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ON OPTIMAL ESTIMATES FOR THE LAPLACE-LERAY

COMMUTATOR IN PLANAR DOMAINS WITH CORNERS

ELAINE COZZI AND ROBERT L. PEGO

(Communicated by Walter Craig)

Abstract. For smooth domains, Liu et al. (Comm. Pure Appl. Math. 60:
1443-1487, 2007) used optimal estimates for the commutator of the Laplacian
and the Leray projection operator to establish well-posedness of an extended
Navier-Stokes dynamics. In their work, the pressure is not determined by
incompressibility, but rather by a certain formula involving the Laplace-Leray
commutator. A key estimate of Liu et al. controls the commutator strictly by
the Laplacian in L2 norm at leading order. In this paper we show that this
strict control fails in a large family of bounded planar domains with corners.
However, when the domain is an infinite cone, we find that strict control may
be recovered in certain power-law weighted norms.

1. Introduction

In this paper, we study estimates for [Δ, P ] = ΔP −PΔ, the commutator of the
Laplacian and the Leray projection operator, in planar domains with corners. In
a bounded domain Ω ⊂ R

N , the Leray projection operator P is defined as follows:
Given any a ∈ L2(Ω,RN ), there exists a unique q ∈ H1(Ω) with

∫
Ω
q = 0 and such

that Pa := a+∇q satisfies

(1.1) 0 = 〈Pa,∇φ〉 = 〈a+∇q,∇φ〉

for all φ ∈ H1(Ω). In [3], Liu et al. proved the following L2-estimate for the
commutator of the Leray projection operator and the Laplacian.

Theorem 1.1. Let Ω be a connected, bounded domain in R
N , N ≥ 2, with C3

boundary. For any β > 1
2 , there exists C ≥ 0 such that for all vector fields u ∈

H2 ∩H1
0 (Ω,R

N ),

(1.2)

∫

Ω

|[Δ, P ]u|2 ≤ β

∫

Ω

|Δu|2 + C

∫

Ω

|∇u|2.

Theorem 1.1 has significant applications to the Navier-Stokes equations. We
recall that on a bounded domain Ω in R

N for N ≥ 2, the Navier-Stokes equations
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modeling incompressible viscous fluid flow with no-slip boundary conditions are
given by

(NS)

⎧
⎨

⎩

∂tu+ u · ∇u+∇p = νΔu+ f,
∇ · u = 0,
u|Γ = 0,

where Γ = ∂Ω, u denotes the velocity of the fluid, p denotes the pressure, and ν
represents the viscosity. In [3], the authors consider strong solutions to (NS) with
constant ν > 0 and show that the pressure satisfies

(1.3) ∇p = (I − P )(f − u · ∇u) + ν[Δ, P ]u.

For such solutions they prove the unconditional stability and convergence of a simple
time discretization scheme which decouples the updates of velocity and pressure.
The decoupling of these variables is significant in that it eliminates the need for an
inf-sup condition which is often necessary to prove the stability in finite-element
schemes. A critical ingredient in the proof of stability in [3] is that by invoking
Theorem 1.1 with β < 1, one can strictly control the pressure gradient by the
viscosity term plus lower-order terms. As a result, Liu et al. establish the well-
posedness of an extended Navier-Stokes dynamics in which the pressure p is always
determined by the formula (1.3) and the zero-divergence condition is dropped in
general. We refer the reader to [3] for further details and discussion.

Theorem 1.1 assumes that the boundary Γ of Ω is C3. One would like to weaken
this assumption to allow, for example, sharp corners on Γ. In this paper, we show
that such an improvement is not possible. We letKσ denote an infinite cone centered
at the origin, taking the form

(1.4) Kσ = {(x1, x2) ∈ R
2 : 0 < r < ∞, 0 < θ < σ},

where r and θ denote the polar coordinates of (x1, x2) and σ ∈ (0, 2π). We consider
bounded domains Ω ⊂ R

2 satisfying the following property: there is a neighborhood
U of 0 such that U ∩ Ω̃ = U ∩ Kσ for some rotated translate Ω̃ = R(Ω − x0) of Ω
and for some σ �= π. In this case we call Ω a bounded domain with a straight corner.
We claim that Theorem 1.1 fails on any such domain.

Theorem 1.2. Let Ω in R
2 be a bounded domain with a straight corner. Then

for every β < 1 and for every C ∈ R, there is a vector field u ∈ H2 ∩ H1
0 (Ω,R

2)
satisfying

(1.5)

∫

Ω

|[Δ, P ]u|2 > β

∫

Ω

|Δu|2 + C

∫

Ω

|∇u|2.

While β < 1 is not possible in general for a bounded domain with a straight
corner, a recent paper of Rostamian and Soane [4] suggests that, for such domains,
an estimate similar to (1.2) with β < 1 may hold in weighted Sobolev spaces.
In [4], the authors reformulate the time discretization scheme of [3] in nonconvex
polygonal domains using such weighted spaces. While the authors do not prove
convergence of their scheme, they do give numerical evidence suggesting that this
scheme converges to the correct solution.

We are motivated by [4] and elliptic regularity theory with weights [2] to allow
for corners on Γ and look to prove an optimal estimate similar to (1.2) in a weighted
L2-space. For the most part, we study conical domains of the form shown in (1.4).
The weighted spaces considered in [2] are defined as follows.
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Definition 1.3. For an integer l ≥ 0 and a real number α, we define the space
V l
2,α(Kσ) to be the closure of C∞

c (Kσ\{0}) with respect to the (scale-invariant)
norm

(1.6) ‖f‖V l
2,α

=

⎛

⎝
∫

Kσ

∑

|ρ|≤l

r2(α−l+|ρ|)|Dρ
xf |2r dr dθ

⎞

⎠

1
2

< ∞.

We refer the reader to [2] for a more thorough discussion of weighted Sobolev spaces
in an infinite cone.

