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NEW INTEGRAL IDENTITIES

FOR ORTHOGONAL POLYNOMIALS ON THE REAL LINE

D. S. LUBINSKY

(Communicated by Walter Van Assche)

Abstract. Let μ be a positive measure on the real line, with associated or-
thogonal polynomials {pn} and leading coefficients {γn}. Let h ∈ L1 (R) . We
prove that for n ≥ 1 and all polynomials P of degree ≤ 2n− 2,∫ ∞

−∞

P (t)

p2n (t)
h

(
pn−1

pn
(t)

)
dt =

γn−1

γn

(∫ ∞

−∞
h (t) dt

)(∫
P (t) dμ (t)

)
.

As a consequence, we establish weak convergence of the measures on the left-
hand side.

1. Introduction

Let μ be a positive measure on the real line with infinitely many points in
its support, and let

∫
xjdμ (x) be finite for j = 0, 1, 2, . . . . Then we may define

orthonormal polynomials

pn (x) = γnx
n + · · · , γn > 0,

satisfying ∫ ∞

−∞
pnpmdμ = δmn.

Let

(1.1) Ln (x, y) =
γn−1

γn
(pn (x) pn−1 (y)− pn−1 (x) pn (y))

and for non-real a,

(1.2) En,a (z) =

√
2π

|Ln (a, ā)|
Ln (ā, z) .

In a recent paper [6], we used the theory of de Branges spaces [1] to show that
for Im a > 0, and all polynomials P of degree ≤ 2n− 2, we have

(1.3)

∫ ∞

−∞

P (t)

|En,a (t)|2
dt =

∫
P (t) dμ (t) .
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This may be regarded as an analogue of Geronimus’ formula for the unit circle,
where instead of En,a, we have a multiple of the orthonormal polynomial on the
unit circle in the denominator [3, Thm. V.2.2, p. 198], [8, pp. 95, 955]. There is an
earlier real line analogue, due to Barry Simon [9, Theorem 2.1, p. 5], namely

1

π

∫ ∞

−∞

P (t)
(

γn−1

γn

)2

p2n (t) + p2n−1 (t)
dt =

∫
P (t) dμ (t) .

Simon calls this a real line orthogonal polynomial analogue of Carmona’s formula
and refers also to earlier work of Krutikov and Remling [5] and Carmona [2]. The
latter is the special case of (1.3) with (pn−1/pn) (ā) = ±iγn−1/γn. In a subse-
quent paper, we gave a self-contained proof of (1.3), and deduced results on weak
convergence, discrepancy, and Gauss quadrature.

In this paper, we first establish the following alternative form of (1.3):

Proposition 1.1. Let μ be a positive measure on the real line with infinitely many
points in its support, and with

∫
xjdμ (x) finite for j = 0, 1, 2, . . . . Let z ∈ C\R.

Then for all polynomials P of degree ≤ 2n− 2,

(1.4)
1

π
|Im z|

∫ ∞

−∞

P (t)

|zpn (t)− pn−1 (t)|2
dt =

γn−1

γn

∫
P (t) dμ (t)

and

(1.5)
1

π
|Im z|

∫ ∞

−∞

P (t)

|pn (t)− zpn−1 (t)|2
dt =

γn−1

γn

∫
P (t) dμ (t) .

The factor involving z inside the integral above is essentially the Poisson kernel
for the upper-half plane. By using limiting properties of Poisson integrals, we
deduce our main result, a new integral identity for orthogonal polynomials:

Theorem 1.2. Let μ be a positive measure on the real line with infinitely many
points in its support, and with

∫
xjdμ (x) finite for j = 0, 1, 2, . . . . Let {pn} and

{γn} denote, respectively, the orthogonal polynomials, and leading coefficients cor-
responding to μ. Let h ∈ L1 (R). Then for all polynomials P of degree ≤ 2n− 2,

(1.6)

∫ ∞

−∞

P (t)

pn (t)
2h

(
pn−1 (t)

pn (t)

)

dt =
γn−1

γn

(∫ ∞

−∞
h (t) dt

)(∫
P (t) dμ (t)

)

and

(1.7)

∫ ∞

−∞

P (t)

pn−1 (t)
2h

(
pn (t)

pn−1 (t)

)

dt =
γn−1

γn

(∫ ∞

−∞
h (t) dt

)(∫
P (t) dμ (t)

)

.

