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ON TRUNCATED WIENER-HOPF OPERATORS AND BMOpZq

MARCUS CARLSSON

(Communicated by Michael T. Lacey)

Abstract. We give a tractable estimate for the norm of a truncated Wiener-
Hopf operator in terms of the discrete BMO-space. We also improve earlier
norm estimates as well as obtain new, more tractable, criteria for compactness.

1. Introduction

The Wiener-Hopf operators are defined by the expression

L2
pR
`
q Q F ÞÑ

ż 8

0

ΦpyqF px` yqdy P L2
pR
`
q,

where Φ P L1pRq or, more generally, certain distributions. Given an interval I Ă R,
let C8I pRq Ă C8pRq denote the set of C8-functions with support within I, and let
D1pIq denote the set of distributions on I. The truncated Wiener-Hopf operators,
WΦ,a : L2pr0, asq Ñ L2pr0, asq, are defined for any a P R

` and any distribution
Φ P D1pp´a, aqq by the expression

(1.1) C8p0,aqpRq Q F ÞÑ ΦpF p¨ ` xqq, 0 ă x ă a,

whenever Φ is such that this extends to a bounded operator on L2pr0, asq. Whenever
a is of no importance we will omit it from the notation. We abbreviate by saying
that WΦ is a TWH-operator. These operators (or rather, unitarily equivalent ones)
also go under the name finite interval convolution operators, truncated Hankel
operators or Toeplitz operators on the Paley-Wiener space. See e.g. [1, 2, 8, 9] and
[10]. We will in this paper see that the properties of TWH-operators are more
similar to those of Hankel operators rather than Toeplitz operators. Let F denote
the Fourier transform on L2pRq, defined as follows:

(1.2) Fpfqpxq “
ż 8

´8

fpyqe´ixydy.

We will also use the notation f̂ “ Fpfq and f̌ “ F´1pfq. We let L2
r0,aspRq denote

the subspace of L2pRq of functions with (essential) support in r0, as, and we let
Pr0,as : L

2pRq Ñ L2
r0,aspRq be the orthogonal projection onto L2

r0,aspRq. Finally, let
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|L8 Ă D1pRq be the image of L8pRq under F´1, where the transform is interpreted

in the distributional sense. Given Φ P |L8 it follows by standard results that

(1.3) WΦF “ Pr0,asFpΦ̂F̌ q.

(In the above formula and the rest of the paper, we will without comment identify
L2pr0, asq and L2

r0,aspRq.) Let Φ|p´a,aq denote the restriction of Φ to C8
p´a,aqpRq. In

particular, setting

(1.4) CΦ “ inf
�

}Ψ̂}L8 : Ψ P |L8 and Ψ|p´a,aq “ Φ|p´a,aq

(

we immediately obtain

}WΦ} ď CΦ.

It was shown by R. Rochberg that the two quantities above are comparable. This
fact has also recently appeared in [3], where compressions of Toeplitz operators are
studied in a more general setting. Based on results by Farforovskaya and Nikolskaya
we will improve the constant as follows.

Theorem 1.1. Given any Φ P D1pp´a, aqq, the operator WΦ is bounded if and only

if Φ “ Ψ|p´a,aq for some Ψ P |L8. In this case we have that

WΦF “ Pr0,asFpΨ̂F̌ q,

the infimum in (1.4) is attained and

CΦ

3
ď }WΦ} ď CΦ.

However, CΦ is not easy to compute. Another norm estimate is given in [11],
which involves splitting Φ into 3 parts: left, center and right. Loosely speaking, the
result says that }WA} is comparable with the BMO-norm of the Fourier transform
of certain translations of the left and right part, plus the L8-norm of the Fourier
transform of the center part. In [11] there is also given a norm estimate involving
breaking up WΦ into two pieces and the discrete BMOpZq-space, defined below.
The issue of finding a more tractable norm estimate was raised in [11], and this is
our next objective. Define BMOpZq as the space of all sequences σ such that the
following semi-norm is finite:

}σ}BMO “ sup
I

#

|I|´1
ÿ

kPI

|σpkq ´ σI |

+

.

Here I Ă Z ranges over all sets of the form tK1 ă k ď K2u (K1,K2 P Z), |I| “
K2 ´K1 and σI “ |I|

´1
ř

kPI σpkq.

Theorem 1.2. Given any Φ P L1pp´a, aqq set Φpxq “
ř8

k“´8 φke
iπkx{a. There

exist constants C1, C2 ą 0 such that

C1a}pp´1q
kφkqk}BMOpZq ď }WΦ} ď C2a}pp´1q

kφkqk}BMOpZq.

Remark 1. The restriction to L1 is for the introduction only, as there are some
complications involved in defining the Fourier series for general elements of L8 X
D1p´a, aq, which is treated in Section 3.
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Remark 2. The weight p´1qk is an effect of the definition of WΦ such that the
midpoint of Φ is at 0 and can easily be removed by a translation of Φ to p0, 2aq.

As an example, consider Φ “ δx, where δx denotes the Dirac distribution at
x. With x “ 0 we obtain WΦpF q “ F , so }WΦ} “ 1. With a suitable inter-
pretation of its Fourier series we get φk “

1
2a and a}pp´1qkφkqk}BMOpZq “ 1{2.

On the other hand, setting x “ a we obtain WΦ “ 0 as well as φk “
p´1qk

2a , so

}pp´1qkφkqk}BMOpZq “ 0.

We also show that WΦ is compact if and only if pp´1qkφkqk is in CMOpZq, the
closure in BMOpZq of the sequences with finite support. The proof of this result
and Theorem 1.2 goes via a new class of “discrete” Hankel operators, which we
now introduce. Let T denote the unit circle and set T

` “ tζ P T : Im ζ ą 0u,
T
´ “ tζ P T : Im ζ ă 0u. Let F´1 denote the inverse Fourier transform F´1 :

L2pTq Ñ l2pZq defined via F´1pfqpkq “
ş2π

0
fpeitqeiktdt{p2πq. (Note that we use the

same symbol as in (1.2); the type of f will determine which one is intended.) The
common denominator of the various Hardy spaces is that the Fourier transform of
the elements is in some sense one-sided. It therefore makes some sense to define the
discrete Hardy space H2pZq as F´1pL2

T`pTqq and similarly H2
´pZq “ F´1pL2

T´pTqq

(where L2pTq is defined with normalized arc-length measure and L2
T`pTq denotes the

subspace of functions with support in T
`). In analogy with the classical definition,

given σ P l8pNq we define the Hankel operator Hσ : H2pZq Ñ H2
´pZq via

(1.5) Hσpfq “ PH2
´pZq

pσ ¨ fq,

where pσ ¨ fqpkq “ σpkqfpkq, @k P Z. (A more general definition includes certain
unbounded symbols, but we omit this in the introduction.) Using the notation
of Theorem 1.2, we show that 1

2aWΦ is equivalent with Hpp´1qkφkq
under unitary

transformations. Moreover, we show

Theorem 1.3. Hσ is bounded if and only if σ P BMOpZq and the norms are
comparable.

