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ABSTRACT. In this paper we introduce and study rational slice monogenic
functions. After proving a decomposition theorem for such functions, we are
able to prove the Runge approximation theorem for slice monogenic functions.
We then show how a similar argument can be used to obtain an analogue of
the Runge approximation theorem in the slice regular setting.

1. INTRODUCTION

Slice hyperholomorphic functions, i.e. slice regular and slice monogenic func-
tions, were introduced in [§], [16], [I7] and further studied in a series of papers;
see e.g. [2], [9], [10], [11], [13]. In their recent work [I8] the authors show that an
alternative definition which works for functions with values in any real alternative
algebra can be given in terms of what they call (following the terminology intro-
duced by Cullen in [I4]) stem functions. To be precise, the idea of stem functions
is already present in the early works of Fueter (see [15]) which eventually led to his
theory of Fueter regular functions. This theory is now very well understood, and
the properties of Fueter regular functions in one or several variables are studied e.g.
in [6]. As it turns out the slice regular functions of [I8] are a slightly more restric-
tive class than the one of [I6], but more natural and thus more suitable to their
analysis. In this paper we will always consider slice hyperholomorphic functions,
i.e. slice monogenic or slice regular, in the sense of [18].

Specifically we show that slice hyperholomorphic functions can be approximated
by polynomials (in the spirit of the classic Runge theorem) on suitable open sets in
R"*!. Unlike what happens with the standard hyperholomorphic functions (either
monogenic or regular), however, not every open set is a domain of hyperholomorphy.
In fact, we know that the natural domains for slice hyperholomorphic functions are
the axially symmetric domains. We will show that any axially symmetric domain
is a domain of regularity.

We first study the case of slice monogenic functions. Since a Clifford algebra
R,, contains zero divisors when n > 3, we will need more restrictive hypotheses in
order to define rational functions, while in the case of the algebra of quaternions,
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rational functions can be defined under weaker assumptions. Thus we prove the
approximation theorems in the case of slice monogenic functions and we then show,
in the last section, how to modify the statements in order to obtain the results in
the case of slice regular functions.

We conclude this introduction by pointing out that slice regular and slice mono-
genic functions are interesting not only for their intrinsic value, but more impor-
tantly because they are the natural tool to define a functional calculus for noncom-
muting operators, [7], as well as a functional calculus for quaternionic operators;
see [3], H, [5].

2. SLICE MONOGENIC FUNCTIONS

The purpose of this section is to provide basic notions about slice monogenic
functions. By C we mean the complex plane whose variable is denoted by z = u-+iwv,
and by R,, we denote the Clifford algebra over n imaginary unit ey, ..., e, such that
eiej + eje; = —20;5, where 0;; denotes the Kronecker’s delta. As is customary, we
will denote by e4 = e;, ...e;, a generator of R, as a real vector space. The index A
denotes the ordered set {i1,...,4,} in the power set p(1,...,n) where i; < ... < i,
while for A = () we set ey = 1. An element in R, is written as a = ) 4 aaea,
aa € R, and it is obvious that the dimension of the real vector space R,, is 2.
The elements of the form Z?Zl a;e; are called 1-vectors or vectors and can be
identified with (a1,...,a,) € R™, while the elements of the form ag + >, a;e;
are called paravectors and can be identified with (ao,...,a,) € R**!. An element
a =) 4a4ea, where the length |A| of the index A is k, is called a k-vector. Any
Clifford number can be written by putting in evidence its k-vector part, denoted
by [k, K =0,...,n, as a = [a]p + [a]1 + ... + [a],; note that [a]y corresponds to
the scalar part of a. The conjugate a® of an element a € R,, is defined by ef = —e;,
(e;ej)¢ = eje; and then by natural extension. We obtain that

a® = lalo — [a]1 — [a]2 + [als + ...,

where the signs are repeated with periodicity four. The vectors of norm 1 form an
(n — 1)-sphere defined by

n
S:Sn—l :{a161+-.-+an6n ‘ Zaf :1}
=1

For any choice of an element I € S the set of paravectors of the form u + Iv,
u,v € R, spans a complex plane C;. In particular, the notation (C}' will denote the
half plane defined by

Cr={u+1Iv|uwveRv>0}

Among the open sets in R"*! there are some that are important in our theory since
they are the natural domains on which slice regular functions will be defined.

Definition 2.1. Let O C R"*!. We say that ( is axially symmetric if, for all
u—+ Iv € Q, the (n — 1)-sphere u + Sv = {u + Jv | J € S} is contained in .

