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A COMPARISON INEQUALITY FOR RATIONAL FUNCTIONS
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(Communicated by Walter Van Assche)

ABSTRACT. We establish a new inequality for rational functions and show that
it implies many inequalities for polynomials and their polar derivatives.

1. INTRODUCTION

Let p(z) be a polynomial of degree at most n of a complex variable z. According

to the well-known Bernstein’s inequality ([3]),

max [p’(z)| < nmax [p(2)].

|z|=1 |z|=1
The inequality is sharp in the sense that the equality holds if p(z) = z". Let P,
denote the set of all polynomials of degree at most n and let || f|| = max .- |f(2)],
the sup-norm of f on the unit circle. Then Bernstein’s inequality can be restated
as the following extremal problem:

Pl _
max =
pePu ||pll
Since the polynomial p(z) = 2" yielding the maximum value has all its zeros at
z = 0, by restricting the zeros of polynomials, the maximum value may be smaller.
Indeed, if P! denotes the set of polynomials with no zero inside the unit circle
|z] < 1, Erdds conjectured and Lax verified the following Erdds-Lax inequality

(8)):

n
Il < Sllpll-

Aziz was among the first to extend these results by replacing the derivatives with
the polar derivatives of polynomials. For a complex number a and for p € P, let

Dap(z) = np(z) + (o = 2)p'(2).
Note that D,p(z) is a polynomial of degree at most n — 1. This is the so-called
polar derivative of p(z) with respect to point « ([I1]). It generalizes the ordinary
derivative in the following sense:

lim
a—00 «
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It is proved by Aziz in 1988 ([I]) that, for p € P! and |a| > 1,
N e
1Dap(2)] < 5 (jaz"" | + Dlp| for |2] > 1.

The result is sharp and the equality holds at special values of z if p(z) = az™ + b
with |a| = |b|. Dividing both sides by |«| and letting o — oo yields the Erdos-Lax
inequality.
Bernstein’s inequality was extended by Aziz and Shah in 1998 ([2]):
[ Dap(2)| < nlaz""H|pl| for |2 > 1.

In fact, the special and equivalent case of this result was known much earlier. For
example, in [I4], Smirnov and Lebedev established the above inequality for z = «
(p- 393) and derived the inequality for |z| = |a| =1 (p. 396).

In 1930, Bernstein revisited his inequality and established the following compar-
ison result ([3]): Assume that p and ¢ are polynomials with dp < 9dq, where dg
denotes the exact degree of a polynomial g. If ¢(z) has all its zeros in |z] < 1 and

Ip(2)] < la(z)| for || =1,
then
(L.1) §/(2)] < 14(2)] for |2 = 1.

In 1985, Malik and Vong ([I0]) improved this result of Bernstein further by showing
that

D) | o)

n 2

/
() | gale)
n 2
for all |z] = 1 and |B| < 1. Recently, this inequality has been extended to polar
derivative by Mohapatra and Shah ([12]):

Dup(e) 408 (1202 ) ot0)] < |aDaat) + 8 () o)

for all |z] = 1, |a|] > 1, and || < 1. The author is curious to know how to
interpret the expressions in these last two inequalities. Indeed, this paper is mainly
motivated by the desire to understand these expressions. We believe that a proper
perspective has been found using rational functions. We will show how the above
mentioned results, as well as some new inequalities, can be obtained in a natural
way from a general inequality for rational functions with prescribed poles. Our
method of proof may be useful for proving other inequalities for polynomials and
rational functions.

(1.2) <

(1.3) <

2. RATIONAL FUNCTIONS

Let a1, ag, ... , a, be n given points in |z| > 1. We will consider the following
space of rational functions with prescribed poles:
z
R, = R,(a1,a9,...,a,) = {m I pE Pn} ,
w(2)

where w(z) 1= (z —a1)(z — az) - (2 — an).
Denote

Note that |B(z)| = 1 when |z] = 1.
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The inequalities of Bernstein and Erdds-Lax have been extended to the rational
functions ([], [9]): If |z| = 1, then, for any r € R,,,

(2.1) r'(2)] < [B'(2)]lIr]l-
Furthermore, the inequality is sharp and the equality holds if r(z) = aB(z) with
la| = 1. If we assume r € R, has all its zeros in |z| > 1, the inequality can be

strengthened to
1
(2.2) #(2)] < 1B ()] for o] = 1.

The inequality is sharp and the equality holds if 7(z) = aB(z) + 8 with |a| = |3].
In this paper, our main result is an extension of Bernstein’s inequality (L) to
the rational functions.

