HAMILTON'S GRADIENT ESTIMATES AND LIOUVILLE THEOREMS FOR FAST DIFFUSION EQUATIONS ON NONCOMPACT RIEMANNIAN MANIFOLDS

XIAOBAO ZHU
(Communicated by Chuu-Lian Terng)

Abstract

Let M be a complete noncompact Riemannian manifold of dimension n. In this paper, we derive a local gradient estimate for positive solutions of fast diffusion equations $$
\partial_{t} u=\Delta u^{\alpha}, \quad 1-\frac{2}{n}<\alpha<1
$$ on $M \times(-\infty, 0]$. We also obtain a theorem of Liouville type for positive solutions of the fast diffusion equation.

1. Introduction

In this paper we study the fast diffusion equation (FDE for short)

$$
\begin{equation*}
\partial_{t} u=\Delta u^{\alpha} \tag{1.1}
\end{equation*}
$$

where $\alpha \in(0,1)$. FDE arises in the study of fast diffusions, in particular in diffusion in plasma ([3]), in thin liquid film dynamics driven by Van der Waals forces ([7], [8]), and in models of gas-kinetics (4]). It also arises in geometry: the case $\alpha=$ $\frac{n-2}{n+2}$ in dimensions $n>3$ describes the evolution of a conformal metric by the Yamabe flow ([18]); the case $\alpha=0, n=2$ describes the Ricci flow on surfaces ([10], [6], [16]). Precisely, we can find the relationship from $\partial_{t} u=\Delta\left(\frac{1}{\alpha} u^{\alpha}\right)=$ $\operatorname{div}\left(u^{\alpha} \frac{\nabla u}{u}\right)$ and $\operatorname{div}\left(\frac{\nabla u}{u}\right)=\operatorname{div}(\nabla \log u)=\Delta \log u$. We refer the reader to the book by Daskalopoulos-Kenig ([5]) and the references therein for more about FDE.

As a nonlinear problem, the mathematical theory of FDE is based on a priori estimates. In 1979, Aronson and Bénilan obtained a celebrated second-order differential inequality of the form ([1])

$$
\sum_{i} \frac{\partial}{\partial x^{i}}\left(\alpha u^{\alpha-2} \frac{\partial u}{\partial x^{i}}\right) \geq-\frac{\kappa}{t}, \quad \kappa:=\frac{n}{n(\alpha-1)+2},
$$

which applies to all positive solutions of (1.1) defined on the whole Euclidean space on the condition that $\alpha>1-\frac{2}{n}$.

[^0]There are few results about FDE on manifolds. In 2008, Lu, Ni, Vázquez and Villani studied the FDE on manifolds ([13]) and got a local Aronson-Bénilan estimate. We do not state their result here. What we will do in this paper is to get Hamilton's gradient estimates. First, let us recall what Hamilton's result is:

Theorem (Hamilton [9]). Let \boldsymbol{M} be a closed Riemannian manifold of dimension $n \geq 2$ with $\operatorname{Ricci}(\boldsymbol{M}) \geq-k$ for some $k \geq 0$. Suppose that u is any positive solution to the heat equation with $u \leq M$ for all $(x, t) \in \boldsymbol{M} \times(0, \infty)$. Then

$$
\frac{|\nabla u|^{2}}{u^{2}} \leq\left(\frac{1}{t}+2 k\right) \log \frac{M}{u}
$$

Hamilton's estimate tells us that when the temperature is bounded we can compare the temperature of two different points at the same time.

In 2006, P. Souplet and Qi S. Zhang ([14]) generalized Hamilton's estimate to complete noncompact Riemannian manifolds. In 2007, B. Kotschwar (11) used Hamilton's estimate and obtained a global gradient estimate for heat kernels on complete noncompact manifolds. In 2010, M. Bailesteanu, X. Cao and A. Pulemotov ([2]) generalized Souplet and Zhang's result to Ricci flow. Also in 2010, on complete noncompact Riemannian manifolds, J. Wu (15) obtained a localized Hamilton-type gradient estimate for the positive smooth bounded solutions to the nonlinear diffusion equation $u_{t}=\Delta u-\nabla \phi \cdot \nabla u-a u \log u-b u$, where ϕ is a C^{2} function and $a \neq 0$ and b are two real constants. We would like to remark here that this equation was also studied by Y. Yang in ([17), where they derived a parabolic gradient estimate.