The proof relies on a characterization in [11] of the BMOpZq-norm of a given σ
in terms of the operator-norm of an “infinite matrix” Rσ whose “pi, jq” ’th entry is

given by σpiq´σpjq
i´j .

2. A Nehari-type theorem for truncated Wiener-Hopf operators

Given N P N and φ P Ct´N,...,Nu, we define the Toeplitz matrix by

Tφ “

¨

˚

˚

˚

˚

˚

˝

φ0 φ1 φ2 ¨ ¨ ¨ φN

φ´1 φ0 φ1 ¨ ¨ ¨ φN´1

φ´2 φ´1 φ0 ¨ ¨ ¨ φN´2

...
...

...
. . .

...
φ´N φ´N`1 φ´N`2 ¨ ¨ ¨ φ0

˛

‹

‹

‹

‹

‹

‚

.

We introduce yet a third meaning of F ; when acting on φ P L2pTq we set
Fpφqpkq “

ş

T
φpzqz´kdmpzq, where m denotes the normalized arc-length mea-

sure on the unit circle T. We will without comment let the type of a func-
tion/sequence/distribution s determine the meaning of Fpsq “ ŝ and š “ F´1psq.
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For convenience, we provide a table of the various Fourier transforms used in this
paper:
$

’

&

’

%

F : L2pRq Ñ L2pRq,FpF qpxq “
ş

R
F pyqe´ixydy;F´1pF qpxq “

ş

R
F pyqeixy dy

2π

F : L2pTq Ñ l2pZq,FpF qpkq “
ş

T
F pzqz´kdmpzq;F´1pσqpzq “

ř

k σpkqz
k

F : l2pZq Ñ L2pTq,Fpσqpzq “
ř

k σpkqz
´k;F´1pF qpkq “

ş

T
F pzqzkdmpzq

For any φ as above we set

(2.1) Cφ “ inft}g}L8pTq : g P L
8
pTq and ĝpkq “ φku.

We recall the following theorem by Yu. B. Farforovskaya and L. N. Nikolskaya [7].

Theorem 2.1.
1

3
Cφ ď }Tφ} ď Cφ.

This theorem was first obtained, albeit with a different constant, in [11]. Note
that the right inequality is immediate because Tφ is the compression of the Toeplitz
operator with symbol g, for any g that appears in (2.1). It is an open problem
whether 1{3 is the best possible constant, but it is known that it is not 1 (see [7]).
We will now prove Theorem 1.1. It is easy to see that it suffices to show Theorem
1.1 for a fixed value of a, so we set a “ 1. For p ě 1 and any N P N let the sampling
operator SN : Cpr´1, 1sq Ñ C

t´N`1,...,N´1u be defined by

(2.2) SNF “

ˆ

1

N
F

ˆ

k

N

˙˙N´1

k“´N`1

.

Let χpS, ¨q denote the characteristic function of a set S. For each N P N, set

bNk pxq “
?
Nχ

ˆ

” k

N
,
k ` 1

N

¯

, x

˙

and let PN : L2pr0, 1sq Ñ L2pr0, 1sq be the orthogonal projection on the subspace
spanned by tbNk u

N´1
k“0 . Note that tbNk u

N´1
k“0 is an orthonormal set in L2pr0, 1sq. Define

IN : Ct0,...,N´1u Ñ L2pr0, 1sq by

(2.3) IN pφq “
ÿ

φkb
N
k .

Note that INI˚NPN “ PN and that, given Φ P Cpr´1, 1sq, the compression of the
operator INTSNΦI˚N to the subspace Ran PN is represented by the matrix TSNΦ

in the basis tbNk u
N´1
k“0 . We shall show that for Φ P C1pr´1, 1sq, the operators

INTSNΦI˚N converge to WΦ as N Ñ8. In order to simplify the notation we set

WN
Φ “ INTSNΦI˚N .

For any ε ą 0 let ρε : C
1pr´1, 1sq Ñ Cpr´1, 1sq be defined by

ρεpΦqpxq “ supt|Φ1pyq| : |x´ y| ď εu.

Proposition 2.2. Let Φ P C1pr´1, 1sq be given. Then

}WΦ ´WN
Φ } ď

˜

1`

c

1

3

¸

2

N

d

ż 1

´1

`

ρ2{N pΦqpxq
˘2
dx.
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Proof. Assume that Φ is real-valued. We shall first give an estimate of WΦ ´WN
Φ

restricted to Ran PN . For each fixed 0 ď x ď 1 we have

(2.4) WΦb
N
k pxq “

?
N

ż
k`1
N ´x

k
N´x

Φpyqdy “ N´1{2Φpyx ´ xq,

for some k
N ď yx ď

k`1
N by the mean value theorem. On the other hand, note that

I˚N bNk “ ek (where pekq
N´1
k“0 denotes the standard basis in C

t0,...,N´1u), so

WN
Φ bNk pxq “ pINTSNΦekqpxq “

N
ÿ

l“0

N´1Φ

ˆ

k ´ l

N

˙

bNl pxq “ N´1{2Φ

ˆ

k ´ lx
N

˙

,

where lx P N is such that lx{N ď x ă plx ` 1q{N . Since |yx ´ x´ k´lx
N | ď 1{N we

have
(2.5)
ˇ

ˇWΦb
N
k pxq´W

N
Φ bNk pxq

ˇ

ˇ“
1
?
N

ˇ

ˇ

ˇ

ˇ

Φpyx ´ xq ´ Φ

ˆ

k ´ lx
N

˙ˇ

ˇ

ˇ

ˇ

ď
1

N3{2
ρ1{N pΦq

ˆ

k

N
´ x

˙

.

Now, let a P Ct0,...,N´1u be arbitrary but satisfy }a} “ 1. Then
ˇ

ˇ

ˇ

´

`

WΦ ´WN
Φ

˘

´

ÿ

akb
N
k

¯¯

pxq
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ÿ

ak
``

WΦ ´WN
Φ

˘

bNk
˘

pxq
ˇ

ˇ

ˇ

ď N´3{2
ˇ

ˇ

ˇ

ÿ

akρ1{N pΦqp
k

N
´ xq

ˇ

ˇ

ˇ
“

1

N

d

1

N

ÿ

ˆ

ρ1{N pΦqp
k

N
´ xq

˙2

ď
1

N

g

f

f

e

ÿ

ż
k`1
N

k
N

`

ρ2{N pΦqpy ´ xq
˘2
dy “

1

N

d

ż 1

0

`

ρ2{N pΦqpy ´ xq
˘2
dy.

