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ON THE TOPOLOGICAL KOLMOGOROV PROPERTY

OF THE CHACON AND PETERSEN SUBSHIFTS

WOJCIECH BU�LATEK AND BRUNON KAMIŃSKI

(Communicated by Bryna Kra)

Abstract. Basic properties of a K-relation, the topological analogue of the
classical Kolmogorov definition, are investigated. It is shown that the Petersen
subshift is a topological K-system and that the Chacon subshift is not.

Introduction

Kolmogorov dynamical systems (K-systems) play an important role in the theory
of chaos of dynamical systems. The classical results of Rokhlin and Sinai say that
the K-property is equivalent to the absence of zero entropy factors and is also
equivalent to the K-mixing property. The former property implies a very strong
chaotic behaviour in a dynamical system.

If the phase space of a dynamical system is equipped only with a topology
there are some different concepts of the topological K-property. Two such types
of properties have been defined and investigated by F. Blanchard ([1]). These
are systems with uniform positive entropy (u.p.e.) and systems with completely
positive entropy (c.p.e.).

Systems with u.p.e. have some properties which are similar to the measure-
theoretical K-systems. Among other things they have positive topological entropy
and are disjoint with all distal systems. However, in contrast to the measure-
theoretic case, they are only weakly mixing and need not be strongly mixing (in
the topological sense).

Systems with c.p.e. also have positive entropy and have an invariant measure
with a full support, but they need not even be transitive.

Another concept of a K-property, defined as an analogue of a classical Kol-
mogorov definition (by the use of invariant measurable partitions) in ergodic the-
ory, has been defined by Kamiński, Siemaszko and Szymański in [3]. This concept
is defined by the use of invariant equivalence relations. It appears that if these
K-systems are minimal they are weakly mixing and the set of asymptotic pairs is
dense. It is known that any topological dynamical system which is a K-system with
respect to an invariant measure with full support (in particular any u.p.e. system)

Received by the editors March 15, 2010 and, in revised form, May 2, 2010, May 19, 2010 and
May 21, 2010.

2010 Mathematics Subject Classification. Primary 37B05, 54H20; Secondary 28D05.
The first author was supported in part by Grant MNiSZW NN201 384834.
The second author was supported in part by Grant MNiSZW NN201 384834.

c©2010 American Mathematical Society

1735



1736 WOJCIECH BU�LATEK AND BRUNON KAMIŃSKI

is a topological K-system in the sense of [3]. However, there exist K-systems in
this sense which have zero entropy.

The aim of this paper is to start investigating this phenomenon by considering
two important classes of topological systems, the Chacon and Petersen subshifts
(cf. [7], [5]). It is well known that they are strictly ergodic and have zero entropy.
The first is weakly mixing and the second is strongly mixing.

We show that the Petersen subshift is aK-system and the Chacon subshift is not.
It would be interesting to characterize all minimal K-systems with zero entropy.

The second author would like to thank K. Petersen for a fruitful discussion.

1. The asymptotic relation and the K-relation

Let (X, d) be a compact metric space and let T be a homeomorphism of X onto
itself. We shall call the pair (X,T ) a topological dynamical system. For a given
x ∈ X we denote by OT (x), O

+
T (x) the orbit and the positive semiorbit of x w.r.t.

T, respectively, i.e.

OT (x) = {Tnx : n ∈ Z}, O+
T (x) = {Tnx : n ∈ N0}, where N0 = N ∪ {0}.

A pair (x, x′) ∈ X ×X is said to be asymptotic if

lim
n→+∞

d(Tnx, Tnx′) = 0.

We denote by AS the asymptotic relation (the set of asymptotic pairs) and by
CER(X) the family of all relations R ⊂ X×X which are equivalence relations and
are closed subsets of X ×X. Obviously, the asymptotic relation need not belong to
CER(X). The diagonal relation is denoted by Δ.

A relation R ∈ CER(X) is said to be invariant if (T × T )(R) ⊂ R and totally
invariant if (T × T )(R) = R.

R is called generating if

(1.1)
⋂

n∈Z

(T × T )n(R) = Δ.

If

(1.2)
⋃

n∈Z

(T × T )−n(R) = X ×X,

then we say that R is orbitally dense.
Any relation from CER(X) which is invariant, generating and orbitally dense is

said to be a K-relation. Due to the invariance of R in the definition of a K-relation
we can replace Z with N0 in (1.1) and (1.2).