Given an open set D C C, the smallest axially symmetric open set containing D
is denoted by 2p and is given by

Qp={¢=u+Iv|z=u+ive D, I €S}
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We now introduce some terminology following [I§].

Definition 2.2. A function F: D C C — R, ® C defined by F(z) = a(z) +i5(2)
where z =u+iv € D, a, 8 : D — R,,, and where a(Z) = a(z) and B(z) = —S(2)
whenever 2,z € D, is called a stem function. Given a stem function F', the function
f =Z(F) defined by

(1) f(@) = flu+Iv) := a(u,v) + 15(u, v)
for any q € Qp is called the slice function induced by F.
Remark 2.3. Note that Z(F) is well defined since o and f are respectively even

and odd functions in the second variable. The function Z(F') is said to be real (see
[18]) if the components «, § are real-valued.

Definition 2.4. Let D be an open set in C and let F(z) = a(z)+if(2), z = u+iv,
be a stem function. Assume «, 3 : D — R,, are C! functions satisfying the Cauchy-
Riemann system

da 0B _
ou  ov
da 0B
%4‘%—0.

The function f = Z(F) : Qp — R, is called a slice monogenic function, and the
set of slice monogenic functions on Qp will be denoted by SM(p).

In the paper [8] the authors give a slightly different definition for a class of
functions, which we will call s-monogenic:

Definition 2.5. Let U be an open set R"*1. A real differentiable function f :
U — R, is said to be s-monogenic if, for every I € §, its restriction f; of f to the
complex plane C; satisfies
%(% +I(%)f1(u+vl) =0,
The definition of slice monogenic functions immediately implies the following
result; see [I8]:

Proposition 2.6. Let f: Qp — R, be a slice monogenic function. Then for every
1 €S the function f satisfies

1,0 0

(2 I—) Iv) =

2(8u + ov flustTv) =0,
on UNC;y.

In other words:
Corollary 2.7. Slice monogenic functions are s-monogenic.

Conversely, functions s-monogenic are slice monogenic only over axially symmet-
ric domains such that their intersection with any complex plane C; is connected.
These domains will be called axially symmetric slice domains. This partial inverse
of the previous corollary is based on the following result (see [12]), which is a con-
sequence of the validity of the Identity Principle on slice domains; see [8]. In the
case of slice regular functions over quaternions in the sense of [16], an analogous
formula appeared in [2] (and see also [I1]).
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Theorem 2.8 (Representation Formula). Let f be an s-monogenic function on an
azially symmetric slice domain Q@ C R™"*L. Choose any J € S. Then the following
equality holds for all v = u + vl € :

(2)
flutvl)= % f(u—|—vJ)—|—f(u—vJ)} —l—I% [J[f(u—vJ)—f(u—H)J)} =a(u,v)+I8(u,v).

Moreover, o and B depend only on u,v € R such that v+ Jv C Q, but do not
depend on J € S.

Since it is immediate to verify that o and § satisfy the properties described in
Definition 224 we therefore have (see also [18]):

Corollary 2.9. Functions s-monogenic on axially symmetric slice domains are
slice monogenic.

Formula (@) holds in a greater generality; in fact it holds for slice functions
(not necessarily regular) and it holds on axially symmetric domains which are not
necessarily slice domains. Indeed in [I§] the authors prove the following result:

Theorem 2.10. Let f be a slice function defined on an azxially symmetric open set
Q. Then f satisfies the Representation Formula.

Remark 2.11. Consider the set SM(Q) of slice monogenic functions on an axially
symmetric open set 2. The set is clearly closed under addition, but it is a more
interesting fact that it is also possible to define a notion of product between two
of its elements: consider two slice monogenic functions f = Z(F), g = Z(G). We
define (see [18]) f-g := Z(FG), where FG is the standard pointwise multiplication
of the stem functions:

FG = (a+1iB)(y +i0) = (ay — B6) + i(ad + 7).

It is immediate to verify that SM(Q) is a ring under these two operations. Note
that this product coincides with the *-product of s-monogenic functions defined in
[9) in the case in which  is a slice domain. In fact we have

I(FG) =Z(F) *Z(G).
The set SM(Q) can also be considered as a right module on R,,.