Before we state the main theorem, we must define the Leray projection operator
on unbounded domains. This definition differs from that given in (1.1), because if
Ω is unbounded, then ∇H1(Ω) is not closed in L2(Ω). To remedy this, we fix a
bounded domain B ⊂ Ω ⊂ R

N , and we define the space

(1.7) Y =

{

q ∈ L2
loc(Ω) : ∇q ∈ L2(Ω,RN ) and

∫

B

q = 0

}

.

Then Y is a Hilbert space with norm ‖q‖2Y =
∫
Ω
|∇q|2, and the space ∇Y is closed

in L2(Ω,RN ). We define the Leray projection operator P as in (1.1), except that we
assume q is in Y (Ω) instead of H1(Ω). Further discussion of the Leray projection
operator on unbounded domains can be found in [5].

We remark that if Ω is Lipschitz, C∞
c (Ω) is dense in Y . The proof of this fact is

similar to the proof for Ω = R
N
+ indicated in [3], based on the case Ω = R

N treated
in [5, Lemma 2.5.4].

We are now prepared to state the main theorem.

Theorem 1.4. Suppose σ ∈ (0, 2π) and let Kσ be an infinite planar cone as in
(1.4). Let α �= 1. Then the following estimate holds for all u ∈ C∞

c (Kσ\{0},R2) :

(1.8)

∫

Kσ

r2α|[Δ, P ]u|2r dr dθ ≤ βσ,α

∫

Kσ

r2α|Δu|2r dr dθ,

where

βσ,α = sup
k>0

max
{
β̂+,k, β̂−,k

}
,

with

(1.9) β̂±,k =
k2 + α2

2k2(1− α)
(1− e−2kσ)


{
(1− α+ ik)(1± e−(k+iα−2i)σ)

(1± e−(k−iα)σ)(1− e−2(k+iα−i)σ)

}

.

Moreover, βσ,α is the smallest constant satisfying (1.8) for every

u ∈ C∞
c (Kσ\{0},R2).

We will prove Theorem 1.4 in Sections 2 and 3. In Section 5, we show that
Theorem 1.4 implies Theorem 1.2.

The expressions in (1.9) are sufficiently complicated so that it is difficult to char-
acterize exactly when βσ,α < 1 holds. We will make a few observations, however,
and provide numerical evidence which suggests that for all σ ∈ (0, 2π) except for
one value σ = σc ≈ 1.4303π, we have βσ,α < 1 for α in some interval just to the
left or right of α = 0.

First, note that as k → ∞ we have β̂±,k → 1
2 . For α = 0 we compute that

(1.10) β̂±,k =
1

2

cosh2 kσ − cos2 σ ∓ cosh kσ sin2 σ ∓ k sin σ cosσ sinh kσ

cosh2 kσ − cos2 σ
,
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from which we see that if σ = π, then β̂±,k ≡ 1
2 ; hence βπ,0 = 1

2 . This half-space
estimate (1.8) with constant weight was already proved in [3] and explains why
the condition β > 1

2 is essentially optimal in Theorem 1.1. Note that due to the
dilation invariance of the domain, no lower-order term such as that in (1.2) should
appear in the half-space case, since it would scale differently under dilation.

Whenever π �= σ ∈ (0, 2π), however, we have β̂−,0 = 1, β̂+,0 = 0. Thus, whenever
the weight is constant (α = 0) and the cone has a corner (σ �= π), we conclude that
the optimal constant βσ,0 ≥ 1. Our proof of Theorem 1.2 relies on this fact.

It is easy to approximate βσ,α numerically. For a number of values of the cone
angle σ, in Figure 1 we plot log10 βσ,α vs. α for α ∈ [−1, 1]. Spikes appear in many
of these graphs, providing evidence of singularities where presumably βσ,α = +∞.
After closer examination, these graphs suggest that:

• βσ,α = 1 whenever α = 0 and σ �= π.
• βσ,α < 1 for small α > 0 when 0 < σ < π or σc < σ < 2π.
• βσ,α < 1 for small α < 0 when π < σ < σc.

The number σc ≈ 1.4303π satisfying σc cotσc − 1 = 0 appears to be a critical value
of σ where the minimum of βσ,α occurs at α = 0 and the minimum value is 1. To
see this, we observe that numerical evidence indicates that for σ near the critical
value and for α near 0, βσ,α is achieved at k = 0. We therefore take the limit as k

approaches 0 of β̂+,k and β̂−,k, which yields the formulas for β̂+,0 and β̂−,0 given
in (4.2) and (4.3). Numerical evidence again shows that for σ in a neighborhood of

the critical value and for α near 0, β̂+,0 > β̂−,0. Using Maple to differentiate β̂+,0

with respect to α and evaluating the derivative at α = 0, we find that

(1.11) ∂αβ̂+,0|α=0 = σ cotσ − 1.

These numerical results also suggest that βσ,α < 1 for convex cones, uniformly
in σ for positive α in a fixed interval. So for a bounded polygonal domain Ω that
is convex, say, we conjecture that an inequality like

(1.12)

∫

Ω

r2α|[Δ, P ]u|2 ≤
∫

Ω

r2α
(
β|Δu|2 + C|∇u|2

)

will hold for some β < 1 and C independent of u in a suitable space of functions
vanishing on ∂Ω, provided α is small and positive. Here r = r(x) would be the
distance from x ∈ Ω to the nearest corner on Γ. The last term on the right hand
side of (1.12) comes from the definition of the V 2

2,α norm on a bounded domain [2],
given by

‖u‖V 2
2,α(Ω) =

⎛

⎝
∫

Ω

r2α
∑

|ρ|≤2

|Dρ
xu|2 dx

⎞

⎠

1
2

.

We do not include the term ‖rαu‖2L2 on the right hand side of (1.12), because it
can be controlled by first order partial derivatives using a Hardy inequality [2].

