)HbHL2(’I[‘)

Theorem 4.6. There exist Cy,Cy > 0 such that C1||Te| < || pyo < Ca|Tel for
all © € Ran C.

Proof. By Lemma 4] we have 7|T'g| < |Rel|. Conversely,
(47) Re = P.RgP, + P,RoP. + P.RoP. + P,RoP,,

S0
|Rel< >, IPyRePu < (57 +7%)|Te
ze{o,e};ye{o,e}
by Lemmas (4] and The theorem now follows from Theorem 6.2 in [I1], which
states that | Re| and HC:)HBMO(Z) are bounded by each other. O

5. COMPACTNESS

We first recall some standard results on Hadamard-Schur multipliers. Let
L(12(Z)) denote all bounded operators on [2(Z), which we identify with matrices via
the canonical basis {ej}rez. Given A = (a;;) € L(I1*(Z)) and B = (b;;) € L(I*(Z))
we define the Hadamard-Schur product via

Ao B = (aijbl—j).
If Ao B € L(I13(Z)) for all B € L(I1*(Z)), then A is called a Hadamard-Schur
multiplier. In this case we write
| Ao Bl cae
[Als = sup o EEED
BeL(i2(z)) HBHL(P(Z))

Given w € L*(T) we define A, = (as;) € L(I*(Z)) via a;; = §pw(z)27""dm(z).
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Lemma 5.1. Let w e LY(T) be given. Then
1Aw]as < [w]rer),
and A, o B is compact whenever B is.

Proof. Let D, € L(I*(Z)) be given by D.(a) = (a;z7)72_,. Tt is not hard to see
that

(5.1) A,oB= J w(2)DzBD.dm(z),
T
where the integral is interpreted in the WOT-sense (see [10]). Thus
40 8] < [ [ IDBDlam() = ol o) B1.

Moreover, a short argument shows that when B is compact, (5.1]) holds as a Bochner
integral. The compactness of A,, ¢ B thus follows as the set of compact operators
is closed in L(I*(Z)). O

Given an interval I < Z and o € CZ, let ¢(I) denote its midpoint and set
Osc(o,1) = |I|7* Y,/ |o(k) — o], where oy is the average of o over I. Following
[11] we define CMO(Z) € BMO(Z) by requiring that

lim Osc(o,I) =0, lim sup Osc(o,I) =0.
|I|fixed, ¢(I)—>=+00 [I]=0 | |fixed,
Note that by [11] we know that CMO(Z) is the closure in BMO(Z) of the sequences
with finite support.

Theorem 5.2. Let © € Ran C be given. Then I'g is compact if and only if Oe
CMO(Z).

Proof. We first note that the above theorem is true if I'g is replaced with Rg,
by Theorem 6.2 in [I1]. By Lemma [£4] T'g is unitarily equivalent with both
P.RgP, and P,RgP.. The “if”-part of the theorem thus follows easily. Conversely,
by (@) one sees that the “only if” part follows once we establish the following
claim: If I'g is compact, then the same is true for P.RoP, and P,RgP,. To
this end, we define te,t, : 12(Z) — 12(Z) via te(a) = Yy a(k)ez and to(a) =
Zfziw a(k)ear_1. Given a sequence o € C% we define the “diagonal operator”
D, via D,(a) = (o(k)a(k)){-_.,. Let a,b € I*(Z) be arbitrary. Returning to the
second line of ([@.6]), a careful calculation show that it can be rewritten as follows:

1 \O0@2i-1)-6(2)
(1_ 2(1—])) 2 —1—2j a(i)b(j)

M LCEL RN

(Rotea, Leby = Z

i,JEL

i,jEZ
* 1 *
= te Roto — §A2ilm log(1—2z) © (e Roto) ) a,b

1
+ <§A2i|m log(PZ)D((¢)(2i)—é)(2i—1))°C a,b>.

i=—00
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Now, t*Regt, is essentially the same object as P.ReoP, (unitarily equivalent), so
by Lemma [5] it follows that the operator in the first bracket is compact. By
Lemma [£.4] we have

10(20) — ©(2i — 1)| = 7[Te £, fai1)| < 7Te S,

which by standard facts about compact operators show that lim; 4, [©(2i) —

©(2i — 1)| = 0, and hence the operator in the second bracket is compact as well. [

A few simple estimates show that o € CMO(Z) whenever o is a sequence such
that limg_, 14 |o(k)| = 0. Thus, by the Riemann-Lebesgue lemma, we conclude
in particular that I'g is a compact operator when © coincides with an absolutely
continuous measure on T. On the other hand, by the examples in the beginning
we have that I'g can be a unitary operator when © is a singular measure. For
further information on TW H-operators, we refer to Section 3 of [I], where ques-
tions concerning theorems of Adamyan, Arov, Krein-type for TW H-operators are
numerically investigated.
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