An s-monogenic function fulfills a property called the Splitting Lemma (see [§])
which allows us to decompose it as the sum of holomorphic functions. This property
also holds for slice monogenic functions:

Lemma 2.12 (Splitting Lemma). Let ) be an azially symmetric set and let f €
SM(Q). For any I € S and any choice of I, ..., I, € S mutually orthogonal and
orthogonal to I, there exist 2% holomorphic functions Fa : U NC; — C; such
that

fr(@+1Iy) =Y Fale+Iy)la.
A
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Proof. By hypothesis, f = Z(F), where F(z) = a(z) +i8(2), z = z + iy, a, S
satisfy the Cauchy-Riemann system and f;(z + Iy) = a(x + Ty) + I8(x + Ty). Set
I, = I and consider 2"~ ! mutually orthogonal elements I, ..., I, € S, all of which
are orthogonal to I, and take them as a basis for R,,. Since «a, g are R,-valued we
can write

fr="> aala+I D bala= > (coa+cial)la.

Aep(l,...,n) Aep(l,...,n) Aep(2,...,n)

Since, with obvious meaning of the symbols, (9, + I9,)fr = 0, we obtain the
equations

arCOA - ayclA =0,

Oycoa + 0zc14 =0,

which are equivalent to the request that the functions F4 = cga + Ic14 are holo-
morphic. ([

3. RUNGE THEOREMS

In this section we will prove several versions of a slice monogenic analog of the
classical Runge theorems, for which we refer the reader to [19]. To start with, we
briefly discuss the notion of a “quotient” of two slice monogenic functions. As is
well known (see [1]), in a Clifford algebra R,,, n > 3, there are zero divisors, thus
the norm defined in R,,, |a|® := Y, a% cannot be multiplicative; i.e. in general
lab| # |a||b|]. Note also that in general |a|?> does not coincide with aa®: in fact
la|* equals the scalar part of aa®. Whenever aa® = > , a% and a # 0 the Clifford
number a is invertible and its inverse is a®/aa®. Thus it is obvious that in general,
given a function, it will not be possible to define its inverse without adding further
hypotheses. If a function F' = « + i is a real nonidentically zero slice function,
then it is invertible and its inverse is

1
L= m(a —ip).
Given a stem function F : D C C — R, F(z) = a(z) + i5(z), let us define the
function F° (see [18]) by F°(z) = a(2)¢ + i8(2)°. Let f = Z(F) and let N(f) be
the function Z(FF*). Note that

F(2)F(2) = (a(2) +iB(2))(a(2)® +i8(2)°)
= a(z)a(2)" = B(2)B(2)° + i(a(2) B(2)° + B(2)a(2))

and

F(2)F(2) = (a(2)® +18(2)°)(a(z) +iB(2))

a(z)®a(z) = B(2)°B(2) + i(a(2)B(2) + B(2) a(2)).

Remark 3.1. The noncommutative setting implies that, in general, FF¢ # F°F.
Moreover, in general FF¢ (and similarly F°F') is not a real slice function (according
to Remark [23]) since a(z)a(2)¢ —B(2)B(2)¢ and a(2)5(2)°+ f(2)a(z)° are not real-
valued functions.



1792 FABRIZIO COLOMBO, IRENE SABADINI, AND DANIELE C. STRUPPA

In the sequel, by Z,; we will denote the set of zeros of a function g. We have the
following:

Proposition 3.2. Let FF: D C C —» R, be a stem function such that F°F is
a real slice function not identically zero on a dense subset of D. Let Qp = {x =
ut+Iv|z=u+iv e D, I €S} and f =Z(F) be a slice monogenic function. Then
the slice monogenic inverse of f is the function

= T(F°F)'F°)
defined on Qp \ Zn(ppe)-

Proof. The stem function ((F°F)~'F¢)(z) = ~(z) + i6(z) has components v, &
satisfying the Cauchy-Riemann system because it is obtained from F, F¢, which
satisfy the Cauchy-Riemann system. Moreover, we have

(FCF) 'F¢)F = (F°F)"'F°F = 1.
Finally, observe that FF¢ is a stem function with a real component, so
I((F°F)"'Fe) = Z((F°F) ") Z(F°)

and the singularities of the function come from those of Z((F¢F)~1). The statement
follows. O

Remark 3.3. The Identity Principle does not hold for slice monogenic functions
unless they are defined on domains intersecting the real axis. Thus F°F can be
identically zero even though F' does not vanish identically; see Remark 12 in [18].

Remark 3.4. In [9], we have introduced the notion of a reciprocal of an s-monogenic
function f defined on an axially symmetric slice domain, and we have denoted it
by f~*. In order to do that, we have to introduce the conjugate f¢ of the function
f and its symmetrization f* = f x f° see [9]. Outside the set Zys of the zeros of
f* we can define the so-called slice monogenic reciprocal of f as (f*)~!f¢. By its
definition, the s-monogenic reciprocal of f is always defined if f is not identically
zero, since for s-monogenic functions defined on slice domains the Identity Principle
does hold.