A proof of (1.12) could have interesting implications. In particular, one may
be able to use (1.12) to prove unconditional stability and convergence of the time
discretization scheme of Liu et al. in convex polygonal domains for u in the appro-
priate weighted space. This proof could, in turn, lead to well-posedness results for
the unconstrained formulation of (NS) in polygonal domains. However, we have
no proof of (1.12) at this time.



LAPLACE-LERAY COMMUTATOR IN DOMAINS WITH CORNERS 1695

−1 0 1

0

1

2

3

−1 0 1

0

1

2

3

−1 0 1

0

1

2

3

−1 0 1

0

1

2

3

−1 0 1

0

1

2

3

−1 0 1

0

1

2

3

−1 0 1

0

1

2

3

−1 0 1

0

1

2

3

−1 0 1

0

1

2

3

−1 0 1

0

1

2

3

−1 0 1

0

1

2

3

−1 0 1

0

1

2

3

Figure 1. log10(βσ,α) vs. α for various σ. From left to right, top
to bottom, σ/π = 0.2, 0.4, 0.5, 0.65, 0.85, 0.95, 1, 1.05, 1.2, 1.4, 1.6, 1.8.

2. Preliminary transform in radius

From the pressure formula (1.3) we see that the commutator [Δ, P ]u repre-
sents the contribution of the viscosity term to the Navier-Stokes pressure gradient.
Specifically, [Δ, P ]u represents the pressure gradient for the linear Stokes equations
with no-slip boundary and without forcing. For this reason, as in [3], we refer to
the corresponding pressure as the Stokes pressure, denoted pS = pS(u). From (1.1),
when a = u ∈ H2(Ω) with Ω unbounded, we have ∇Δq = Δ∇q = ∇∇ · a, and it
follows easily (as in [3]) that

[Δ, P ]u = (I − P )(Δu−∇∇ · u) = ∇pS.

We recall from [3, Sec. 2.1] that the Stokes pressure pS is determined (up to con-
stant) as the solution to the boundary value problem

(2.1) ΔpS = 0 in Ω, n · ∇pS = n · (Δ−∇∇·)u on Γ.
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(The boundary condition holds in H−1/2(Γ) due to a standard trace theorem, since
the vector fields Δu−∇∇ · u and ∇pS are in L2(Ω,RN ) with zero divergence.)

Letting

Ip = ‖∇pS‖2V 0
2,α

=

∫

Kσ

r2α|∇pS|2r dr dθ,

Iu = ‖Δu‖2V 0
2,α

=

∫

Kσ

r2α|Δu|2r dr dθ,

we see that in order to prove Theorem 1.4, we must determine the smallest constant
βσ,α satisfying the inequality Ip ≤ βσ,αIu, subject to (2.1). In this section, we
perform the first steps in our attempt to find βσ,α. These steps amount to taking
a Mellin transform of the problem. We first rewrite Ip, Iu and (2.1) in terms of
the polar coordinates (r, θ), then change variables using r = es, which transforms
Kσ to an infinite strip S. Taking a Fourier transform will reduce the problem to a
family of maximization problems parametrized by a Fourier variable k ∈ R.

2.1. We begin by letting

J =

(
0 −1
1 0

)

, eJθ =

(
cos θ − sin θ
sin θ cos θ

)

.

A straightforward calculation shows that

∇pS = r−1eJθ
(
r∂rpS
∂θpS

)

,

allowing us to rewrite Ip as

Ip =

∫

Kσ

(
|r∂rpS|2 + |∂θpS|2

)
r2α−1 dr dθ.

We change variables by letting r = es, resulting in a transformation of the domain
Kσ to an infinite strip S = {(s, θ) ∈ R

2 : −∞ < s < ∞, 0 < θ < σ}. We then let
q = eαspS and express Ip in terms of q. We conclude that

(2.2) Ip =

∫

S

(
|∂sq − αq|2 + |∂θq|2

)
ds dθ =

∫ ∞

−∞
Ip,k dk,

where k is the Fourier variable corresponding to s, and

(2.3) Ip,k =

∫ σ

0

(
|(k + iα)q̂|2 + |∂θ q̂|2

)
dθ.

2.2. To rewrite Iu, we first calculate

Δu = ∇ · ∇u = (r∂r + 2)(r−1∂ru) + ∂θ(r
−2∂θu) = r−2((r∂r)

2 + ∂2
θ )u.

If we let u = reJθv, we can show that

(2.4) Δu = r−1eJθ
(
(r∂r + 1)2v + (∂θ + J)2v

)
.

We again change variables to express Iu as an integral over S. We let w = esαv,
and we find that

Iu =

∫

S
e2sα|(∂s + 1)2v + (∂θ + J)2v|2 ds dθ

=

∫

S
|(∂s + 1− α)2w + (∂θ + J)2w|2 ds dθ =

∫ ∞

−∞
Iu,k dk,

(2.5)
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where

(2.6) Iu,k =

∫ σ

0

|(ik + 1− α)2ŵ + (∂θ + J)2ŵ|2 dθ.

2.3. As with Ip and Iu, we wish to rewrite (2.1) in terms of k, θ, q, and w. We
perform a change of variables and rewrite the first condition of (2.1) as

e−2s(∂2
s + ∂2

θ )p = 0.