Let ξ = ξR denote the partition whose elements are classes of R. It is easy to
see that the invariance of R and its generating property imply that for any Borel
probability measure μ of X invariant w.r.t. T the partition ξ is measurable and

T−1ξ ≤ ξ,
∨

n∈Z

Tnξ =
∨

n∈N0

Tnξ = ε,

where ε is the partition into points, i.e. ξ is an exhaustive partition. However the
orbital density of R does not imply the triviality of the tail partition generated
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by ξ, i.e. ∧

n∈Z

Tnξ =
∧

n∈N0

T−nξ �= ν,

where ν denotes the trivial partition.
In other words, the partition ξR induced by R need not be a K-partition.
A topological dynamical system admitting a K-relation is called a topological

Kolmogorov system (K-system).
It has been shown in [4] that for any topological dynamical system (X,T ) and

an invariant probability measure μ there exists an invariant and generating relation
R ∈ CER(X) with

Eμ(X,T ) ∪ S(μ) ⊂
⋃

n∈Z

(T × T )n(R) ⊂ Πμ(T ),

where Eμ(X,T ) is the set of entropy pairs, S(μ) = {(x, x) : x ∈ Supp(μ)} and
Πμ(T ) is the Pinsker relation of T w.r.t. μ. In particular, if (X,T ) is uniquely er-
godic the above inclusions imply that the smallest relation (belonging to CER(X))
containing all relations (T × T )n(R), n ∈ Z, is equal to Π(T ), the Pinsker relation
of T. For the definition of a Pinsker relation see [2]. In the sequel we shall need
four simple observations.

Remark 1.1. Every closed, invariant and generating relation R is contained in AS.

Proof. Suppose (x, y) ∈ R is not asymptotic. Hence there exist ε > 0 and an
increasing sequence of natural numbers {nk}k∈N such that

d(Tnkx, Tnky) > ε, k ∈ N.

Taking if necessary a subsequence of {nk}k∈N, we may assume that

lim
k→+∞

Tnkx = x0 , lim
k→+∞

Tnky = y0.

Obviously, d(x0, y0) ≥ ε; hence (x0, y0) �∈ Δ. Because R is invariant,

(Tnlx, Tnly) ∈ (T × T )nkR for l ≥ k.

As (T ×T )nkR is closed, (x0, y0) ∈ (T ×T )nkR. Since the last statement is true for
every k ∈ N, {nk}k∈N grows to +∞ and R is invariant, we obtain that (x0, y0) ∈⋂

n∈Z
(T × T )n(R). Because R is generating, this intersection has to be equal to Δ,

which is a contradiction. Therefore, R ⊂ AS. �

Now let A = {0, 1} and S = AZ, and suppose that S is equipped with the natural
product topology. The shift transformation σ : S → S is defined, as usual, by

(σx)n = xn+1, n ∈ Z.

The pair (S, σ) is a topological dynamical system, as is a pair (Λ, σ) for an arbitrary
closed, σ-invariant set Λ ⊂ S. Systems of this form will be called subshifts.

Suppose we are given a subshift (Λ, σ). Let us define the relation

AS0(Λ) = {(x, y) ∈ Λ× Λ : xi = yi for i ≥ 0}.

When it is clear which subshift is taken under consideration, we shall write AS0

instead of AS0(Λ). It is easy to see the following:
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Remark 1.2. For an arbitrary subshift Λ, AS0 is a closed, invariant, generating
equivalence relation and

AS =
⋃

n∈Z

(σ × σ)nAS0.

Hence we have

Remark 1.3. A subshift (Λ, σ) is a K-system iff AS0(Λ) is a K-relation.

Proof. If AS0 is a K-relation, then (Λ, σ) is a K-system by definition. Suppose
there exists a K-relation R ⊂ Λ×Λ. By Remarks 1.1 and 1.2 and the obvious fact
that AS is totally invariant, we have

⋃

n∈Z

(σ × σ)nR ⊂
⋃

n∈Z

(σ × σ)nAS = AS =
⋃

n∈Z

(σ × σ)nAS0.

Therefore, AS0 is orbitally dense. If (x, y) ∈ (σ × σ)nAS0, then xi = yi for
i ≥ −n. If this statement holds for every n ∈ N, then x = y. Therefore

⋂

n∈Z

(σ × σ)nAS0 ⊂ Δ.

The obvious opposite inclusion and Remark 2 give us the conclusion. �
Summarizing we obtain

Remark 1.4. A subshift (Λ, σ) is a K-system iff AS0(Λ) is orbitally dense.