Note that if we choose P = p2n−1 in (1.7), we obtain, if the denominator integral
is not 0,

γn−1

γn
=

∫∞
−∞ h

(
pn(t)

pn−1(t)

)
dt

∫∞
−∞ h (t) dt

.

It might be possible to derive this special case in an alternative way, i.e., from
the partial fraction expansion of pn−1

pn
(x) and known formulae for the distribution

function, meas
{
x : pn−1

pn
(x) > t

}
. We may replace h (t) dt in (1.6) and (1.7) by

a signed measure dν (t) of finite total mass, provided one appropriately defines
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dν
(

pn(t)
pn−1(t)

)
over each interval in which pn(t)

pn−1(t)
is monotone. If we choose h (x) =

log x−2

1−x2 , in Theorem 1.2, we obtain an entropy-type integral:

Corollary 1.3. With the notation of Theorem 1.2,

(1.8)
2

π2

∫ ∞

−∞
P (t)

ln |pn−1 (t)| − ln |pn (t)|
pn−1 (t)

2 − pn (t)
2 dt =

γn−1

γn

∫
P (t) dμ (t) .

We also obtain a weak convergence-type result: recall that μ is said to be deter-
minate if the moment problem

∫
xjdν (x) =

∫
xjdμ (x) , j = 0, 1, 2, . . . ,

has the unique solution ν = μ from the class of positive measures. We also say that
a function f has polynomial growth at ∞ if for some L > 0 and for large enough
|x|,

|f (x)| ≤ |x|L .

Theorem 1.4. Assume the hypotheses of Theorem 1.2, and in addition assume
that μ is determinate. Then for all functions f : R → R having polynomial growth
at ∞, and such that they are Riemann-Stieltjes integrable with respect to μ, we have

lim
n→∞

(
γn−1

γn

)−1 ∫ ∞

−∞

f (t)

pn (t)
2h

(
pn−1 (t)

pn (t)

)

dt

=

(∫ ∞

−∞
h (t) dt

)(∫
f (t) dμ (t)

)

(1.9)

and

lim
n→∞

(
γn−1

γn

)−1 ∫ ∞

−∞

f (t)

pn−1 (t)
2h

(
pn (t)

pn−1 (t)

)

dt

=

(∫ ∞

−∞
h (t) dt

)(∫
f (t) dμ (t)

)

.(1.10)

Of course, if f is continuous on the real line, it will be locally Riemann-Stieltjes
integrable with respect to μ. Simon [9] proved weak convergence involving his
Carmona-type formula.

2. Proof of the results

Proof of Proposition 1.1. Fix z ∈ C\R. Choose a ∈ C such that

pn−1 (ā) = zpn (ā) .

There are n choices for a, counting multiplicity. Then from (1.1), we see that

Ln (ā, t) = −γn−1

γn
pn (ā) (zpn (t)− pn−1 (t))

and

Ln (a, ā) = 2i
γn−1

γn
Im (z) |pn (a)|2 .
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Hence

|En,a (t)|2 =
2π

|Ln (a, ā)|
|Ln (ā, t)|2

=
π

|Im z|
γn−1

γn
|zpn (t)− pn−1 (t)|2 .

Substituting into (1.3) gives (1.4), while replacing z by 1
z in (1.4) gives (1.5). �

Proof of (1.6) of Theorem 1.2.
Step 1: A Poisson integral identity. Let z = x + iy, where y > 0. We can

recast (1.4) as

(2.1)

∫ ∞

−∞
P (t)

1

π

y

(pn (t)x− pn−1 (t))
2 + y2p2n (t)

dt =
γn−1

γn

∫
P (t) dμ (t) .