Recalling that q = esαp, we find that Δq − e−2s(2α∂s − α2)q = 0, so (∂2
θ + ∂2

s −
2α∂s+α2)q = 0. To rewrite the boundary condition of (2.1), we observe that the left
hand side can be rewritten using the equalities 〈eθ,∇pS〉 = 〈e2, r−1(r∂rpS, ∂θpS)〉 =
r−1∂θpS. For the right hand side, we use (2.4), combined with the equality

∇∇ · u = r−1eJθ
(
r∂r∇ · u
∂θ∇ · u

)

= r−1eJθ
(
r∂r((r∂r + 2)v1 + ∂θv2)
∂θ((r∂r + 2)v1 + ∂θv2)

)

and the property v = 0 when θ = 0 and θ = σ, to conclude that

〈eθ,Δu−∇∇ · u〉 = r−1((r∂r)
2 + 2r∂r)v2 − ∂θ∂rv1 = −r−2v2 − ∂θ∂rv1 = −∂θ∂rv1

for θ = 0 and θ = σ. We can therefore rewrite the boundary condition in (2.1) as

(2.7) ∂θpS = −∂s∂θv1.

Using the equality w = esαv, we see after a calculation that we can recast (2.1) as
the following boundary value problem on S:

(∂2
θ + ∂2

s − 2α∂s + α2)q = 0 in S,
∂θq = −∂θ(∂s − α)w1 when θ = 0, σ.

(2.8)

Finally, taking the Fourier transform of (2.8) in s, we have that for each k ∈ R, q̂
must solve the boundary value problem

∂2
θ q̂ = (k + iα)2q̂ for 0 < θ < σ,

∂θ q̂ = −∂θ(ik − α)ŵ1 when θ = 0, σ.
(2.9)

3. Optimization in angle

In this section, we determine βσ,α = sup
Ip
Iu

subject to (2.9) and the no-slip
boundary condition. First, for k �= 0 we suppress the α and σ variables and define

(3.1) βk = sup

{
Ip,k
Iu,k

: (2.9) holds, and ŵ = 0 for θ = 0, σ

}

.

Note that since w is real, we have ŵ(−k, θ) = ŵ(k, θ); hence Iu,−k = Iu,k from
(2.6), and similarly Ip,−k = Ip,k from (2.3). We conclude that βk is even in k. We

define β̂σ,α = supk>0 βk, and we observe that

(3.2) Ip =

∫ ∞

−∞
Ip,k dk ≤

∫ ∞

−∞
βkIu,k dk ≤ β̂σ,αIu.

We will prove Theorem 1.4 by computing that βk = max{β̂+,k, β̂−,k}, as given by

(1.9), and by showing that β̂σ,α ≤ βσ,α. Since evidently β̂σ,α ≥ βσ,α, the result will
follow.



1698 ELAINE COZZI AND ROBERT L. PEGO

3.1. We first rewrite the quantity Iu,k from (2.6) to diagonalize the matrix involved.
We define

V =

(
1 1
i −i

)

, Λ =

(
−1 0
0 1

)

.

Then letting −iŵ = V y with y = (y1, y2), and using JV = V (iΛ), we rewrite Iu,k
in the following way:

Iu,k =

∫ σ

0

|
(
(ik + 1− α)2 + (∂2

θ + 2J∂θ − 1)
)
(V y)|2 dθ

= 2

∫ σ

0

|
(
(ik + 1− α)2 + (∂2

θ + 2iΛ∂θ − 1)
)
y|2 dθ

= 2

∫ σ

0

(|L1y1|2 + |L2y2|2) dθ,(3.3)

where

L1 = (ik + 1− α)2 + ∂2
θ − 2i∂θ − 1,

L2 = (ik + 1− α)2 + ∂2
θ + 2i∂θ − 1.

3.2. We next express the quantity Ip,k from (2.3) in terms of the boundary data
from (2.9). From (2.9) it is clear that explicitly

q̂(k, θ) = α+e
(k+iα)(θ−σ) + α−e

−(k+iα)θ,

∂θ q̂(k, θ) = (k + iα)α+e
(k+iα)(θ−σ) − (k + iα)α−e

−(k+iα)θ
(3.4)

for some complex constants α+ and α−. If we define

(3.5) ω = e−(k+iα)σ

for convenience, we see from (3.4) that

(3.6) q̂(k, θ) =

{
α+ + α−ω, θ = σ,
α+ω + α−, θ = 0

and

(3.7) ∂θ q̂(k, θ) =

{
(k + iα)(α+ − α−ω), θ = σ,
(k + iα)(α+ω − α−), θ = 0.

Combining (3.7) with the equality −iŵ1 = (V y)1, we can rewrite the boundary
conditions in (2.9) as

(3.8)
α+ − α−ω = ∂θ(y1 + y2), θ = σ,
α+ω − α− = ∂θ(y1 + y2), θ = 0.

These equations will be used later to determine α+ and α− from y (note ω2 �= 1).
To rewrite Ip,k, we apply (2.9) and integrate by parts. This gives

∫

S
|(∂s − α)q|2 ds dθ =

∫

S
(k + iα)q̂(k − iα)¯̂q dk dθ

=

∫ ∞

−∞

(
∂θ q̂(σ)¯̂q(σ)− ∂θ q̂(0)¯̂q(0)

)
dk −

∫

S
∂θ q̂∂θ ¯̂q dk dθ −

∫

S
2(ikα− α2)q̂ ¯̂q dk dθ,

which, in light of (2.2), allows us to write

(3.9) Ip,k = ∂θ q̂(σ)¯̂q(σ)− ∂θ q̂(0)¯̂q(0)−
∫ σ

0

2(ikα− α2)q̂ ¯̂q dθ.
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In order to write
∫ σ

0
2(ikα−α2)q̂ ¯̂q dθ in terms of α+ and α−, we use (3.4) to evaluate

the dot product and integrate. We conclude that

∫ σ

0

2(ikα− α2)q̂ ¯̂q dθ = (ikα− α2)

(
|α+|2
k

+
|α−|2
k

)
(
1− e−2kσ

)

+ (ik − α) (iα−ᾱ+ + iα+ᾱ−) e
−(k+iα)σ

(
1− e2iασ

)

= (ikα− α2)

(
|α+|2
k

+
|α−|2
k

)
(
1− |ω|2

)
+ (k + iα)(α−ᾱ+ + α+ᾱ−)(ω̄ − ω).