2. The Chacon and Petersen subshifts

Now we briefly recall the definitions of the Chacon and Petersen subshifts. These
two systems (especially the Chacon subshift) were examined by many authors. The
definition of the Petersen subshift which we present here is the original definition
given by Petersen in [5]. In this paper, Lemma 2.3 is also formulated and proved
(Lemma 3.1, p. 606). The definition of the Chacon subshift presented below is
almost the same as in [6] (see p. 217). The reader can also find in this book
the arguments at the beginning of the proof of Theorem 2.1 (concerning the block
structure of elements of the Chacon subshift) as Lemma 5.5 (see p. 217). We include
these results here for completeness and convenience.

Let Ak be the kth Cartesian power of A and let A∞ =
⋃

k∈N
Ak. Any element

B = b1b2...bk ∈ Ak is said to be a block and k is called its length. For B = b1b2...bk
and 1 ≤ i ≤ k we put

B[i] = bibi+1...bkb1...bi−1.

For B = b1b2...bk, C = c1c2...cl ∈ A∞ we denote by BC the block that is the
concatenation of B and C, i.e. the block

BC = b1...bkc1...cl.

We say that B appears at the nth place in C if l ≥ k, n ≤ l−k and cn = b1, cn+1 =
b2, ..., cn+k−1 = bk.

We say that B = b1b2...bk ∈ A∞ appears in a sequence x ∈ S at the nth place if

xn = b1, xn+1 = b2, ..., xn+k−1 = bk.

B is said to be the central block in x if k is odd, k = 2m+ 1 and n = −m.
The subshifts of Chacon and Petersen will be defined as the closures of orbits of

special sequences called the Chacon and Petersen sequences, respectively.
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In order to recall the definition of the Chacon sequence wC , we consider the
following sequence (Bk) of blocks:

(2.1) B0 = 0, B1 = 0010, Bk+1 = BkBk1Bk, k ≥ 1.

Now let vk ∈ S, k ≥ 1 be the sequence such that vk0 = 1, vk−2Lk
...vk−1 =

BkBk, vk1 ...v
k
Lk

= Bk, Lk = |Bk|, k ≥ 1, and the other entries are equal to 0.

The sequence (vk) is convergent, and the Chacon sequence wC and Chacon sub-
shift XC are defined as

wC = lim
k→∞

vk and XC = Oσ(wC).

Observe that if we take vk ∈ S, k ≥ 1, such that vk−Lk+1...v
k
Lk

= BkBk and

the other entries are equal to 0, then again the sequence (vk) is convergent and its
limit, denoted by vC , is an element of XC . In fact we could use vC to define XC .

In order to construct the Petersen sequence wP , we shall build two sequences of
blocks (Ak) and (Bk) with lengths Lk = |Ak| = |Bk| growing to infinity. The first
sequence will consist of central blocks of wP and the second sequence will help us
to build the first one. We shall also need a sequence U(k) of subsets of N defined
in the following way:

U(k) = {j : 1 ≤ j ≤ Lk and bj = 1},
where Bk = b1b2...bLk

.
Now, we put A0 = 101 and B0 = 111; hence U(0) = {1, 2, 3}.
Suppose Ak, Bk have been defined and U(k) = {i1, i2, ..., imk

} with 1 = i1 <
i2 < ... < imk

. Then we define

Ak+1 = AkAk[imk
]Ak...AkAk[i2]AkAk[i2]Ak...AkAk[imk

]Ak

and
Bk+1 = EkBk[imk

]Ek...EkBk[i2]EkBk[i2]Ek...EkBk[imk
]Ek,

where Ek is the Lk-block all of whose entries are 0 except for the first one, which
is 1.

It is obvious that the numbers Lk are odd, so we define wk as the element of S
whose central block is Ak and all of whose other entries are 0. Finally, we put

wP = lim
k→∞

wk and XP = Oσ(wP ).

Theorem 2.1. The Chacon subshift is not a K-system.

Proof. We claim that

(2.2) AS0(X
C) =

⋃

n∈N

(σ × σ)n{(wC , vC), (vC , wC)} ∪ΔC ,

where ΔC = {(x, x) : x ∈ XC}. Suppose that (z′, z′′) ∈ AS0(X
C) \ΔC . Then by

the definition of AS0 there exist n ∈ N and (z1, z2) ∈ AS0 with z1k = z2k for k ∈ N

and z10 �= z20 such that (z′, z′′) = (σ × σ)n(z1, z2). Suppose

z1 = y11x , and z2 = y20x,

where y1, y2 are left infinite 0-1 sequences, x is a right infinite 0-1 sequence, and the
shown single symbols 1 in z1 and 0 in z2 appear in those sequences at the position 0.
Because of (2.1) it is easy to see that for every given k ∈ N, every sequence z ∈ XC