Among the slice monogenic function we now consider, in particular, a polynomial
Q in the paravector variable z of the form a(x) = 2"a,, +2" ‘a,_1+...+za; +ao,
which is a slice regular function obtained as a = Z(A) from the polynomial

n

n
A(z) = 2"an + 2" tap_ 1+ ...+ za; +ap = Z(u +iv)Fay, = Z(uk + ivg)ag,

k=0 k=0
where
E\ o E\ i
(3) U = Z CJut v — Z CJu I
Jj=0 (mod 4) J j=2 (mod 4) J
and

o e B G 2 ()

j=1 (mod 4) j=3 (mod 4)
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are real quantities. We have

n n 2n

(5) ACA = (Z U + 1V ak) (Z(U,k + ivk)ak) = Z(Uk + ivk)dk,
k=0 k=0 k=0

where dj, = Zf 0@5ak—j-

Remark 3.5. The expressions @), @) and (@) clearly show that AA° is a slice
function. Its coefficients dj are such that df = Zfzo(agak,j)c = Z?:O aj_ja; =
di, but they are not necessarily real.

Definition 3.6. Given two polynomials a = Z(A) and b = Z(B) such that A°A is
real and not identically zero, we call the (left) rational function a function of the
form a='b := Z((A°A)~1A°B).

In an analogous way, one can define right rational functions, i.e. functions of the
form a=1b := Z(BA°(A°A)~1), and the two theories are equivalent. Rational slice
monogenic functions admit the following characterization:

Proposition 3.7. A slice monogenic function f : Q — R,, is rational if and only

if for any I € S and any choice of Is, ..., I, completion to basis of R,, there are
2"~ rational functions R4 such that
(6) fru+Iv) =" Ra(u+ Iv)la,

A

for any u+ Ive QNCy.

Proof. Assume that f is rational. By assumption there exist two polynomial stem
functions A and B, where A(z) = a(z) +i8(2) and B(z) = v(z) + id(z), and AA°
is real (in the sense of Remark 23)) such that f = a=1b = Z((AA°)"1A°B). Then
the restriction of f to Cj is given by

fr(u+Iv) = (AA9) "L A°B)(u + Iv)
(7) = (aa® — BB°+ I(a®B + B%)) " Haty — 6 + 1(a®d + B%y))(u+ Iv).
Now choose a completion I, ..., I, of I = I; to a basis of R,, such that I;I;+1;I; =

—20;; and note that the polynomial a®y — 8% + I(a®é + 5°y) can be written in the
form

Z PA(U+ I’U)IA.
A€p(2,...,n)

Since the function (aa® — B8+ I(acB+ Ba))~! has coefficients in Cy, it is imme-
diate that (@) is of the form (@l). Conversely, let us assume that for a chosen I € S
the Splitting Lemma applied to the restriction f; of f to C; can be written in the
form (). The representation formula shows that the function f can be obtained as

:L‘)Z[ZRA( IA+ZRA IA}-FI I[ZRA IA_ZRA }
A
= O‘(u’ U) +Iwﬂ(uvv)v

where Z = u+41Iv and Z = u—Iv, and o, 8 depend only on u, v but are independent
of I. We have to show that f is of the form f = a~'b. Every rational function
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Ry : QN Cr — Cy can be written as Ra(Z) = Pa(Z)/Qa(Z), where Py and Q4
are polynomials. We also have

_ Pa(Z)  Pa(2)
a(u,v)—zA:<QA(Z)+QA(Z )IA

=" 05" (u,v)(Qa(Z)Pa(Z) + Qa(Z)Pa(Z)) I,
A

where
Qu(u,v) = Qu(2)Qa(2) = (Y. 77ar) (Y Z"a,)
r=0 r=0
2m
_ Z(Z’I‘ZS—T + Zs—rZr)ara57T
s=0

and Q4 is defined on 2N C;. Now note that (Z"Z5~" 4+ Z*~"Z") is real. Thus it
depends only on w,v but not on I € S, while a,, € C;. Setting

Q(u,v) := H Qa(u,v)
A

we can write
au,v) = Qu, ) Y II 2o(v)@uZ)Pa(2) + Qa(Z)Pa(2)L4|
QA
and, in an analogous way, we obtain
Blu,v) = Qu,v) [ D7 [T Qo v)(Qa(2)Pa(2) + Qu(2)Pa(2))14]
= Q(u,v)*lB(u,vf#A

where Q has coefficients in C; while the polynomials A, B have coefficients in R,,.
Finally, we obtain that in the open set {2 the function f can be written as

flz) = Q A+ LB)(u+ I,v) = ((Q°Q) ' Q) (A+ LB)(u + I,v),
and so
f=Z((Q°Q) ' Q°(A +iB)),

where Q°Q is a real function nonidentically zero since the coefficients of Q belong
to the subalgebra C; of R,,. O

By following the previous discussion it is easy to show the following result:

Proposition 3.8. The singularities of a rational function are isolated (n — 1)-
spheres of the form u + Sv.