Let h ∈ L1 (R). We multiply (2.1) by h (x), integrate over the real line, and
interchange integrals, obtaining

∫ ∞

−∞
P (t)

[
1

π

∫ ∞

−∞

yh (x)

(pn (t) x− pn−1 (t))
2
+ y2p2n (t)

dx

]

dt

=
γn−1

γn

(∫ ∞

−∞
h (t) dt

)(∫
P (t) dμ (t)

)

.(2.2)

This is justified if the integral on the left converges absolutely, namely,

(2.3)

∫ ∞

−∞

[∫ ∞

−∞

|P (t)| |h (x)|
(pn (t)x− pn−1 (t))

2
+ y2p2n (t)

dx

]

dt < ∞.

To prove this, choose A such that all zeros of pn lie in (−A,A). Let

c = inf
t,x∈R

[
(pn (t) x− pn−1 (t))

2
+ y2p2n (t)

]
.

This is positive, as pn−1 and pn do not have common zeros. Then we can bound
the left-hand side in (2.3) above by
∫

|t|≥A

|P (t)|
y2p2n (t)

(∫ ∞

−∞
|h (x)| dx

)

dt+

∫

|t|≤A

|P (t)|
(∫ ∞

−∞
|h (x)| dx

)

dt/c < ∞.

Thus (2.3) is valid. Recall that if h ∈ L1 (R), its Poisson integral for the upper-half
plane is

P [h] (α+ iβ) =
1

π

∫ ∞

−∞

β

(x− α)
2
+ β2

h (x) dx.

We can recast (2.2) as
(2.4)∫ ∞

−∞

P (t)

p2n (t)
P [h]

(
pn−1 (t)

pn (t)
+ iy

)

dt =
γn−1

γn

(∫ ∞

−∞
h (t) dt

)(∫
P (t) dμ (t)

)

.

Step 2: The case where h is bounded and has compact support. Firstly,
as h is bounded, we have the elementary bound

∣
∣
∣
∣P [h]

(
pn−1 (t)

pn (t)
+ iy

)∣
∣
∣
∣ ≤ ‖h‖L∞(R) ,
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valid for all y and t. Next, if pn−1(t)
pn(t)

is a Lebesgue point of h, we have the classic

result

(2.5) lim
y→0+

P [h]

(
pn−1 (t)

pn (t)
+ iy

)

= h

(
pn−1 (t)

pn (t)

)

.

Now, if u is not a Lebesgue point of h (and such points have measure 0), the equation
pn−1(t)
pn(t)

= u has at most n solutions for t, and locally these vary differentiably with

u. It follows that (2.5) holds for a.e. t.
Let ε > 0 and Eε denote the union of n closed intervals of radius ε, centered

on the zeros of pn. Since P (t) /p2n (t) = O
(
t−2

)
at ∞, we may use Lebesgue’s

Dominated Convergence Theorem to deduce that

lim
y→0+

∫

R\Eε

P (t)

p2n (t)
P [h]

(
pn−1 (t)

pn (t)
+ iy

)

dt

=

∫

R\Eε

P (t)

p2n (t)
h

(
pn−1 (t)

pn (t)

)

dt.(2.6)

It remains to estimate

Iε,y =

∫

Eε

P (t)

p2n (t)
P [h]

(
pn−1 (t)

pn (t)
+ iy

)

dt

and

Iε,0 =

∫

Eε

P (t)

p2n (t)
h

(
pn−1 (t)

pn (t)

)

dt.

As pn−1 and pn have no common zeros, if ε > 0 is small enough,

inf
Eε

|pn−1| > 0.

Moreover, as h has compact support, we may choose ε > 0 so small that for x in
the support of h and t ∈ Eε, we have

|pn (t) x− pn−1 (t)| ≥
1

2
|pn−1 (t)| .