(3.10)

Similarly, to compute ∂θ q̂(σ)¯̂q(σ) − ∂θ q̂(0)¯̂q(0), we use the formulas for q̂ and ∂θ q̂
on the boundary given in (3.6) and (3.7) to write

∂θ q̂(σ)¯̂q(σ)− ∂θ q̂(0)¯̂q(0) = (k + iα){(|α+|2 + |α−|2)(1− |ω|2)
+ (α+ᾱ− + α−ᾱ+)(ω̄ − ω)}.

(3.11)

Plugging (3.10) and (3.11) into (3.9), we discover that

Ip,k =

(
k2 + α2

k

)
(
|α+|2 + |α−|2

) (
1− |ω|2

)
.

3.3. By the results of the previous subsection, βk is the supremum of the ratio
Ip,k/Iu,k subject to (3.8) and the no-slip boundary conditions y = 0 for θ = 0, σ.
In order to compute βk, we will argue that the supremum in (3.1) is a maximum
and use a variational argument.

The existence of a maximizer is proved by a standard argument in the calculus of
variations: It is clear that 0 < βk ≤ ∞ and that the ratio Ip,k/Iu,k is a homogeneous
function of y. Thus we may choose a maximizing sequence of vector functions y
with fixed H2 Sobolev norm on [0, σ]. Evidently, the quantities L1y1, L2y2 remain
bounded in L2, and the complex scalar quantities ∂θy1, ∂θy2 at θ = 0, σ remain
bounded. We may choose a subsequence converging weakly in H2 such that the
quantities ∂θy1, ∂θy2 at θ = 0, σ converge. Then the weak limit is a maximizer by
weak lower semicontinuity of the L2 norm.

Next, consider any smooth curve τ �→ y = y(τ ) into H2 with the property that
(3.8) and the no-slip conditions hold for all τ , and Ip,k/Iu,k achieves its maximum
at τ = 0. Then at τ = 0 we have

(3.12) 0 = İp,k − βkİu,k.

We now determine İp,k and İu,k and solve for βk. Differentiating Ip,k, we find

İp,k =

(
k2 + α2

k

)

( ¯̇α+α+ + ᾱ+α̇+ + ¯̇α−α− + ᾱ−α̇−)(1− |ω|2).

From (3.8) we infer that

α+(1− ω2) = ∂θ(y1 + y2)e
(k+iα)(θ−σ)|σ0 ,

α−(1− ω2) = ∂θ(y1 + y2)e
−(k+iα)θ|σ0 .

(3.13)

By differentiating in τ , we can solve for α̇+ and α̇−, allowing us to eliminate α̇+

and α̇− from the formula for İp,k. Indeed, if we let γi(θ) = ∂θẏi for i = 1, 2, we
have

¯̇α+ =
(1− ω2)

|1− ω2|2 (γ̄1 + γ̄2)e
(k−iα)(θ−σ)|σ0 , ¯̇α− =

(1− ω2)

|1− ω2|2 (γ̄1 + γ̄2)e
−(k−iα)θ|σ0 .
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Similarly, we differentiate Iu,k. Letting L∗
1 and L∗

2 denote the formal adjoints of
L1 and L2, respectively, and recalling from the no-slip boundary conditions that
ẏ = 0 at θ = 0, σ, we integrate by parts to conclude that

İu,k = 4

(∫ σ

0


(ρ) dθ + 
(ψ)
)

,

where

ρ = ¯̇y1(L
∗
1L1)y1 + ¯̇y2(L

∗
2L2)y2, ψ = ∂θẏ1(L1y1) + ∂θẏ2(L2y2)|σ0 .

We observe that

L1L
∗
1y1 = 0 and L2L

∗
2y2 = 0,

so that İu,k reduces to İu,k = 4
(ψ).
Using this information, we can rewrite (3.12) as

0 = 2

{

γ̄1

(

2βkL1y1 −
(
k2 + α2

k

)
(1− |ω|2)
1− ω̄2

(α+e
(k−iα)(θ−σ) + α−e

−(k−iα)θ)

)

|σ0
}

+ 2

{

γ̄2

(

2βkL2y2 −
(
k2 + α2

k

)
(1− |ω|2)
1− ω̄2

(α+e
(k−iα)(θ−σ) + α−e

−(k−iα)θ)

)

|σ0
}

.

(3.14)

Since γ1(θ) and γ2(θ) are arbitrary at θ = 0 and θ = σ, (3.14) yields four (natural)
boundary conditions:

2βkL1y1 =

(
k2 + α2

k

)
(1− |ω|2)
1− ω̄2

(α+ + α−ω̄) and

2βkL2y2 =

(
k2 + α2

k

)
(1− |ω|2)
1− ω̄2

(α+ + α−ω̄), when θ = σ,

2βkL1y1 =

(
k2 + α2

k

)
(1− |ω|2)
1− ω̄2

(α+ω̄ + α−) and

2βkL2y2 =

(
k2 + α2

k

)
(1− |ω|2)
1− ω̄2

(α+ω̄ + α−), when θ = 0.

(3.15)

In addition, we have the four no-slip boundary conditions

(3.16) y1(σ) = y2(σ) = y1(0) = y2(0) = 0.

3.4. Using (3.16), (3.15), (3.8), and the property L∗
1L1y1 = L∗

2L2y2 = 0 on (0, σ),
we can explicitly solve for the maximizer of βk. To simplify the calculations in what
follows, we first use reflection symmetry to show that either

(α+, α−) = (1, 1) or (α+, α−) = (1,−1).

Letting θ̂ = σ − θ, we see from our construction of q̂ in (3.4) that α+ and α−
exchange roles after reflection; thus, it is natural to set α̂+ = α−, and α̂− = α+.