Proof. Let r = a~'b be a rational function. Its singularities come from the set of
zeros of the function A°A which are isolated points, so the singularities are isolated
(n — 1)-spheres (in particular, a real point when the sphere has radius equal to
zero). O
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For a study of the poles of a slice regular function defined over a ball, we refer
the reader to [20].

Remark 3.9. The proof of the previous proposition shows that if zy is a pole of
a rational function, then all the points of the sphere defined by zg are poles. We
point out that the poles belonging to a sphere have order less than or equal to
dega. There cannot be essential singularities.

Definition 3.10. We will say that a singularity z = zy of a function f is a pole if
it belongs to an isolated (n — 1)-sphere of singularities and lim, ., |f(z)| = +o0.

Proposition [3.8 has the following immediate consequence:
Corollary 3.11. The singularities of a rational function are all poles.

We are now ready to prove the analogue of the Runge theorem. By the symbol
R+ we will denote R™** U {oo}.

Theorem 3.12. Let K be an azially symmetric compact set in R" ™1, and let A
be a set having a point in each connected component of R*T1\ K. For any azially
symmetric open set Q D K, for every f € SM(Q) and for any € > 0 there ezists a
rational function r whose poles are spheres in A such that

|f(z) =r(z)] <e

forallx € K.

Proof. Let us consider the restriction of the function f to a complex plane C;. The
proof of the Splitting Lemma shows that for every I € S and every choice of
a completion of I to a basis of R,, of unit vectors mutually orthogonal, there are
27~! holomorphic functions Fs : Q2N C; — Cy such that for any z = u + v, the
restriction of f to C; can be written as

f[(z) = ZFA(Z)IA-
A

By the standard Runge theorem (see [19]) we can find 2”1 rational functions
R4 (u + Iv) with poles in AN Cy such that

€
on
Since 2 N C; is symmetric with respect to the real axis, the structure formula of
Theorem [2.8 allows us to extend the function r(u + Iv) to the whole  as

(8) |Fa(u+ Iv) — Ra(u+ Iv)| < Yu+Iv e QNCy.

r(u+ Iv) = % [r(u + Iv) +r(u—Iv) + I I[r(u—Iv) — r(u+ IU)]} .
Let us now consider |f(q) — r(¢)|. Using again the structure formula, we have
17(a) = r(@)l = | [ £t To) + flu = Fo) + LT~ To) = fu+ o)

—%[r(u—i—fv) +r(u— Tv) + I I[r(u— Iv) —r(u—i—Iv)]H.
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By the Splitting Lemma we can write

- ’%[XA:FA(U-FIU)IA + Fa(u—Tv)I4
n IqI[ZA: Fa(u—Iv)I, — XA:FA(u + Iv)IA)]}
_%[§RA(U+I’U)IA+§RA(U_IU)IA
n LIIQA: Ra(u— Tv)l4 — EA:RA(U + Iv)IA]} \
_ %[ZANFA(U-FIU)—RA(U"‘I”N

+ ) |Fa(u—1Iv) — Ra(u— Iv)]
A

+ Y | Fa(u—Iv) — Ra(u— Iv)|
A

=Y |Fa(u+ Iv) = Ra(u+ Iv)||.
A

Thus, using (B) we obtain

|f(g) —r(g)] <e.
The result follows. O

In particular, we have the following result which allows us to approximate a slice
regular function with polynomials:

Theorem 3.13. Let K be an azially symmetric compact set such that Rn+1 \ K
is connected (and Cr\ (K N Cy) is connected for all I € S) and let f € SR(Q)
where D K is an open set. There exists a sequence { P, } of polynomials such that
P.(q) — f(q) uniformly on K.