Then for 0 < y ≤ 1

|Iε,y| =
∣
∣
∣
∣
∣
y

π

∫

Eε

[∫ ∞

−∞

P (t)h (x)

(pn (t)x− pn−1 (t))
2 + y2p2n (t)

dx

]

dt

∣
∣
∣
∣
∣

≤ 1

π

∫

Eε

[∫ ∞

−∞

|P (t)| |h (x)|
(
1
2 |pn−1 (t)|

)2 dx

]

dt

≤ 4

π
sup
t∈Eε

∣
∣
∣
∣

P (t)

p2n−1 (t)

∣
∣
∣
∣

(∫ ∞

−∞
|h (x)| dx

)∫

Eε

1 dt.

This is a bound independent of y and decreases to 0 as ε decreases to 0. Finally,

if ε > 0 is small enough, h
(

pn−1(t)
pn(t)

)
= 0 for t ∈ Eε (recall that h has compact

support), so for such an ε,

Iε,0 = 0.

Combining the above, we obtain

(2.7) lim
y→0+

∫ ∞

−∞

P (t)

p2n (t)
P [h]

(
pn−1 (t)

pn (t)
+ iy

)

dt =

∫ ∞

−∞

P (t)

p2n (t)
h

(
pn−1 (t)

pn (t)

)

dt,
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and hence, from (2.4),

(2.8)

∫ ∞

−∞

P (t)

p2n (t)
h

(
pn−1 (t)

pn (t)

)

dt =
γn−1

γn

(∫ ∞

−∞
h (t) dt

)(∫
P (t) dμ (t)

)

.

Thus we have (1.6) for the case where h is bounded and has compact support.
Step 3: The case where h is bounded but has non-compact support.

Let

hm = hχ[−m,m], m ≥ 1.

We have (1.6) for hm; that is,

(2.9)
1

π

∫ ∞

−∞

P (t)

pn (t)
2 hm

(
pn−1 (t)

pn (t)

)

dt =
γn−1

γn

(∫ ∞

−∞
hm

)∫
Pdμ.

Now for each t with pn (t) �= 0 and all large enough m,

hm

(
pn−1 (t)

pn (t)

)

= h

(
pn−1 (t)

pn (t)

)

.

Next,
∣
∣
∣
∣
∣
P (t)

pn (t)
2 hm

(
pn−1 (t)

pn (t)

)∣∣
∣
∣
∣
≤

∣
∣
∣
∣
∣
P (t)

pn (t)
2h

(
pn−1 (t)

pn (t)

)∣∣
∣
∣
∣
.

This upper bound is independent of m and moreover is integrable over (−∞,∞),
since it is O

(
t−2

)
at ∞ and has an integrable singularity at each zero of pn. To

see the latter, we proceed as follows. Let xjn be a zero of pn. We can write, in
(xjn, xjn + ε], with small enough ε > 0,

pn−1 (t)

pn (t)
=

g (t)

t− xjn
,

where g is non-vanishing and continuously differentiable. If ε > 0 is small enough,
we have for some appropriate constant C and t ∈ (xjn, xjn + ε]:

∣
∣
∣
∣
∣
P (t)

pn (t)
2h

(
pn−1 (t)

pn (t)

)∣∣
∣
∣
∣
≤ C

1

(t− xjn)
2

∣
∣
∣
∣h

(
g (t)

t− xjn

)∣
∣
∣
∣

≤ C

∣
∣
∣
∣
∣
g′ (t) (t− xjn)− g (t)

(t− xjn)
2

∣
∣
∣
∣
∣

∣
∣
∣
∣h

(
g (t)

t− xjn

)∣
∣
∣
∣

= C

∣
∣
∣
∣
d

dt

(
g (t)

t− xjn

)∣
∣
∣
∣

∣
∣
∣
∣h

(
g (t)

t− xjn

)∣
∣
∣
∣ .

In the second to last line, we use the fact that if ε is small enough, |g (t)| 	
|g′ (t) (t− xjn)|, while |g| is bounded below. Then, if g (xjn) > 0, the substitution

s = g(t)
t−xjn

gives

∫ xjn+ε

xjn

∣
∣
∣
∣
∣
P (t)

pn (t)
2h

(
pn−1 (t)

pn (t)

)∣∣
∣
∣
∣
dt ≤ C

∫ xjn+ε

xjn

∣
∣
∣
∣h

(
g (t)

t− xjn

)∣
∣
∣
∣

∣
∣
∣
∣
d

dt

(
g (t)

t− xjn

)∣
∣
∣
∣ dt

= C

∫ ∞

g(xjn+ε)
ε

|h (s)| ds ≤ C

∫ ∞

−∞
|h (s)| ds.