Finally, we obtain

}pWΦ ´WN
Φ q

´

ÿ

akb
N
k

¯

}L2 ď
1

N

d

ż 1

0

ż 1

0

`

ρ2{N pΦqpy ´ xq
˘2
dydx

“
1

N

g

f

f

f

e

ż

0ău`vă2
0ău´vă2

`

ρ2{N pΦqpvq
˘2 1

2
dudv ď

1

N

d

ż 1

´1

`

ρ2{N pΦqpvq
˘2
dv,

which, upon noting that }
ř

akbk}L2
“ 1, yields

(2.6) }pWΦ ´WN
Φ qPN } ď

1

N

d

ż 1

´1

`

ρ2{N pΦqpxq
˘2

dx.

We turn to the estimate for pWΦ´WN
Φ qpI´PN q “WΦpI´PN q. Define subsets

SN
k,i,j Ă r

k
N , k`1

N s for 0 ď k ă N , j ě 1 and 0 ď i ď 2j ´ 1 by

SN
k,i,j “

„

k

N
`

i

2jN
,
k

N
`

i` 1

2jN

j

,

and let dNk,i,j be functions defined by

dNk,i,jpxq “
?
2j´1N

`

χpSN
k,2i,j , xq ´ χpSN

k,2i`1,j , xq
˘

for 0 ď k ă N , j ě 1 and 0 ď i ď 2j´1 ´ 1. It is easy to see that (for N fixed),

Span ptbNk u Y td
N
k,i,juq “ Span ptχSN

k,i,j
uq,
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and it follows from basic integration theory that the right hand side is dense in
L2pr0, 1sq. Moreover, tbNk u Y td

N
k,i,ju is clearly an orthonormal set, and hence it is

a basis for L2pr0, 1sq. Thus Ran pI ´PN q “ Span tdNk,i,ju. In a similar fashion as in

(2.4) and (2.5) we obtain that

|WΦd
N
k,i,jpxq| “

?
2j´1N

2jN

ˇ

ˇ

ˇ

ˇ

Φ

ˆ

k

N
`

2i

2jN
` δ1 ´ x

˙

´ Φ

ˆ

k

N
`

2i` 1

2jN
` δ2 ´ x

˙ˇ

ˇ

ˇ

ˇ

ď
1

?
2j`1N

ˇ

ˇ

ˇ

ˇ

1

2j´1N
ρ1{N pΦq

ˆ

k

N
´ x

˙ˇ

ˇ

ˇ

ˇ

“

?
2

p2jNq
3{2

ˇ

ˇ

ˇ

ˇ

ρ1{N pΦq

ˆ

k

N
´ x

˙ˇ

ˇ

ˇ

ˇ

,

where 0 ď δ1, δ2 ď p2jNq´1. Now let ak,i,j P C be any numbers (indexed by
the same index set as tdNk,i,ju) such that

ř

|ak,i,j |
2 “ 1. By repeated use of the

Cauchy-Schwarz and Minkowski inequalities we get

}WΦ

´

ÿ

ak,i,jd
N
k,i,j

¯

} ď

N´1
ÿ

k“0

8
ÿ

j“1

2j´1
´1

ÿ

i“0

|ak,i,j |

?
2

p2jNq3{2

›

›

›

›

ρ1{N pΦq

ˆ

k

N
´ ¨

˙›

›

›

›

ď

N´1
ÿ

k“0

8
ÿ

j“1

d

ÿ

i

|ak,i,j |22
pj´1q{2

?
2

p2jNq3{2

›

›

›

›

ρ1{N pΦq

ˆ

k

N
´ ¨

˙›

›

›

›

ď

N´1
ÿ

k“0

d

ÿ

j,i

|ak,i,j |2
d

ÿ

jě1

2´2j
1

N3{2

›

›

›

›

ρ1{N pΦq

ˆ

k

N
´ ¨

˙›

›

›

›

ď

d

ÿ

k,j,i

|ak,i,j |2

d

1

1´ 1{4
´ 1

1

N3{2

g

f

f

e

ÿ

k

ż 1

0

ˆ

ρ1{N pΦq

ˆ

k

N
´ x

˙˙2

dx

ď
1

?
3N

d

ż 1

0

ż 1

0

`

ρ2{N pΦqpy ´ xq
˘2

dydx ď
1

?
3N

d

ż 1

´1

pρ2{N pΦqpxqq2dx.

It follows that

(2.7) }pWΦ ´WN
Φ qpI ´ PN q} ď

1
?
3N

d

ż 1

´1

`

ρ2{N pΦqpxq
˘2
dx,

which combined with (2.6) yields the first part of the proposition in the case when Φ
is real-valued, but with constant p1`1{

?
3q. For the general case, write Φ “ Φ1`iΦ2

where Φ1 and Φ2 are real-valued. Then

}WΦ ´WN
Φ } ď }WΦ1

´WN
Φ1
} ` }WΦ2

´WN
Φ2
}

ď

˜

1`

c

1

3

¸

1

N

˜

d

ż 1

´1

`

ρ2{N pΦ1qpxq
˘2
dx`

d

ż 1

´1

`

ρ2{N pΦ2qpxq
˘2
dx

¸

ď

˜

1`

c

1

3

¸

2

N

d

ż 1

´1

`

ρ2{N pΦqpxq
˘2
dx,

as desired. �

Corollary 2.3. For every Φ P C1pr´1, 1sq there exists a C ą 0 such that

}TSNΦ} ď }WΦ} `
C

N
.
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We are now in a position to prove the lower estimate in Theorem 1.1 for Φ P

C1pr´1, 1sq. For standard results and definitions concerning distributions, we refer
to [9]. We omit the proofs of simple results such as that L8pRq can be considered

as temperate distributions, so that |L8 is well defined.

Proposition 2.4. Given a ą 0 and Φ P C1pr´a, asq there exists a Ψ P |L8 with
Ψ|p´a,aq “ Φ and

1

3
}Ψ̂} ď }WΦ,a}.

Proof. As noted earlier, it suffices to consider a “ 1. By Corollary 2.3 we have
}TSNΦ} ď }WΦ}`

C
N for some C and every N P N, and by Theorem 2.1 we get that

there exists ψN P L
8pTq such that

(2.8) xψN pkq “
1

N
Φp

k

N
q, ´N ` 1 ď k ď N ´ 1

and

}ψN }L8 ď 3}TSNΦ} ď 3}WΦ} `
3C

N
.