Proof. Our assumptions imply that R?*1\ K has only one component. Thus we
can apply Theorem B2 with A = {oo}. O

We also have the following version of the Runge theorem which holds for open
sets:

Theorem 3.14. Let Q be an azially symmetric open set in R*+1, let A be a set
having a point in each connected component of R*+1\ Q and let f € SR(Y). Then
f can be approzimated by a sequence of rational functions {r,} having their poles
in A uniformly on every compact set in Q. If R\ Q is a connected set, then we
can set A = {oo} and f can be approzimated by polynomials uniformly on every
compact set in S).

Proof. Consider a sequence {K,} of axially symmetric compact subsets of Q such
that K,, € K, 41, any compact set in € is contained in K, for some n, and each
component of R**+1\ K, contains a component of R*+1\ Q for all n. This last
assumption implies that each component of R*+1 \ K, contains a point in A. By
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Theorem [B.12] there exists a function 7,, having poles in A such that

F@) =@ <= g€ Ky

If K is any axially symmetric compact subset of €2, then our assumptions assure
that there exists IV such that K C K, for all n > N. Thus

1
@) =gl <~ g€ K, n=N,
and this completes the proof. ([

By suitably modifying the proof of the previous result one can prove the following
theorem:

Theorem 3.15. Let Oy, Qy be azially symmetric open sets in R™"! such that
0y C Qo and each connected component of R*+1\ Q; intersects R**t1\ Qy. Then
every function in SR(Q1) can be approrimated by functions in SR(2) uniformly
on every compact set in ;.

Definition 3.16. A pair of axially symmetric open sets Q, € in R™*! such that
0y C Qy and each connected component of R**+1\ ; intersects R**1 \ Qs is said
to be a Runge pair.

We also have the following slice monogenic version of the Mittag-Leffler theorem:

Proposition 3.17. Let Q1,Qy be azially symmetric open sets in R"T and let
feSR(Q NQy). Then there exist f; € SR(;), 7 = 1,2, such that

(@) = f1(q) — f2(q), on Q1 N Q.

Proof. If we assume that ;, (5 are bounded with piecewise smooth boundary and
that f is slice regular on the closure of 2; N s, then the statement follows from
the Cauchy formula. In fact, set T'y := 9(€2;) N Qs and Ty := 9(Q2) NQy, and recall
that the Cauchy kernel is

S~ Y(s,q) = —(¢* — 2Re(s)q + |s|*) (¢ — 7).

Then we have

_ -1 _ -1 1
f(Q)_/MQmQQ)m(C, S (s,q)ds[—/rm(& S (s,q)dsri—/ ST (s, q)dsrf(s),

—(FQQCI)
where the minus sign refers to the orientation of two curves I'; N Cy in the plane
Cy. If we set

filg) = / SN s, q)dsr,  falg) = / §71(s,q)dsr £(s),
(MyNCp)+ —(P2nCp)*

we get f; € SR(Q;), j = 1,2, and the statement follows. In the general case,
consider a sequence ;5 of open axially symmetric subsets of £, j = 1,2, such
that U, Qjrx = Qj, Qi € Qj k41. Assume that 0§, is piecewise smooth and that
(1 UQg, Q1 Uy) form a Runge pair for every k. Consider the restriction of f
to the open set Q15 N Q. By the preceding discussion we have that there exist
fix € SR(;x) such that
J100xnQ, = J1k — for
on 21N Qsk,. Repeating the procedure for the index k+1 and taking the difference,
we get
fie+1 — fik = fops1 — for
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on 2y N Qog. This difference defines a slice regular function Fj, on Q5 U Qo. By
Theorem BI85 there exist Gy € SR(Q; U Qy) such that

1
|Fy(q) — Gi(q)] < ok Q1 -1 U Qs 1.
Now define
fila) = fnq +ZFk (@), =12

Since we can write

file) = firlq +Z (fre4+1(q) = fie(@) — Gr(q))

= finlq +Z fikr1(q) = fir(q) — Gi(q))

N—1
= fin(9) + Z (Fr(q) — Gr(9)) — ) Gr(a)
k=N k=1
we have that f; € SR(£2;) and the statement follows. O

Proposition 3.18. If an open set U in R™! is azially symmetric, then it is a
domain of slice monogenicity.