In addition, we let ŷ2(θ̂) = y1(θ) and ŷ1(θ̂) = y2(θ). A straightforward calculation
shows that (ŷ1, ŷ2, α̂+, α̂−) solves the set of linear equations consisting of (3.16),
(3.15), (3.8), and L∗

1L1y1 = L∗
2L2y2 = 0. We deduce that

(y1 + ŷ1, y2 + ŷ2, α+ + α−, α− + α+) and (y1 − ŷ1, y2 − ŷ2, α+ − α−, α− − α+)

also solve these equations. We conclude that every pair (α+, α−) will yield the
same value for βk as either (α+, α−) = (1, 1) or (α+, α−) = (1,−1). Therefore it
suffices to consider only these cases.
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3.5. We can eliminate y2 by observing that if (α+, α−) = (1, 1), then y2(θ) =
ŷ2(θ) = y1(σ − θ), and if (α+, α−) = (1,−1), then y2(θ) = −ŷ2(θ) = −y1(σ − θ).
Then we infer from boundary conditions in (3.8) that

1− ω = ∂θy1(σ)− ∂θy1(0), when (α+, α−) = (1, 1), and

1 + ω = ∂θy1(σ) + ∂θy1(0), when (α+, α−) = (1,−1).
(3.17)

We are now in a position to solve for y1 and ultimately for βk. We first recall that
L1 = (ik + 1− α)2 + ∂2

θ − 2i∂θ − 1, while, formally, the adjoint of this operator is
given by L∗

1 = (ik−1+α)2+∂2
θ −2i∂θ −1. The characteristic polynomials of these

two operators are

p1(μ) = (μ− (2i− k − iα))(μ− (k + iα)),

p∗1(μ) = (μ− (2i+ k − iα))(μ− (−k + iα)).

Since L∗
1L1y1 = 0 on (0, σ), we can conclude that y1(θ) takes the form

y1(θ) = a1e
(k+iα)(θ−σ) + a2e

−(k−2i+iα)θ + a3e
−(k−iα)θ + a4e

(k+2i−iα)(θ−σ)(3.18)

for some constants ai, 1 ≤ i ≤ 4. The boundary conditions y1(σ) = y1(0) = 0,
combined with (3.18), yield the two equalities

0 = a1 + a2ωe
2iσ + a3ω̄ + a4,

0 = a1ω + a2 + a3 + a4ω̄e
−2iσ.

(3.19)

We will use the boundary conditions for y1 in (3.15), combined with the equalities
in (3.19), to write the four unknowns aj , 1 ≤ j ≤ 4, in terms of α+ and α−.

Using the equality Lj = L∗
j + 4(1 − α)ik for j = 1, 2, and (3.18), we conclude

that

L1y1 = 4(1− α)ik
(
a3e

−(k−iα)θ + a4e
(k+2i−iα)(θ−σ)

)
.

Plugging this information into the two boundary conditions in (3.15) yields the two
equalities

8βk(1− α)ik(a3ω̄ + a4) =

(
k2 + α2

k

)
(1− |ω|2)
1− ω̄2

(α+ + α−ω̄),

8βk(1− α)ik(a3 + a4ω̄e
−2iσ) =

(
k2 + α2

k

)
(1− |ω|2)
1− ω̄2

(α− + α+ω̄).

(3.20)

3.6. The value of βk is determined by the equations in (3.20) and (3.19), together
with (3.17). Evidently βk = max{β+,k, β−,k}, where β+,k and β−,k are the values
determined from these equations in each of the two cases (α+, α−) = (1, 1) and
(α+, α−) = (1,−1), respectively.

With (α+, α−) = (1, 1), using the four equations given in (3.20) and (3.19), we
solve for the unknowns aj , 1 ≤ j ≤ 4, finding that

a1β+,k(1− ω2e2iσ) = −φ1(1− ωe2iσ),

a2β+,k(1− ω2e2iσ) = −φ1(1− ω),

a3β+,k(1− ω̄2e−2iσ) = φ1(1− ω̄e−2iσ),

a4β+,k(1− ω̄2e−2iσ) = φ1(1− ω̄),

(3.21)

where

φ1 =
(k2 + α2)(1− |ω|2)(1 + ω̄)

8ik2(1− α)(1− ω̄2)
.
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Using (3.17) with (3.18), we see that

1− ω = a1k̂(1− ω) + a2(2i− k̂)(ωe2iσ − 1)

+ a3(
¯̂
k)(1− ω̄) + a4(2i+

¯̂
k)(1− ω̄e−2iσ),

(3.22)

where k̂ = k + iα. Plugging the formulas for aj into (3.22) and solving for β+,k

yields

β+,k =
φ1

(1− ω)

{
(1− ω)(1− ωe2iσ)

(1− ω2e2iσ)
(2i− 2k̂) +

(1− ω̄)(1− ω̄e−2iσ)

(1− ω̄2e−2iσ)
(2i+ 2

¯̂
k)

}

.

To find β−,k, we let (α+, α−) = (1,−1), and we again use (3.20) and (3.19) to
solve for aj , 1 ≤ j ≤ 4. To simplify notation, we define

φ2 =
(k2 + α2)(1− |ω|2)(1− ω̄)

8ik2(1− α)(1− ω̄2)
.

We compute the aj and conclude that

a1β−,k(1− ω2e2iσ) = −φ2(1 + ωe2iσ),

a2β−,k(1− ω2e2iσ) = φ2(1 + ω),

a3β−,k(1− ω̄2e−2iσ) = −φ2(1 + ω̄e−2iσ),

a4β−,k(1− ω̄2e−2iσ) = φ2(1 + ω̄).

(3.23)

We solve for β−,k using (3.17) with (3.18) as before, and we find that

β−,k =
φ2

(1 + ω)

{
(1 + ω)(1 + ωe2iσ)

(1− ω2e2iσ)
(2i− 2k̂) +

(1 + ω̄)(1 + ω̄e−2iσ)

(1− ω̄2e−2iσ)
(2i+ 2

¯̂
k)

}

.