Let ΨN P D1pRq be defined by ΨN “
ř8

k“´8
xψN pkqδk{N , where δx is the Dirac

distribution at x, and note that

yΨN ptq “
8
ÿ

k“´8

xψN pkqe
´itk{N

“ ψN pe
´it{N

q,

so in fact ΨN P L8pRq and }yΨN }L8 ď 3}WΦ} `
3C
N . By standard theorems of

functional analysis there exists a subsequence of pyΨNj
q8j“1 convergent in the weak-

star topology to some pΨ P L8pRq with }pΨ}L8 ď 3}WΦ}. Given F P C8
p´1,1qpRq we

have, using (2.8),

(2.9)

ż

ΦF “ lim
jÑ8

ż

ΨNj
F “ lim

jÑ8

ż

yΨNj
F̌ “

ż

Ψ̂F̌ “

ż

ΨF,

which shows that Ψ|p´1,1q “ Φ, and the proof is complete. Note that we use the

notation
ş

ΨNF even if ΨN is not a function, as opposed to the formally correct
ΨN pF q or xΨN , F y. We will in the remainder do this without comment. �
Theorem 2.5. Given any a ą 0 and Φ P D1pp´a, aqq, the operator WΦ,a is bounded

if and only if Φ “ Ψ|p´a,aq for some Ψ P |L8. In this case,

WΦF “ Pr0,asFpΨ̂F̌ q,

the infimum in (1.4) is attained and

CΦ

3
ď }WΦ} ď CΦ.

Proof. All claims in the statement follow by standard arguments once we show

that given a Φ P D1pp´1, 1qq such that WΦ is bounded, there exists a Ψ P |L8 such

that }pΨ}L8 ď 3}WΦ} and Ψ|p´1,1q “ Φ. Take a positive function η P C8
p´1,1qpRq

that is symmetric around 0 and satisfies }η}L1 “ 1, take a sequence of positive
functions γk P C8

p´1,1qpRq such that γkpxq “ 1 for ´1 ` 4´k ă x ă 1 ´ 4´k, set

ηkpxq “ 4kηp4kxq and define Φk P C
8pRq via

Φkpxq “ pγkΦq ˚ ηk,
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which is well-defined as γkΦ has a natural extension to R that is “zero on Rzp´1, 1q”
(see [9], Sec 2.3 for details). We have, for any F P L2

r2´k,1´2´ks
pRq, that ηk ˚ F P

C8
p4´k,1´4´kq

pRq and η̂kF̌ “ ηk ˚ F , which follows by the symmetry of η. Moreover,

by standard properties of distributions with compact support (see [9], Chs. 2 and

7) we get xΦk “
{pγkΦq pηk, where {pγkΦq is a function that grows polynomially since

distributions with compact support have finite order. Thus, for F P C8
p´1,1qpRq we

get

WΦk
pF q “ Pr0,1sF

`

{pγkΦqη̂kF̌
˘

“ Pr0,1sF
`

{pγkΦq pηk ˚ F q
˘

“WγkΦpηk ˚ F q “WΦpηk ˚ F q.

Now let Φ̃kptq “ Φkp2
´k ` tq for |t| ă 1´ 21´k. The above identity yields, for any

F P L2
r0,1´21´ks

pRq, the following estimate:

}WΦ̃k,p1´21´kq
pF q} ď }WΦk,1pF p¨ ´ 2´k

qq} “ }WΦ,1pηk ˚ F p¨ ´ 2´k
qq}

ď }WΦ,1}}ηk}L1}F }L2 .

In particular, }WΦ̃k,p1´21´kq
} ď }WΦ,1}. By Proposition 2.4 we get the existence of

Ψk P
|L8 with Ψkptq “ Φkp2

´k ` tq for |t| ď 1´ 21´k and }pΨk}L8 ď 3}WΦ,1}. For
any F P C8

p´1,1qpRq and k large enough that supp F Ă r´1` 21´k, 1´ 21´ks we get
ż

ΨkF “

ż

ΦkF p¨ ´ 2´k
q “ Φ

´

γk
`

ηk ˚ pF p¨ ´ 2´k
qq
˘

¯

“ Φ
`

ηk ˚ pF p¨ ´ 2´k
qq
˘

.

Let Dp´1, 1q denote the set of test functions on p´1, 1q with the usual topology.
It is a standard matter to check that ηk ˚ pF p¨ ´ 2´kqq goes to F in Dpp´1, 1qq as
k Ñ 8, and hence the Ψk converge to Φ in D1pp´1, 1qq. The proof is now easily
completed with a similar calculation as in (2.9); we omit the details. �

3. Technicalities

We will in this section collect a number of definitions and results, mainly from
distribution theory, that would otherwise disrupt the flow of the text. The first 7
chapters of [9] contain all the necessary background material.

Lemma 3.1. Given any Φ P D1p´a, aq such that WΦ is bounded, there exists a

sequence Ψ1,Ψ2, . . . such that Ψk P C
8pRq, }xΨk}L8 ď 3}WΦ} and limkÑ8Ψk “ Φ

in D1p´a, aq.

Proof. The proof of Theorem 2.5 almost provides such a sequence; the only issue
is that we do not know that the Ψk’s produced there are functions near the edges.
However, it is easily seen that this issue can be resolved by considering the sequence
pΨk ˚ ηkq

8
k“1 instead. �

Given an open interval I, let I denote its closure and let H1pIq denote the usual
Sobolev space, i.e. the space of functions in L2pIq whose first (weak) derivative is in
L2pIq (for basic references see e.g. [6] or [9]). We use H1 as opposed to H1 to avoid
confusion with the Hardy spaces. Note that each equivalence class in H1pIq has a
continuous representative on I, so we will treat the elements of H1pIq as continuous
functions on I. Let H1

I
pRq denote the set of functions with support within I such

that f |I P H1pIq, and let H1
I,0
pRq Ă H1

I
pRq be those functions that are continuous
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at the endpoints of I. In particular, H1
I,0
pRq Ă H1pRq, and we have that C8I pRq is

dense in H1
I,0
pRq. We omit the proof of the following basic lemma.

Lemma 3.2. Given any interval pa, bq, G P L2pra, bsq is the weak derivative of
F P H1pra, bsq if and only if

F pxq “ F paq `

ż x

a

Gpyqdy, x P pa, bq.

Let |I| denote the length of the interval I.

Lemma 3.3. Given any interval I and F P H1
I,0
pRq we have F̂ P L1pRq and

}F̂ }L1 ď p2` |I|3{2q}F 1}L2 .