Proof. Assume that U is an axially symmetric open set and consider its intersection
with a complex plane C; given an open set which is a domain of holomorphy on that
plane. This fact implies that there is a function f which cannot be holomorphically
extended outside U N Cy. Call F' the slice monogenic function obtain by f through
monogenic extension. If F' was extendable as a slice monogenic function, then also
its restriction would be holomorphic over a set U’ N C; D U N C;. O

4. SLICE REGULAR FUNCTIONS

The results that we have stated for slice monogenic functions can be repeated
for a different class of functions: the so-called slice regular functions, originally
introduced in [I6] and [I7]. These functions are defined on open sets of the space of
real quaternions H and are H-valued. Since the algebra of quaternions is a division
algebra, some of the results in the previous sections can be proved under weaker
assumptions, and, for this reason, we will repeat them in this section. Let us start
by listing some basic notions on slice regular functions. A real quaternion ¢ will be
written as ¢ = xg +x1i+x2j+x3k. The purely imaginary quaternions are elements
of the form x1i + z2j + x3k; those of norm 1 form a 2-sphere in H denoted by S.
As in Section 2, we will introduce the terminology for the open sets in H. There
are some that are important in our theory:

Definition 4.1. Let Q2 C H. We say that 2 is axially symmetric if, for all x + Iy €
Q, the 2-sphere z + Sy = {z + Jy | J € S} is contained in 2. A connected open set
intersecting the real axis and such that its intersection with any complex plane C;
is connected is called a slice domain.

Given an open set D C C, the least axially symmetric open set containing D is
again denoted by Qp, and it is defined as in Section 2.
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The definition of slice regular functions that we will use is slightly different from
the one in [16] and is given as follows; see [18].

Definition 4.2. A function F' : D C C — Hg defined by F(z) = a(z) + if(2)
where z = u +iv € D, o, 8 : D — H satisfying a(2) = a(z) and 5(z) = —8(z)
whenever z,Z € D is a stem function. Given a stem function F', the function
f =I(F), defined by

(9) f(@) = flu+Iv) := a(u,v) + 15(u, v)

for any ¢ € Qp, is called is said to be the slice function induced by F. A slice
function is said to be real if both o and 3 are real-valued.
If o, 3 : D — H are C! and satisfy the Cauchy-Riemann system,

9a 96 _
ou v
da 0B
o Tou O

the function f = Z(F) is called a slice regular function.

Slice regular functions satisfy the Splitting Lemma (as the slice regular functions
in the sense of [I6] do; see for example [17]). Since the proof is analogous to the
one given for slice monogenic functions, we omit it and just give the statement:

Lemma 4.3 (Splitting Lemma). Let Q be an azially symmetric set and let f €
SR(Q). For any I € S and any choice of J € S orthogonal to I there exists two
holomorphic functions F,G: UNC; — Cj such that

fr(+1y) = F(z + Iy) + G(z + Iy)J.

Consider the set SR(€2) on an axially symmetric open set 2. Besides the notion
of sum, defined pointwise, the set can be endowed with the operation of product.
If f =7Z(F) and g = Z(G) are two slice regular functions we define (see [I§]),
f g :=Z(FG), where FG is the standard pointwise multiplication of functions.
Once again we can show that SR(U) is a ring, which can also be considered as a
right vector space on H.

4.1. Runge theorems for slice regular functions. As we have done in the case
of slice monogenic functions, given a stem function F : D C C — H, F(z) =
a(z) +i8(z), we can define the function F° by F¢(z) = a(z)¢ + i8(z)°, where a°
denotes the quaternionic conjugation ¢¢ = xg — izy — jxe — kxs. Let f = Z(F) and
denote by N(f) the function Z(FF*). Note that

F(2)F(2) = (a(2) +iB(2))(a(z)" +iB(2)°)
= a(2)a(2) — B)B)° +i(a(z)8(2)° + B(z)al=)°)
— a(2)2 = [B) + i(a(2)8(2)° + (al(2)8()°))
and
F(2)F(2) = (a(2)® +iB(2)%)(a(2) + i5(2))
= a(2)%a(z) = B(2)°B(2) + i(a(2)°B(2) + B(2)a(z))
= la(2)] = |B(2)* +i(a(2)°B(2) + (a(2)°B(2))°),
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so, in general, FF¢ # F°F. However, here we observe a first difference with the
slice monogenic case:

Proposition 4.4. The functions FF¢ and F°F are real slice functions.