In this paper, we consider the positive solution for FDE (1.1). Like what they did for the heat equation, we derive a similar Hamilton's estimate for FDE. Inspired by the inequality of Aronson and Bénilan, we let $\alpha>1-\frac{2}{n}$ throughout this paper. Note that the pressure $\tilde{v}:=\frac{\alpha}{\alpha-1} u^{\alpha-1}<0$,

$$
\partial_{t} \tilde{v}=(\alpha-1) \tilde{v} \Delta \tilde{v}+|\nabla \tilde{v}|^{2}
$$

Conveniently, we let $v=-\tilde{v}$. Then $v>0$ and satisfies

$$
\begin{equation*}
\partial_{t} v=(1-\alpha) v \Delta v-|\nabla v|^{2} \tag{1.2}
\end{equation*}
$$

Our main result is the following:
Theorem 1 (Gradient estimates). Let \boldsymbol{M} be a Riemannian manifold of dimension $n \geq 2$ with $\operatorname{Ricci}(\boldsymbol{M}) \geq-k$ for some $k \geq 0$. Suppose that v is any positive solution to the equation (1.2) in $Q_{R, T} \equiv B\left(x_{0}, R\right) \times\left[t_{0}-T, t_{0}\right] \subset \boldsymbol{M} \times(-\infty, \infty)$. Suppose also that $v \leq M$ in $Q_{R, T}$. Then there exists a constant $C=C(\alpha, \boldsymbol{M})$ such that

$$
\frac{|\nabla v|}{v^{1 / 2}} \leq C M^{1 / 2}\left(\frac{1}{R}+\frac{1}{\sqrt{T}}+\sqrt{k}\right)
$$

in $Q_{\frac{R}{2}, \frac{T}{2}}$.

As an application, we get the following Liouville type theorem:
Corollary 1.1 (Liouville type theorem). Let \boldsymbol{M} be a complete, noncompact manifold of dimension n with nonnegative Ricci curvature. Let u be a positive ancient solution to the equation (1.1) with $1-\frac{2}{n}<\alpha<1$ such that $\frac{1}{u(x, t)}=o\left([d(x)+\sqrt{|t|}]^{\frac{2}{1-\alpha}}\right)$. Then u is a constant.

2. Proof of Theorem 1

Let $w \equiv \frac{|\nabla v|^{2}}{v^{\beta}}, \beta>0$ to be determined.
We will derive an equation for w. First notice that

$$
\begin{align*}
w_{t}= & \frac{2 v_{i} v_{i t}}{v^{\beta}}-\beta \frac{v_{i}^{2} v_{t}}{v^{\beta+1}} \\
= & \frac{2 v_{i}\left((1-\alpha) v \Delta v-|\nabla v|^{2}\right)_{i}}{v^{\beta}}-\beta \frac{v_{i}^{2}\left((1-\alpha) v \Delta v-|\nabla v|^{2}\right)}{v^{\beta+1}} \\
= & 2(1-\alpha) \frac{v_{i}^{2} v_{j j}}{v^{\beta}}+2(1-\alpha) \frac{v_{i} v_{j j i}}{v^{\beta-1}}-4 \frac{v_{i} v_{i j} v_{j}}{v^{\beta}} \\
& \quad-\beta(1-\alpha) \frac{v_{i}^{2} v_{j j}}{v^{\beta}}+\beta \frac{v_{i}^{2} v_{j}^{2}}{v^{\beta+1}}, \tag{2.1}\\
w_{j}= & \frac{2 v_{i} v_{i j}}{v^{\beta}}-\beta \frac{v_{i}^{2} v_{j}}{v^{\beta+1}}, \\
w_{j j}= & \frac{2 v_{i j}^{2}}{v^{\beta}}+\frac{2 v_{i} v_{i j j}}{v^{\beta}}-4 \beta \frac{v_{i} v_{i j} v_{j}}{v^{\beta+1}}-\beta \frac{v_{i}^{2} v_{j j}}{v^{\beta+1}}+\beta(\beta+1) \frac{v_{i}^{2} v_{j}^{2}}{v^{\beta+2}} . \tag{2.2}
\end{align*}
$$