Proof. For F P H1
I,0
pRq we have F pxq “

şx

´8
F 1pyqdy, so }F }L8 ď }F

1}L2

a

|I| by

Hölder’s inequality and therefore }F̂ }L8 ď |I|
3{2}F 1}L2 . Moreover xF 1pξq “ iξF̂ pξq,

so by Parseval’s formula and the Cauchy-Schwarz inequality we get
ż

|ξ|ą1{2

|F̂ pξq|dξ “

ż

|ξ|ą1{2

|xF 1pξq{ξ|dξ ď

d

2

ż 8

1{2

ξ´2dξ}xF 1}L2 ď 2}F 1}L2 .

These combine easily to give the desired inequality. �
Lemma 3.4. Let I be an open interval and let Φ P D1pIq be such that Φ “ Ψ|I for

some Ψ P |L8. Then Ψ determines a continuous extension of Φ to H1
I,0
pRq via

ΦpF q “

ż

R

Ψ̂F̌ .

This extension is independent of Ψ.

Proof. By Lemma 3.3 we clearly have that H1
I,0
Q F ÞÑ

ş

Ψ̂F̌ defines a continuous

linear functional on the space H1
I,0

. Since tF 1|I : F P H1
I,0
pRqu has codimension 1

in L2pIq and }F }H1
I,0
pRq is comparable with }F 1}L2pIq, it follows that there exists a

function ν P L2pIq such that

(3.1)

ż

R

Ψ̂F̌ “

ż

I

F 1ν

for all F P H1
I,0

. Moreover, ν is clearly uniquely defined by Ψ modulo the constant

functions on I. Since we clearly have ΦpF q “
ş

F 1ν for all F P C8I pRq and C8I pRq
is dense in H1

I,0
, we see that ν is uniquely defined by Φ (modulo constants). �

Given Φ P D1pIq such that Φ “ Ψ|I for some Ψ P |L8, due to the above lemma
we will in the future identify Φ with its extension to H1

I,0
pRq.

Lemma 3.5. Let Ψ P |L8 be given and set Φ “ Ψ|p´a,aq. For any F,G P H1
r0,aspRq

we have
ż

F p¨ ` yqGpyqdy P H1
r´a,as,0pRq

and

xWΦF, ḠyL2pr0,asq “ Ψ

ˆ
ż

F p¨ ` yqGpyqdy

˙

.
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Proof. Let us write F ˝ G for
ş

F p¨ ` yqGpyqdy. By the location of supports of
F,G, it is easy to see that F ˝ G is continuous on R with support in r´a, as. Let
H P L2

r0,1spRq be such that H|r0,1s is the weak derivative of G|r0,1s. By Lemma 3.2,

F ˝G P H1
r´a,as,0pRq follows once we establish that

(3.2) F ˝Gpxq “

ż x

´8

p´F ˝Hpyq ` F pa` yqGpaq ´ F pyqGp0qq dy,

which follows by careful use of Fubini’s theorem. For the second part, we first note
that when F P C8

p0,aqpRq, then
d
dxF ˝ G “ F 1 ˝ G; so using Lemma 3.4, we can

show the formula by approximating the integrals with Riemann sums. We omit the
details and assume that this has been established. To get the general statement,
let pFkq

8
k“1 be a sequence in C8

p0,aqpRq converging to F . By (3.2) it is easily seen

that Fk ˝ G ÝÑ F ˝ G in H1
r´a,as,0pRq, so by the continuity of Ψ (Lemma 3.4) we

get

xWΦF, Ḡy “ lim
kÑ8

xWΦFk, Ḡy “ lim
kÑ8

ΨpFk ˝Gq “ ΨpF ˝Gq,

as desired. �

It will be convenient to move the discussion to the circle, so we will introduce a
new class of operators, unitarily equivalent with the TWH-operators, which resem-
ble Hankel operators. Recall that m denotes the normalized arc-length measure on
the unit circle T. As before we will let the meaning of expressions such as F´1pfq
be determined by the type of f ; if f P l2pZq, then F´1pfqpzq “

ř

fpkqzk, z P T,
and if f P L2pTq, then F´1pfqpkq “

ş

T
fzkdm, k P Z. Given Θ P D1pTzt1uq we

define the operator ΓΘ : L2
T`pTq Ñ L2

T´pTq by

(3.3) F Q C8
T`pTq Ñ

" ş

ΘpζqF pzζqdmpζq, z P T´,
0, z P T`

whenever this extends to a bounded operator on L2pT`q. Formally, we should write
ΘpF pz ¨qq instead of

ş

ΘpζqF pzζqdmpζq, but we believe that the latter notation is
more readable and therefore we will continue to abuse notation in the above way.
The reader should keep in mind that Θ is not necessarily a function.

We now show that this new class is equivalent under unitary transformations with
the set of TWH-operators (for any fixed a). It will be convenient to set the value of a
to 1{2. Thus let Φ P D1p´1{2, 1{2q be given such thatWΦ : L2

r0,1{2spRq Ñ L2
r0,1{2spRq

is bounded. Set

(3.4) Θpe2πiyq “ Φp1{2´ yq, 0 ă y ă 1.

Given any F P L2
r0,1{2spRq we also define F̃ P L2

T`pTq via F̃ pe2πitq “ F p1{2 ´ tq

p0 ď t ă 1q and note that this transformation is unitary. Moreover, for any
0 ă x ă 1{2 and F P C8

p0,1{2qpRq we have

(3.5)

pWΦF qpxq “

ż 1{2

0

Φpy ´ xqF pyqdy “

ż 1{2

0

Φp1{2´ y ´ xqF p1{2´ yqdy

“

ż 1{2

0

Θpe2πixe2πiyqF̃ pe2πiyqdy“

ż

T`
Θpz̄ζqF̃ pζqdmpζq “ pΓΘ, F̃ qpzq, z “ e´2πix.
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Thus ΓΘ and WΦ are equivalent under simple unitary transformations. Endow
C1pTq with the norm

}F }C1pTq “ }F }L8 ` }F
1
}L8 .

Here, and in the remainder of the paper, F 1pzq denotes limtÑ0pF pze
itq ´ F pzq{tq

whenever F is a function on T. By Theorem 2.5, and the proof of Lemma 3.4 we
conclude that it is no restriction to assume that Θ is of the form

(3.6) ΘpF q “

ż

F 1μ dm, μ P L2
pTq,

in the definition of ΓΘ, (3.3). The expression p3.6q clearly defines an element of
pC1pTqq˚, which we will call the canonical extension of Θ, and we shall use the
same symbol for it. Whenever Φ and Θ are related as above, we shall write CpΦq
for the canonical extension of Θ. The following lemma is immediate from the above
construction.

Lemma 3.6. Let Ψ P |L8 be given and set Θ “ CpΨ|p´1{2,1{2qq. Given tF P C1pTq :

F p1q “ 0u we define F̃ via F̃ p1{2´ tq “ F pe2πitq. Then

ΨpF̃ q “ ΘpF q,

where ΨpF̃ q is defined as in Lemma 3.4.