At this point, one can check that β±,k = β̂±,k, as given in (1.9).

3.7. To complete the proof of Theorem 1.4, as indicated at the beginning of this

section, we must show that βσ,α ≥ β̂σ,α. To prove this, suppose β̂ < β̂σ,α. Then

there exists k0 �= 0 such that βk0
> β̂. We choose y to be a maximizer of the

ratio Ip,k0
/Iu,k0

. In a change of notation, we let Ip,k and Iu,k denote the integrals
corresponding to this fixed y, with q̂ determined by (2.9) for k varying. Since y may
not be a maximizer for k �= k0, we only have βk ≥ Ip,k/Iu,k in general. However,
by continuity it is evident that there exists δ > 0 such that whenever |k − k0| < δ

we have Ip,k/Iu,k > β̂.
Next, we define χδ(k) to be a smooth bump function independent of θ and

supported in a δ-neighborhood of k0. Recalling that −iŵ = V y, we set ŵδ = χδŵ
and q̂δ = χδ q̂, and we observe that (ŵδ, q̂δ) solves (2.9) and ŵδ = 0 for θ = 0, σ.
Moreover, if Ipδ,k and Iuδ,k are the integrals corresponding to ŵδ and q̂δ, then one
sees that Ipδ,k = χδ

2Ip,k and Iuδ,k = χδ
2Iu,k. We can then write

(3.24)
Ipδ

Iuδ

=

∫ k0+δ

k0−δ
χδ

2Ip,k dk
∫ k0+δ

k0−δ
χδ

2Iu,k dk
>

∫ k0+δ

k0−δ
β̂χδ

2Iu,k dk
∫ k0+δ

k0−δ
χδ

2Iu,k dk
= β̂.

We conclude that βσ,α ≥ β̂; hence βσ,α ≥ β̂σ,α.
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4. Causes for blowup of the optimal constant

One can rewrite the formulas for β̂+,k and β̂−,k from Theorem 1.4 in the following
way:

(4.1) β̂±,k =
ψ1 + ψ2

2k2(cosh(kσ)∓ cos(ασ))(cosh(2kσ)− cos(2(1− α)σ))
,

where

ψ1 = (k2 + α2) sinh(kσ) [sinh(2kσ)∓ 2 sinh(kσ) cos(σ) cos((1− α)σ)]

and

ψ2 =
k(k2 + α2) sinh(kσ)

1− α
[sin(2(1− α)σ)∓ 2 cosh(kσ) sin((1− α)σ) cos(σ)].

From (4.1) it is clear that for fixed α �= 1 and fixed σ ∈ (0, 2π), β̂+,k and β̂−,k as
functions of k are continuous everywhere except k = 0. If we take the limit of (4.1)
as k approaches 0, we find that

(4.2) lim
k→0

β̂±,k = β̂±,0 =
α2ψ3

2(1∓ cos(ασ))(1− cos 2(1− α)σ)
,

where

ψ3 = 2σ2 ∓ σ2(cos(ασ) + cos(2− α)σ)

− σ

1− α
(sin(2− 2α)σ ∓ (sin(2− α)σ − sin(ασ))).

(4.3)

From (4.2) we see that βσ,α typically blows up when either ασ = nπ or (1−α)σ = nπ
for some n ∈ Z.

The first set of singularities above is a result of the unboundedness of the Neu-
mann problem for the Laplace operator in weighted spaces on a cone. To see
this, we observe that in (3.13) α+ and α− become undefined as k → 0 when
ω2 = e−2(k+iα)σ → 1, which occurs precisely when ασ = nπ for n ∈ Z.

The second set of singularities above, which occur when (1 − α)σ = nπ, result
from failure to bound the boundary data n · (Δ−∇∇·)u in terms of Δu. For these
combinations of α and σ, the L2 norm of rαΔu in Kσ is not sufficient to control
n·(Δ−∇∇·)u appropriately. This is fundamentally due to the existence of harmonic
fields u = cr1−α sin((1− α)θ) where c is a constant vector. Corresponding to these
fields, there are nontrivial modes (y1, y2) for k = 0 satisfying L1y1 = 0 = L2y2 and
the no-slip boundary conditions (3.16), while (α+, α−) is nonzero. One then finds
that the maximum of Ip,k/Iu,k → ∞ as k → 0.

To see just how this can occur in terms of the computations of Section 3 for
certain combinations of σ and α ( �= 1 or 0), we observe that in Section 3.5 L1y1 = 0
iff y1(θ) takes the form given in (3.18) with a3 = a4 = 0. One can then satisfy the
no-slip boundary conditions through (3.19) for some nonzero a1, a2 if and only if
ω2e2iσ = 1, meaning k = 0 and (1 − α)σ = nπ for some n ∈ Z. We may simply
take y2 = 0, and it follows by (3.3) that Iu,0 = 0.

But then, a1 = −a2ω̄ �= 0, and we compute that ∂θy1 = 2i(α−1)a1 �= 0 at θ = σ,
yielding nonzero boundary values for ∂θ q̂ in (3.7) and causing Ip,0 to be positive in
(2.3). If we vary k while holding (y1, y2) fixed and use (3.8) to determine (α+, α−)
and thence q̂, we see that Iu,k → 0 as k → 0, while Ip,k → Ip,0 > 0. This results in
βk → ∞ as k → 0; hence βσ,α = ∞ when (1− α)σ = nπ.
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5. Proof of Theorem 1.2

We now use Theorem 1.4 to prove Theorem 1.2 through a localization argument.
Let Ω denote a bounded domain with a straight corner. Replacing Ω by a suitable
rotated translate if necessary, we may assume there is a neighborhood U of 0 such
that U ∩ Ω = U ∩ Kσ, where σ �= π.