3. MAIN RESULTS

Theorem 3.1. Let r,s € R, and assume s has all its n zeros in |z| < 1 and
r(2)| < [s(2)] for |2 = L.

Then
[r'(2)] < [s(2)] for |2] = 1.

Taking s(z) = B(z) in the theorem, we immediately obtain Bernstein’s inequality
1) for rational functions.

The statement of the theorem is almost the same as the polynomial case, and
the only difference is that polynomials are replaced by rational functions. Despite
the similarity in the statements, the proofs used in the polynomial case (see [II, 12])
could not be directly applied in the rational case. We will explain more on the
differences in the proofs in the next section.

Theorem [B.1]is a consequence of the following more general inequality.

Theorem 3.2. Let r,s € R, and assume s has all its n zeros in |z| < 1 and
r(2)] < |s(2)] for |2 = 1.
Then, for any p with |p| <1/2,
[7'(2) + pB'(2)r(2)| < 15'(2) + pB'(2)s(2)] for |2 = 1.

We remark that the sharpness of the result is obvious: The equality holds if
r(z) = s(2).

This inequality should be compared with the polynomial inequality (T2)) of Malik
and Vong.

Now we present and discuss some consequences of these results. First, we point
out that inequalities involving polynomials and their polar derivatives are a special
case of the inequalities for rational functions. For example, taking a; = a for
all ¢ = 1,2,...,n in Theorem [B.1] gives us the following inequality on the polar
derivatives.

Corollary 3.3. For p,q € P, where q has all its n zeros in |z| <1, if
Ip(2)| < la(2)] for 2] =1,

then, for |a] > 1,

(3.1) |Dap(2)| < |Daq(2)| for |z] = 1.
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Indeed, for |a| > 1, applying Theorem Bl to rational functions r(z) =
p(2)/(z — a)™ and s(z) = ¢(z)/(z — a)™ with poles all at one point z = a gives

us
(=)

for all |z| = 1. But, it is easy to see that

(&)’__( Dap(2)

(Z _ a)n z— a)n+1'

Therefore, the inequality ([B) follows from the inequality in (32) when |a| > 1.
Taking the limit as |a| — 1 will give us the inequality when |a| > 1.

Similarly, applying Theorem Bl to rational functions r(z) = p(z)/(z — a)™ and
s(z) = p*(2)/(z — a)™ with |a| > 1 yields the following results of Aziz ([T p. 190]).

(3.2)

Recall that for a polynomial p(z) of degree n, p*(z) = z"p(1/z).

Corollary 3.4. For p € P, with its zeros in |z| > 1 (i.e., p € P}), for any a with
la| > 1,

(3-3) |Dap(2)| < |Dap™(2)| for [2| = 1.

In fact, the inequality in (3)) of Mohapatra and Shah is a special case of Theo-
rem [3.2] applied to the single pole (when a; = a with |a| > 1,i=1,2,....,n) case as
well. In this case, Theorem [3.2 implies that, for |z] = 1,

Dap(2) n(lal* = 1) p(2) Dag(z) n(lal* —1) q(2)
(z —a)rtt |z —al2 (z—a)" (z —a)rtt lz—al? (z—a)*|

Now, defining g such that
al —1 al> -1
(=1 a1
Z—a

we recover the inequality of Mohapatra and Shah, and this gives us a better under-
standing of the expressions in (3).
Next, we show that Theorem implies other inequalities of rational functions.
By taking suitable p in the inequality of Theorem [3.2] the expression inside |- - - |
can be written as

IN

r'(2) +er*'(2),
where r* is defined as: If » = p/w, then
r*(z) = p"(2)/w(z).

Corollary 3.5. Let r,s € R,, and assume that s has n zeros, all lying in |z] < 1,
and

r(2)| < [s(2)] for |2 = 1.
Then, for any ¢ with 0 < ¢ <1/3,
7' (2)] + clr*(2)] < |8 ()] + cls™(2)] for |2 = 1.

Corollary 3.6. Let r € R,,.
(i) If r has n zeros all lying in |z| < 1, then for |p| < 1/2,

[(r(2))" + pB'(2)r" (2)] < |r'(2) + pB'(2)r(2)| for |2| = 1.
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(i) If r has all its zeros in |z| > 1, then
' (2) + pB'(2)r(2)] < [(r*(2))" + pB'(2)r*(2)] for |2| = 1.

The two parts of the above result are equivalent. When p = 0, the second part
recovers a known result (see, e.g., the proof of of Theorem 3 in [9, p. 530]), and we
now state both parts explicitly in this case:

Corollary 3.7. Letr € R,.
(i) If r has n zeros all lying in |z| < 1, then

[(r ()| < I (2)] for |2] = 1.
(ii) If v has all its zeros in |z| > 1, then
() < [(r"(2))'] for |2| = 1.