Let z : T Ñ T denote the identity function zpζq “ ζ. Given a distribution

Θ P D1pTq we define the Fourier transform as the sequence Θ̂ P CZ given by

Θ̂pjq “ Θpz´j
q,

and similarly Θ̌pjq “ Θpzjq. For Θ P D1pTzt1uq such that ΓΘ is bounded, we define

Θ̂ to be the Fourier transform of the canonical extension. Note that in the case
when Θ is a function in L1pTq, this definition can disagree with the traditional
definition by a constant sequence. Similarly, given Φpxq “

ř8

k“´8 φke
2πikx and

Θ “ Cpφ|p´1{2,1{2qq, a short calculation shows that

(3.7) p´1qkφ´k “ Θ̂pkq mod 1,

where 1 is the constant sequence. For distributions Φ such that WΦ is bounded,
one can use (3.7) to define its Fourier series. Again, for functions Φ this definition
can be off by a constant sequence with respect to the usual definition. Note that
this formula combined with the material in the next section proves Theorem 1.2
for a “ 1{2 and that the corresponding statement for any a easily follows from this
one. Let D1k denote the set of distributions of order k. We omit the proof of the
next result.

Lemma 3.7. If Θ P D1kpTq, then there exists C ą 0 such that |Θ̂pjq| ă C|j|k.
Conversely, if σ “ pσjq

8
j“´8 P C

Z satisfies |σj | ă C|j|k for some C ą 0 and k P N,

then there is a unique Θ P D1k`2pTq such that σ “ Θ̂.

Sequences σ as in the above lemma will be called polynomially bounded.
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4. Discrete Hardy spaces, Hankel operators and BMOpZq

Recall the definition of H2pZq and the discrete Hankel operators defined in (1.5).
We extend this definition to polynomially bounded sequences σ by setting

(4.1) Hσpfq “ PH2
´pZq

pσ ¨ fq, f P F´1
pC8

T`pTqq ,

whenever this extends to a bounded operator from H2pZq to H2
´pZq. Given Θ P

D1pTq and F P C8
T`pTq, we will in the next calculation use the notation ΘpF pz ¨qq “

ΘpF pzζqq; i.e., we think of Θ as acting on functions in the variable ζ. We have

(4.2)

F´1
`

ΓΘpF q
˘

“ F´1PL2
T´
pTq

`

ΘpF pzζqq
˘

“ PH2
´pZq

F´1
`

ΘpF pzζqq
˘

“ PH2
´pZq

ˆˆ
ż

Θ
´

F pzζq
¯

zkdmpzq

˙8

k“´8

˙

“ PH2
´pZq

ˆˆ

Θ
´

ż

F pzζqzkdmpzq
¯

˙8

k“´8

˙

“ PH2
´pZq

´

`

Θ
`

ζ´kF̌ pkq
˘˘8

k“´8

¯

“ PH2
´pZq

´

Θ̂ ¨ F̌
¯

,

which gives

(4.3) F´1ΓΘF “ HΘ̂

in analogy with the classical theory. Conversely, given Hσ for some polynomially
bounded sequence σ, we can define a distribution Θ P D1pTq via Lemma 3.7 and by
(4.2) we get F´1ΓΘF “ Hσ. We summarize a number of elementary observations
in the following three propositions.

Proposition 4.1. Let Φ P D1pp´1{2, 1{2qq be such that WΦ is bounded, set Θ “

CpΦq and set σ “ Θ̂. Then WΦ, ΓΘ and Hσ are equivalent via (3.5) and (4.3).
Moreover Φ P D11pp´1{2, 1{2qq. If ΓΘ is bounded for some Θ P Ran C or if σ P CZ

satisfies limkÑ˘8 σpkq{k “ 0, σp0q “ 0 and Hσ is bounded, then there exists a
unique Φ P D1pp´1{2, 1{2qq such that the first statement is true.

Proof. The only part of the proposition that is not immediate from the previous
developments is that the first statement is true if limkÑ˘8 σpkq{k “ 0, σp0q “ 0
and Hσ is bounded. By Lemma 3.7 and (4.3) there exists a Θ P D1pTq such that ΓΘ

and Hσ are unitarily equivalent, with σ “ Θ̂. Moreover, by (3.5) and Theorem 2.5

there is a Ψ P |L8, Φ “ Ψ|p´1{2,1{2q such that WΦ is equivalent with ΓΘ via (3.5).

But setting τ “ zCpΦq, WΦ is also equivalent with ΓCpΦq and Hτ . Let μ be the
function that gives CpΦq via (3.6). By the Riemann-Lebesgue lemma it follows that
limkÑ˘8 μ̂pkq “ 0. Thus

lim
kÑ˘8

τ pkq

k
“ lim

kÑ˘8

zCpΦqpkq
k

“ lim
kÑ˘8

´iμ̂pkq “ 0.

We are done if we show that σ “ τ . Since ΓΘ “ ΓCpΦq, it follows by Proposition 4.2
below that σ “ τ ` c01 for some c0 P C, (where 1 “ p. . . , 1, 1, 1, 1, . . .q), and since
σp0q “ τ p0q “ 0, we get c0 “ 0. �
Proposition 4.2. Let Θ P D1pTq be such that ΓΘ is bounded. Then there exists a

unique Θ̃ P Ran C such that ΓΘ “ ΓΘ̃. Moreover, there is an N P N and c0, . . . , cN
such that

Θ´ Θ̃ “ c0δ1 ` c1δ
1
1 ` ¨ ¨ ¨ ` cNδ

pNq
1 .
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Proof. Any distribution on a compact set is a distribution of finite order (Theo-

rem 2.3.1 in [9]). If ΓΘ “ ΓΘ̃, then clearly pΘ ´ Θ̃q|Tzt1u “ 0, so Θ ´ Θ̃ is a finite
order distribution with support in t1u. By Theorem 2.3.4 in [9], it is necessarily of

the form c0δ1 ` c1δ
1
1 ` ¨ ¨ ¨ ` cNδ

pNq
1 . �

The next proposition follows immediately from the previous two.

Proposition 4.3. Let σ P C
Z be polynomially bounded such that Hσ is bounded.

Then there exists a unique σ̃ such that limkÑ˘8 σ̃pkq{k “ 0, σ̃p0q “ 0 and Hσ̃ “

Hσ. Moreover, there is an N P N and c0, . . . , cN such that

σ ´ σ̃ “ c0p1q
8
k“´8 ` c1pkq

8
k“´8 ` . . .` cN

`

δ
pNq
1 pz´k

q
˘8

k“´8
.