Proof. Tt is an immediate consequence of the fact that |a(2)|? — |3(2)|? is trivially

real-valued and (a(z)¢8(2) + (a(2)¢B(2))¢)¢ = (a(2)°8(2))° + a(2)°B(z). Thus
a(2)°B(z) + (a(2)°B(z))° is real-valued. O

By Z, we will denote the set of zeros of a function g. By virtue of Proposition 4]
the n0t1on of a slice regular inverse of a function can be given for all the functions
for which F'F€ is not identically zero:

Proposition 4.5. Let F': D C C — H be a stem function such that F°F is not
identically zero on a dense subset of D. Let f =Z(F) and Qp ={g=u+1Iv | z =
u+iv € D, I €S}. Then the slice reqular inverse of f is the function

fH=T((F°F)~'F°)
defined on Qp \ Zn(ppe)-
Proof. See the proof of Proposition 41 O

In particular, we now consider a polynomial @ in the variable ¢ of the form
a(q) = ¢"an +q" ta,_1 + ...+ qa; + ag which is a slice regular function obtained
as a = Z(A) from the polynomial

n n
A(z) = 2"a, + M ap 1+ ..+ zar +ag = Z(m + iy)kak = Z(uk + vk )ag,
k=0 k=0
where the real quantities uy, vi, can be obtained as in (@) and ().
We have

n n 2n
ACA = (Z ug + ”)k ak) (Z(uk + iUk)ak) = Z(uk + ivk)dky
k=0 k=0 k=0

where dj, = Zk—o ajak—j is a real number. Moreover, A°A is not identically zero if
A is not identlcally Zero.

Definition 4.6. Given two polynomials a = Z(A) and b = Z(B), we call the (left)
rational function a function of the form a=1b := Z((A°A)~1AB).

By the same arguments used earlier, it is easy to prove the following result:

Proposition 4.7. The singularities of a rational function are isolated 2-spheres of
the form ug + Svg.

Definition 4.8. We will say that a singularity ¢ = ¢ of a function f is a pole if it
belongs to an isolated 2-sphere of singularities and it is such that lim, ¢, |f(q)| =
—+o0.

Proposition [£.7] has the following immediate consequence:

Corollary 4.9. The singularities of a rational function are poles.
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We are now ready to prove the analogue of the Runge theorem:

Theorem 4.10. Let K be an azxially symmetric compact set in H, and let A be a
set having a point in each connected component of H\ K. For any axially symmetric
open set Q D K, for every f € SR(Q) and for any € > 0 there exists a rational
function r whose poles are spheres in A such that

[f(q) —r(g) <e
forallq e K.

Proof. Let us consider the restriction of the function f to a complex plane C;. The
proof of the Splitting Lemma shows that for every I € S and every J in S
perpendicular to I, there are two holomorphic functions F,G : U N C; — Cj such
that for any z = u + Iv, the restriction of f to C; can be written as

fi(z) = F(z) + G(2)J.

By the standard Runge theorem (see [19]) we can find two rational functions
R(u+ Iv) and S(u+ Iv) with poles in A N Cy such that

(10)

|F(u+1v)—R(u+1v)| < i and |G(u+1Iv)—S(u+Iv)| < Z Yu+Iv € QNCy.

Since QN C; is symmetric with respect to the real axis, the structure formula allows
us to extend the function r(u + Iv) = R(u + Iv) + S(u + Iv)J to the whole Q as

1
r(u+ Iv) = 5 {r(u + Iv) +r(u—Iv) + I I[r(u— Iv) —r(u+ Iv)]|,
and it allows us to conclude as in the proof of Theorem FI0 O

In particular, we have the following result which allows us to approximate a slice
regular function with polynomials:

Theorem 4.11. Let K be an axially symmetric compact set such that H\ K is
connected (and C;\ (K NCy) is connected for all I € S) and let f € SR(Q), where
Q D K is an open set. There exists a sequence {P,} of polynomials such that
P.(q) — f(q) uniformly on K.

Proof. Our assumptions imply that H \ K has only one component. Thus we can
apply Theorem .10 with A = {oco}. O

We also have the following version of the Runge theorem which holds for open
sets:

Theorem 4.12. Let Q be an azially symmetric open set in H, let A be a set having
a point in each connected component of H\ Q and let f € SR(QY). Then f can
be approximated by a sequence of rational functions {r,} having their poles in A
uniformly on every compact set in Q. If H\ Q is a connected set, then we can set
A = {oo} and f can be approximated by polynomials uniformly on every compact
set in §Q.
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By suitably modifying the proof of the previous result one can prove the following
results:

Theorem 4.13. Let 2y, Q5 be axi_ally symmetric open sets in H such that Q1 C Q9
and each connected component of H\ Q intersects H\ Qq. Then every function in
SR(21) can be approzimated by functions in SR(Q2) uniformly on every compact
set in €.

Proposition 4.14. An axially symmetric open set is a domain of slice reqularity.

If one considers the case of slice regular functions in the sense of [16] which are
defined on axially symmetric slice domains, an analogous result is proven in [11].
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