ORTHOGONAL POLYNOMIALS 1749

If g (xjn) < 0, we proceed similarly. Thus, indeed, the function
∣
∣
∣ P (t)

pn(t)
2h

(
pn−1(t)
pn(t)

)∣
∣
∣

provides an integrable bound independent of m. Then Lebesgue’s Dominated Con-
vergence Theorem allows us to let m → ∞ in (2.9) to obtain (1.6) for the case
where h is bounded but has non-compact support.

Step 4: The case where h is unbounded. Let us define

Hm (t) =

{
h (t) , if |h (t)| ≤ m,
0, otherwise.

We have that (1.6) holds for h = Hm. Next, for each t with pn (t) �= 0, h
(

pn−1(t)
pn(t)

)

finite, and all large enough m,

Hm

(
pn−1 (t)

pn (t)

)

= h

(
pn−1 (t)

pn (t)

)

.

Moreover,
∣
∣
∣ P (t)

pn(t)
2Hm

(
pn−1(t)
pn(t)

)∣
∣
∣ admits the same integrable bound as in Step 3.

Then Lebesgue’s Dominated Convergence Theorem gives the result. �

Proof of (1.7) of Theorem 1.2. For the given h, define a new function h̃ by

h̃ (x) = x−2h
(
x−1

)
.

A substitution shows that also h̃ ∈ L1 (R) and

1

p2n (t)
h̃

(
pn−1 (t)

pn (t)

)

=
1

p2n−1 (t)
h

(
pn (t)

pn−1 (t)

)

.

So applying (1.6) to h̃ gives (1.7) for h. �

Proof of Corollary 1.3. Choose in (1.6) of Theorem 1.2

h (x) =
log x−2

1− x2
,

which has h ∈ L1 (R). Moreover, the fact that h is even and a substitution show
that [4, p. 533, 4.231.13]

∫ ∞

−∞
h = 8

∫ 1

0

log x−1

1− x2
dx = π2. �

Proof of Theorem 1.4. We may prove the result for non-negative h, because every
h satisfying the hypotheses of Theorem 1.2 is the difference of two non-negative
functions satisfying the same hypotheses. Let f be Riemann-Stieltjes integrable
with respect to μ and of polynomial growth at ∞, and let ε > 0. Since μ is
determinate, there exist upper and lower polynomials Pu and P� such that

P� ≤ f ≤ Pu in (−∞,∞)

and ∫
(Pu − P�) dμ < ε.
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See, for example, [3, Theorem 3.3, p. 73]. Then for n so large that 2n− 2 exceeds
the degree of Pu and P�, (1.3) gives

(
γn−1

γn

)−1 ∫ ∞

−∞

f

p2n−1

h

(
pn

pn−1

)

−
∫

fdμ

=

(
γn−1

γn

)−1 ∫ ∞

−∞

f − P�

p2n−1

h

(
pn

pn−1

)

−
∫

(f − P�) dμ

≤
(
γn−1

γn

)−1 ∫ ∞

−∞

Pu − P�

p2n−1

h

(
pn

pn−1

)

− 0

=

∫
(Pu − P�) dμ < ε.

Similarly, for large enough n,
(
γn−1

γn

)−1 ∫ ∞

−∞

f

p2n−1

h

(
pn

pn−1

)

−
∫

fdμ

=

(
γn−1

γn

)−1 ∫ ∞

−∞

f − Pu

p2n−1

h

(
pn

pn−1

)

−
∫

(f − Pu) dμ

≥
(
γn−1

γn

)−1 ∫ ∞

−∞

P� − Pu

p2n−1

h

(
pn

pn−1

)

− 0

=

∫
(P� − Pu) dμ > −ε. �
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