We will now begin the proof that }ΓΘ} and }Θ̂}BMO are comparable for Θ P

Ran C. Define RΘ : l2pZq Ñ l2pZq via

xRΘa, by “
ÿ Θ̂piq ´ Θ̂pjq

i´ j
apiqbpjq.

In the above formulas we interpret 0/0 as 0. Let Ze and Zo be the even/odd
integers respectively, and let tekukPZ denote the standard basis for l2pZq, (i.e.
ekpjq “ δpk ´ jq, where δ is the Kronecker symbol). Define Pe : l2pZq Ñ l2pZq
via Pep

ř

kPZ apkqekq “
ř

kPZe
apkqek and set Po “ I ´ Pe. Define f`l P L2

T`pTq via

f`l pzq “
?
2z´lχpT`, zq for all l P Z and define f´l P L2

T´pTq analogously. Note

that each of the sets tf`k ukPZe
, tf`k ukPZo

forms an orthonormal basis for L2
T`pTq

and the same is true if ` is exchanged with ´ everywhere.

Lemma 4.4. Given Θ P Ran C, a P Ran Po and b P Ran Pe we have
A

ΓΘ

ÿ

alf
`
l ,

ÿ

blf
´
l

E

“
i

π
xRΘa, by.

The corresponding formula with o and e switched also holds. In particular,

}PoRΘPe} “ }PeRΘPo} “ π}ΓΘ}.

Proof. Assume first that Θ P L1pTq. These formulas can of course be obtained
by evaluating some multiple integrals, but this provides little intuition for what is
going on. We therefore prefer the following argument. By (4.3) and some simple
calculations we have

(4.4)
@

ΓΘf
`
k , f´l

D

“

A

Θ̂ ¨ |f`k , |f´l

E

“

ÿ

m

´

Θ̂ ¨ |f`k ¨
|f´l

¯

pmq “
ÿ

m

´

Θ̂ ¨ |f`k ¨
|f`l

¯

pmq.

The assumption Θ P L1pTq ensures that the sum is absolutely convergent. We have
|f`0 “

1?
2
e0 `

ř

mPZo

?
2i

πm em or, written out as a sequence,

|f`0 “
?
2

ˆ

. . . ,
´i

5π
, 0,
´i

3π
, 0,
´i

π
,
1

2
,
i

π
, 0,

i

3π
, 0,

i

5π
, . . .

˙

.

By the formula |f`k pmq “
z´kf`0 pmq “

|f`0 pm´ kq for all m, k P Z we see that any
|f`k is obtained by a translation of |f`0 . We thus get

(4.5) |f`k ¨
|f`l “

i

π

ek ´ el
k ´ l
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whenever k ´ l is an odd number, which combined with (4.4) yields the desired
formula.

If Θ is not in L1, let Φ P D1pp´1{2, 1{2qq be such that Θ “ CpΦq and WΦ is
bounded. Lemma 3.1 shows that there exists a sequence Ψ1,Ψ2, . . . P C

8pRq such

that }yΨm}L8 ď 3}WΦ}, and ΦpF q “ limmÑ8

ş

ΨmF for all F P C8
p´1{2,1{2qpRq.

By standard functional analysis, we can choose a subsequence pΨmj
q8j“1 such that

pzΨmj
q8j“1 is convergent in the weak*-topology of L8. Denote the limit by Ψ̂ and

note that Φ “ Ψ|p´1{2,1{2q. Put Θm “ C
`

Ψm|p´1{2,1{2q

˘

and note that Θm P L1.
Moreover, for any l P Z, we have by Lemmas 3.3 and 3.6 that

zΘmj
plq ´zΘmj

p0q “ Θmj
pz´l

´ 1q “

ż 1{2

´1{2

Ψmj
pxq

`

e´2πilp1{2´xq
´ 1

˘

“

ż

Ψ̂mj
F´1

`

pe´2πilp1{2´xq
´ 1qχp´1{2,1{2qpxq

˘

Ñ

ż

Ψ̂F´1
`

pe´2πilp1{2´xq
´ 1qχp´1{2,1{2qpxq

˘

“ Ψ
`

pe´2πilp1{2´xq
´ 1qχp´1{2,1{2qpxq

˘

, as j Ñ8.

But Θ “ CpΦq, so the right hand side equals Θ̂plq ´ Θ̂p0q, again by Lemma 3.6.
Let k P Zo and l P Ze be fixed. By a calculation similar to (3.5), it is easy to see
that there exist functions A,B P H1

r0,1{2s such that xΓΘf
`
k , f´l y “ xWΦA,By. By

Lemmas 3.3, 3.5, and the first part of the proof we thus get

xΓΘf
`
k , f´l y“xWΦA,By “ Ψ

ˆ
ż

Ap¨ ` yqBpyqdy

˙

“

ż

Ψ̂F´1

ˆ
ż

Ap¨ ` yqBpyqdy

˙

“ lim
jÑ8

ż

zΨmj
F´1

ˆ
ż

Ap¨ ` yqBpyqdy

˙

“ lim
jÑ8

@

ΓΘmj
f`k , f´l

D

“ lim
jÑ8

i

π

zΘmj
pkq ´zΘmj

plq

k ´ l

“ lim
jÑ8

i

π

zΘmj
pkq ´zΘmj

p0q ´zΘmj
plq `zΘmj

p0q

k ´ l
“

i

π

pΘpkq ´ pΘplq

k ´ l
. �

The calculation leading to (4.5) also shows why the “oo” and “ee” cases are not
part of Lemma 4.4; infinitely many terms would appear on the right hand side of
(4.5). Nevertheless we have

Lemma 4.5. Given Θ P Ran C we have

}PeRΘPe} ď
3π ` π2

2
}ΓΘ}.

Upon replacing e with o, the formula is still true.
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Proof. We only do the ee case; the other is identical. As earlier, we interpret x{0
as 0, regardless of x. Let a, b P Ran Pe be arbitrary. Then

(4.6)

|xRΘPea, Peby| “

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i,jPZe

Θ̂piq ´ Θ̂pjq

i´ j
apiqbpjq

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i,jPZe

i´ 1´ j

i´ j

Θ̂pi´ 1q ´ Θ̂pjq

i´ 1´ j
apiqbpjq `

ÿ

i,jPZe

Θ̂piq ´ Θ̂pi´ 1q

i´ j
apiqbpjq

ˇ

ˇ

ˇ

ˇ

ˇ

ď sup
i,jPZe

"

i´ 1´ j

i´ j

*

}PeRΘPo}}a}}b} `
1

2

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

l,kPZ

1

l ´ k
ãplqb̃pkq

ˇ

ˇ

ˇ

ˇ

ˇ

,

where ãplq “ ap2lqpΘ̂p2lq ´ Θ̂p2l ´ 1qq and b̃pkq “ bp2kq. Clearly }b̃} “ }b} and,

moreover, by Lemma 4.4 we have suplPZt|Θ̂p2lq ´ Θ̂p2l ´ 1q|u ď π}ΓΘ}, so

}ã} ď π}ΓΘ}}a}.