Fix any β < 1 and C ∈ R. We observe from the formula for β̂±,k with α = 0
given in (1.10) that βσ,0 ≥ 1 when σ �= π. Therefore, there exists a solution

(u, p) to (2.8) with u in C∞
c (Kσ\{0},R2) which satisfies

∫
Kσ

|∇p|2 > β
∫
Kσ

|Δu|2.
Replacing (u, p) by suitable dilates if necessary, we may assume that the support
of u is contained in U .

We construct a sequence of solutions (uj , pj) to (2.8) on Ω by setting

uj(x) = j−1u(jx)|Ω and ∇pj = (I − P )(Δ−∇∇·)uj in Ω.

We see that Δpj = 0 in Ω and n ·∇pj = n · (Δ−∇∇·)uj on ∂Ω. Moreover, since uj

is supported in Ω ∩ Kσ for all j, we have ‖Δuj‖L2(Ω) = ‖Δu‖L2(jΩ) ≤ ‖Δu‖L2(Kσ)

and ‖∇uj‖L2(Ω) = j−1‖∇u‖L2(jΩ) ≤ j−1‖∇u‖L2(Kσ) for every j. This construction
allows us to write the following series of inequalities for sufficiently small ε > 0 and
for sufficiently large j:

∫

Ω

(β|Δuj |2 + C|∇uj |2) ≤
∫

Kσ

(β|Δu|2 + Cj−2|∇u|2)

≤
∫

Kσ

(β|Δu|2) + ε <

∫

Kσ

|∇p|2.

We claim that

(5.1)

∫

Kσ

|∇p|2 ≤ lim inf
j→∞

∫

Ω

|∇pj |2.

To see that (5.1) holds, we first use the definition of uj , the equality

∇pj = (I − P )(Δ−∇∇·)uj ,

and orthogonality of the Leray projection to observe that

(5.2)

∫

Ω

|∇pj |2 ≤
∫

jΩ

|(Δ−∇∇·)u|2 ≤
∫

Kσ

|(Δ−∇∇·)u|2

for all j. If we define

(5.3) p∗j (x) = pj

(
x

j

)

− 1

m(B)

∫

B

pj

(
x

j

)

for x ∈ jΩ, where B corresponds to the domain B given in (1.7), then we can apply
a generalized Poincaré Inequality (see [5, Ch. 2]) to conclude that for each n ∈ N,

(5.4)

∫

nΩ

|p∗j |2 ≤ Cn

∫

nΩ

|∇p∗j |2 ≤ Cn

∫

Ω

|∇pj |2

for sufficiently large j. By a standard diagonalization argument, we can construct
a subsequence of {∇p∗j}, which we henceforth denote as {∇p∗j}, converging weakly

in L2(nΩ) for every n ∈ N. This implies by (5.4) and by another diagonalization
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argument that, up to subsequences, {p∗j} converges weakly to some p∗ in L2(nΩ)
for all n ∈ N. By uniqueness of weak limits, we can conclude that {∇p∗j} converges

weakly to ∇p∗ in L2(nΩ) for every n. Moreover, by properties of weakly convergent
sequences we can write

∫
nΩ

|∇p∗|2 ≤ lim infj→∞
∫
nΩ

|∇p∗j |2 for each n. We can then
conclude that for sufficiently large j,

∫

Kσ

|∇p∗|2 ≤ lim
n→∞

∫

nΩ

|∇p∗|2 ≤ lim inf
j→∞

∫

jΩ

|∇p∗j |2 = lim inf
j→∞

∫

Ω

|∇pj |2.

It remains to show that
∫
Kσ

|∇p∗|2 =
∫
Kσ

|∇p|2. This will imply (5.1).

To show that
∫
Kσ

|∇p∗|2 =
∫
Kσ

|∇p|2, we first show Δp∗ = 0 in Kσ. We fix a

compact subset K of Kσ, and we apply the mean value property and weak con-
vergence of {p∗j} to conclude that for any y ∈ K, |p∗j (y)| ≤ C‖p∗j‖L2(nΩ) ≤ C,
giving equiboundedness of {p∗j} on K. Moreover, by the mean value property and
weak convergence of {∇p∗j}, {∇p∗j} is equibounded on K, implying that {p∗j} is also
equicontinuous. Therefore, up to subsequences, {p∗j} converges uniformly on K to
p∗. We again apply the mean value property and uniform convergence of {p∗j} on
K to conclude that p∗ is harmonic.

Since Δp∗ = 0 on nΩ, we infer that the sequence {∇p∗j} converges weakly to

∇p∗ in H(div,nΩ), the space of vector fields in L2(nΩ) with divergence in L2(nΩ).

By the boundedness of the trace operator mapping H(div, nΩ) into H− 1
2 (∂(nΩ))

(see, for example, [1], Theorem 2.5), we can conclude that n ·∇p∗j converges weakly

to n · ∇p∗ in H− 1
2 (∂(nΩ)). As n · ∇p∗j = n · ∇p on ∂Kσ ∩ ∂(nΩ) for every n, it

follows that n · ∇p∗ = n · ∇p on ∂Kσ.
Using the equalities Δp = Δp∗ = 0 in Kσ and n · ∇(p∗ − p) = 0 on ∂Kσ, we can

now integrate by parts to conclude that
∫
Kσ

|∇(p∗−p)|2 = 0. For φ ∈ C∞
c (Kσ), we

have that
∫

Kσ

∇φ · ∇(p∗ − p) =

∫

∂Kσ

φn · ∇(p∗ − p)−
∫

Kσ

φΔ(p∗ − p) = 0.

Since p∗ − p belongs to Y and C∞
c (Kσ) is dense in Y , it follows that

∫

Kσ

|∇(p∗ − p)|2 = 0,

and (5.1) holds. This completes the proof of Theorem 1.2.
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