4. PROOFS

Our proof is different from its polynomial counterpart. The main reason is that
the polynomial results are often proved through the application of some forms of
Laguerre’s Theorem or Grace’s Theorem that are not readily available to rational
functions. Indeed, according to the result of Bonsall and Marden [5], the counting
of the critical points of r € R,, depends on the distinct number of poles of r, in
addition to its zeros. Therefore, there is no direct extension of Laguerre’s Theorem
and Grace’s Theorem to the rational functions.

We need a rational inequality proved by Li, Mohapatra, and Rodriguez in [9]. It
is a rational version of an inequality of Turan for polynomials.

Lemma 4.1 ([9) Thm. 4]). Ifr € R,, has exactly n zeros and they are all lying in
|z] <1, then

1
')l = 5IB'(2)] [r(2)| for |2] = 1.
We also need the following simple statement.

Lemma 4.2. Let A and B be any two complex numbers. Then

(i) If |A| > |B| and B # 0, then A # 0B for all complex numbers 6 satisfying
0] < 1.

(i) Conversely, if A # 6B for all complex numbers § satisfying |d| < 1, then
Al > |B].

Proof. (i) Assume |A| > |B| and B # 0. If A = 0B for some ¢ with |§] < 1, then
|A| = |0| |B| < |B|, a contradiction.
(ii) Assume A # 0B for any ¢ with [6| < 1. If |A] < |B|, then B # 0. Let
6 = A/B. Then
A
A=0B and 0| = = <1,
Bl

contradicting the assumption. ([l

Proof of Theorem B2 First assume that no zeros of s(z) are on the unit circle
|z] =1 and therefore that all zeros of s(z) are in |z| < 1.
Let « be an arbitrary number satisfying |a| < 1. Consider function ar(z)+ s(z

).
This is a rational function with no poles in |z| < 1. Since |r(z)| < |s(z)] for |z| = 1,
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by Rouche’s Theorem, ar(z) + s(z) has the same number of zeros in |z| < 1 as s(z).
Thus, ar(z) + s(z) also has n zeros in |z| < 1. By Lemma (1]

jar'(2) + 5'(2)] 2 5|B'(2)] lar(z) + 5(2)] for |2] = 1.

Now, note that B'(z) # 0 (e.g., see formula (14) in [9]). So, the right hand side is
nonzero. Thus, by using (i) of Lemma 2] we have, for all 8 satisfying |3] < 1,

ar'(z) +§'(2) # ﬂ%B/(z)[ar(z) + s(z)] for |z| =1

or, equivalently, for |z| =1,

alr'(z) — §B'(2)r(z)] £ —[s'(z) — §B’(z)s(z)] for |o| <1, |B] < 1.
Using (ii) of Lemma 2] we have
s'(z) — gB’(z)s(z) > |r'(z) — gB'(z)r(z)] for |z| =1, |B] < 1.

Taking p := /3/2 gives us the desired inequality when |p| < 1/2.
Finally, using the continuity in zeros and p, we can obtain the inequality when
some zeros of s(z) lie on the unit circle and for |p| < 1/2. O

Proof of Corollary B3l First, by a direct calculation (see, for example, [, p. 529])
one can obtain

|(r*(2))'] = |B'(2)r(2) = r'(2) B()]| for |2] = 1.

Let A satisfy [A| > 3. Take p = —1/(B(z) + A). Then |p| < 1/2. So, Theorem B.2
gives us

(Ar'(2) + (B(2)r'(2) = B'(2)r(2))] < [As'(2) + (B(2)s'(2) — B'(2)s(2))]-
Now, choose the argument of A such that
[Ar(2) + (B(2)r'(2) — B (2)r(2))| = [M'(2)| + | B(2)r' (2) — B'(2)r(2)]-
Then we have
AL ()] + 1(r(2))'] < |As'(2) + B(2)s'(2) — B'(2)s(2)] < [A] [s"(2)] + [(s™(2))'].

Taking ¢ = 1/|A| gives us the desired inequality. O

Proof of Corollary B For (i), since
[r*(2)| = [r(2)] for [2] =1

and r(z) has all its n zeros in |z| < 1, we apply Theorem with 7(2) and s(z)
being replaced by r*(z) and r(z), respectively.

For (ii), we apply Theorem with 7(2) and s(z) being replaced by r(z) and
r*(2), respectively. O
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