Let Im log denote the imaginary part of the logarithm defined in the right half
plane and note that

ř

k ´z
k{k “ 2iIm logp1 ´ zq for z P T. By these calculations

and Lemma 4.4 we may continue the above calculation as follows:

|xRΘPea, Peby| ď
3

2
π}ΓΘ}}a}}b} `

ˇ

ˇ

ˇ

ˇ

A

iIm logp1´ zqˇ̃apzq,
ˇ̃
bpzq

E

L2pTq

ˇ

ˇ

ˇ

ˇ

ď
3π

2
}ΓΘ}}a}}b} ` }Im logp1´ zq}L8pTq}ˇ̃a}L2pTq}

ˇ̃b}L2pTq ď
3π ` π2

2
}ΓΘ}}a}}b}.

�
Theorem 4.6. There exist C1, C2 ą 0 such that C1}ΓΘ} ď }Θ̂}BMO ď C2}ΓΘ} for
all Θ P Ran C.

Proof. By Lemma 4.4 we have π}ΓΘ} ď }RΘ}. Conversely,

(4.7) RΘ “ PeRΘPo ` PoRΘPe ` PeRΘPe ` PoRΘPo,

so
}RΘ} ď

ÿ

xPto,eu;yPto,eu

}PyRΘPx} ď p5π ` π2
q}ΓΘ}

by Lemmas 4.4 and 4.5. The theorem now follows from Theorem 6.2 in [11], which

states that }RΘ} and }Θ̂}BMOpZq are bounded by each other. �

5. Compactness

We first recall some standard results on Hadamard-Schur multipliers. Let
Lpl2pZqq denote all bounded operators on l2pZq, which we identify with matrices via
the canonical basis tekukPZ. Given A “ paijq P Lpl2pZqq and B “ pbijq P Lpl2pZqq
we define the Hadamard-Schur product via

A ˛B “ paijbijq.

If A ˛ B P Lpl2pZqq for all B P Lpl2pZqq, then A is called a Hadamard-Schur
multiplier. In this case we write

}A}HS “ sup
BPLpl2pZqq

}A ˛B}Lpl2pZqq
}B}Lpl2pZqq

.

Given ω P L1pTq we define Aω “ paijq P Lpl2pZqq via aij “
ş

T
ωpzqzj´idmpzq.
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Lemma 5.1. Let ω P L1pTq be given. Then

}Aω}HS ď }ω}L1pTq,

and Aω ˛B is compact whenever B is.

Proof. Let Dz P Lpl2pZqq be given by Dzpaq “ pajz
jq8j“´8. It is not hard to see

that

(5.1) Aω ˛B “

ż

T

ωpzqDz̄BDzdmpzq,

where the integral is interpreted in the WOT -sense (see [10]). Thus

}Aω ˛B} ď

ż

T

|ωpzq|}Dz̄BDz}dmpzq “ }ω}L1pTq}B}.

Moreover, a short argument shows that when B is compact, (5.1) holds as a Bochner
integral. The compactness of Aω ˛ B thus follows as the set of compact operators
is closed in Lpl2pZqq. �

Given an interval I Ă Z and σ P C
Z, let cpIq denote its midpoint and set

Oscpσ, Iq “ |I|´1
ř

kPI |σpkq ´ σI |, where σI is the average of σ over I. Following
[11] we define CMOpZq Ă BMOpZq by requiring that

lim
|I|fixed, cpIqÑ˘8

Oscpσ, Iq “ 0, lim
|I|Ñ8

sup
|I|fixed,

Oscpσ, Iq “ 0.

Note that by [11] we know that CMOpZq is the closure in BMOpZq of the sequences
with finite support.

Theorem 5.2. Let Θ P Ran C be given. Then ΓΘ is compact if and only if Θ̂ P

CMOpZq.

Proof. We first note that the above theorem is true if ΓΘ is replaced with RΘ,
by Theorem 6.2 in [11]. By Lemma 4.4, ΓΘ is unitarily equivalent with both
PeRΘPo and PoRΘPe. The “if”-part of the theorem thus follows easily. Conversely,
by (4.7) one sees that the “only if” part follows once we establish the following
claim: If ΓΘ is compact, then the same is true for PeRΘPe and PoRΘPo. To
this end, we define ιe, ιo : l2pZq Ñ l2pZq via ιepaq “

ř8

k“´8 apkqe2k and ιopaq “
ř8

k“´8 apkqe2k´1. Given a sequence σ P C
Z we define the “diagonal operator”

Dσ via Dσpaq “ pσpkqapkqq
8
k“´8. Let a, b P l2pZq be arbitrary. Returning to the

second line of (4.6), a careful calculation show that it can be rewritten as follows:

xRΘιea, ιeby “
ÿ

i,jPZ

ˆ

1´
1

2pi´ jq

˙

Θ̂p2i´ 1q ´ Θ̂p2jq

2i´ 1´ 2j
apiqbpjq

`

ÿ

i,jPZ

Θ̂p2iq ´ Θ̂p2i´ 1q

2pi´ jq
apiqbpjq

“

Bˆ

ι˚eRΘιo ´
1

2
A2iIm logp1´zq ˛ pι

˚
eRΘιoq

˙

a, b

F

`

B

1

2
A2iIm logp1´zqDpΘ̂p2iq´Θ̂p2i´1qq8i“´8

a, b

F

.
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Now, ι˚eRΘιo is essentially the same object as PeRΘPo (unitarily equivalent), so
by Lemma 5.1 it follows that the operator in the first bracket is compact. By
Lemma 4.4 we have

|Θ̂p2iq ´ Θ̂p2i´ 1q| “ π
ˇ

ˇxΓΘf
`
2i , f

´
2i´1y

ˇ

ˇ ď π}ΓΘf
`
2i},

which by standard facts about compact operators show that limiÑ˘8 |Θ̂p2iq ´

Θ̂p2i´ 1q| “ 0, and hence the operator in the second bracket is compact as well. �
A few simple estimates show that σ P CMOpZq whenever σ is a sequence such

that limkÑ˘8 |σpkq| “ 0. Thus, by the Riemann-Lebesgue lemma, we conclude
in particular that ΓΘ is a compact operator when Θ coincides with an absolutely
continuous measure on T. On the other hand, by the examples in the beginning
we have that ΓΘ can be a unitary operator when Θ is a singular measure. For
further information on TWH-operators, we refer to Section 3 of [1], where ques-
tions concerning theorems of Adamyan, Arov, Krein-type for TWH-operators are
numerically investigated.
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