is built out of Bk’s separated possibly at some places with single 1’s. In other words,
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every sequence z has a k-structure, i.e. a representation as an infinite concatenation
of Bk’s and single 1’s. This k-structure is unique, and, even more, the places in the
k-structure of z where the Bk’s appear are the only places where Bk may appear
in z. To see this, suppose first that B1 = 0010 appears in B1B1. Because of the
possible locations of the 1’s, they may appear only at two obvious positions. We
obtain the same conclusion if we suppose that B1 appears in B11B1. Proceeding
by induction and analyzing the possible locations of an additional 1 (spacer) in the
same way as for k = 1, we see that the only places where Bk appears in z are
those given by the k-structure of z. Let us now come back to z1, z2. Because of the
above considerations, their k-structures coincide on x. If for some k ∈ N, x had not
begun with Bk, then the 0th positions of z1 and z2 would fall at the same place of
a certain Bk. As z10 �= z20 , x has to begin with Bk, for every k ∈ N. This fact, the
obvious observation that every Bk starts and ends with 0, and the structure of z1

and z2 together imply that z1 = wC and z2 = vC . This proves (2.2).
Now, since wC and vC have equal positive coordinates and wC

n = vCn+1 for

negative n, then the closure of the orbit of AS0(X
C) is equal to

Oσ×σ(w
C , vC) ∪Oσ×σ(v

C , wC) ∪ΔC ∪ (σ × Id)(ΔC) ∪ (Id× σ)(ΔC).

As a union of a countable set and three graphs, it is of course different from XC ×
XC . Hence the Chacon subshift is not a topological K-system. �

Theorem 2.2. The Petersen subshift is a K-system.

To prove this theorem we shall need one more definition and the following lemma.
Let

B(k) = {1 ≤ j ≤ Lk : there is i ∈ U(k) \ {1}
such that 1 appears at the jth place in Bk[i]}.

We have

Lemma 2.3. For each k = 0, 1, 2, ..., B(k) = {1, 2, ..., Lk}.

Proof. For k = 0 the above equality is obvious. Suppose now that for a certain
k ≥ 0,

(2.3) B(k) = {1, 2, ..., Lk}.

Let n ∈ N with 1 ≤ n ≤ Lk+1 be given and set n = n′+pLk, where 1 ≤ n′ ≤ Lk. By
(2.3), n′ ∈ B(k). Hence 1 appears at the n′th place in some B[i], i ∈ U(k)\{1}. This
B[i] appears at some place, say r, in Bk+1. Now, let us move back in Bk+1 by pLk

positions (possibly in the cyclic way); i.e., let us consider the position q = r − pLk

when r − pLk ≥ 1, or q = r − pLk + Lk+1 otherwise. As a consequence of the
definition, in Bk+1 at the position q there appears either some B[j], j ∈ U(k) or
Ek. In any case, we see that 1 appears in Bk+1 at the place q. Moreover, by the
construction of q and the definition of Bk[i], we see that 1 appears at the place n
in Bk+1[q]. Since by the definition of Bk+1 there are two such r’s, at least one of
the corresponding q’s is different from 1; hence n ∈ B(k+1). Induction gives us the
lemma. �
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Proof of Theorem 2.2. Because of Remark 1.4 it is enough to show that AS0(X
P )

is orbitally dense. Let C,D be arbitrary blocks that appear in wP and let k ∈ N be
such that both C and D appear in Ak at the places rC and rD, respectively. Then
for arbitrary m > k we have

1 < Lm − rC ≤ Lm;

hence Lm − rC ∈ B(m). This means that we can build Am+1[j1] from Am+1 with
j1 of the form pLm + (Lm − rC), which forces that Am+1[j1] = C ′Am+1..., where
|C ′| = rC . Then in Am+2 we see a block of the form Am+1Am+1[j1], which in the
middle has the block AmC ′Am (Am+1 begins and ends with Am). The first Am

in this concatenation ends with Ak; hence this concatenation ends with CC ′′Am,
where |CC ′′| = Lk. It is easy to see that this forces the existence of uC ∈ Orb(wP )
satisfying

(2.4) uC
i = ami for i = 1, 2, ..., Lm, where Am = am1 am2 ...amLm

,

and

(2.5) uC
−Lk+i = ci for i = 1, 2, ..., |C|, where C = c1c2...c|C| .

We can repeat this argument for the block D to obtain a sequence uD satisfying
(2.4) and (2.5) with D instead of C. By (2.4), σuC , σuD ∈ AS0(X

P ), and by (2.5),
C appears at the 0th place in σLkuC and D appears at the 0th place in σLkuD. This
means that AS0(X

P ) is orbitally dense in the Cartesian square Oσ(w
P )×Oσ(w

P ).
Thus Remark 1.4 gives us the conclusion. �
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