By (2.1) and (2.2),

$$
\begin{aligned}
& (1-\alpha) v \Delta w-w_{t} \\
= & 2(1-\alpha) \frac{v_{i j}^{2}}{v^{\beta-1}}+2(1-\alpha) \frac{v_{i} v_{i j j}}{v^{\beta-1}}-4 \beta(1-\alpha) \frac{v_{i} v_{i j} v_{j}}{v^{\beta}} \\
& -\beta(1-\alpha) \frac{v_{i}^{2} v_{j j}}{v^{\beta}}+\beta(\beta+1)(1-\alpha) \frac{v_{i}^{2} v_{j}^{2}}{v^{\beta+1}} \\
& -2(1-\alpha) \frac{v_{i}^{2} v_{j j}}{v^{\beta}}-2(1-\alpha) \frac{v_{i} v_{j j i}}{v^{\beta-1}}+4 \frac{v_{i} v_{i j} v_{j}}{v^{\beta}} \\
& +\beta(1-\alpha) \frac{v_{i}^{2} v_{j j}}{v^{\beta}}-\beta \frac{v_{i}^{2} v_{j}^{2}}{v^{\beta+1}} \\
= & 2(1-\alpha) \frac{v_{i j}^{2}}{v^{\beta-1}}-2(1-\alpha) \frac{v_{i}^{2} v_{j j}}{v^{\beta}}+2(1-\alpha) \frac{R_{i j} v_{i} v_{j}}{v^{\beta-1}} \\
& +4(1-\beta(1-\alpha)) \frac{v_{i} v_{i j} v_{j}}{v^{\beta}}+(\beta(\beta+1)(1-\alpha)-\beta) \frac{v_{i}^{2} v_{j}^{2}}{v^{\beta+1}} .
\end{aligned}
$$

Here, in the second equality, we use the Ricci formula: $v_{i j j}-v_{j j i}=R_{i j} v_{j}$.
Notice that

$$
\begin{equation*}
\nabla w \cdot \nabla v=w_{j} v_{j}=\frac{2 v_{i} v_{i j} v_{j}}{v^{\beta}}-\beta \frac{v_{i}^{2} v_{j}^{2}}{v^{\beta+1}} \tag{2.3}
\end{equation*}
$$

Using (2.3), we obtain

$$
\begin{aligned}
& (1-\alpha) v \Delta w-w_{t} \\
= & 2(1-\alpha) \frac{v_{i j}^{2}}{v^{\beta-1}}-2(1-\alpha) \frac{v_{i}^{2} v_{j j}}{v^{\beta}}+2(1-\alpha) \frac{R_{i j} v_{i} v_{j}}{v^{\beta-1}} \\
& +4(1-\beta(1-\alpha)) \frac{v_{i} v_{i j} v_{j}}{v^{\beta}}+(\beta(\beta+1)(1-\alpha)-\beta) \frac{v_{i}^{2} v_{j}^{2}}{v^{\beta+1}} \\
\geq & -\frac{n(1-\alpha)}{2} \frac{|\nabla v|^{4}}{v^{\beta+1}}-2(1-\alpha) k \frac{|\nabla v|^{2}}{v^{\beta-1}}+2(1-\beta(1-\alpha)) \nabla w \cdot \nabla v \\
& +2 \beta(1-\beta(1-\alpha)) \frac{v_{i}^{2} v_{j}^{2}}{v^{\beta+1}}+(\beta(\beta+1)(1-\alpha)-\beta) \frac{v_{i}^{2} v_{j}^{2}}{v^{\beta+1}} \\
= & 2(1-\beta(1-\alpha)) \nabla w \cdot \nabla v-2(1-\alpha) k \frac{|\nabla v|^{2}}{v^{\beta-1}} \\
& +\left(\beta(\beta+1)(1-\alpha)-\beta-\frac{n(1-\alpha)}{2}+2 \beta(1-\beta(1-\alpha))\right) \frac{|\nabla v|^{4}}{v^{\beta+1}} .
\end{aligned}
$$

For the purpose of obtaining the gradient estimates as in 14, we need to have the coefficient of w^{2} be positive. Fortunately, we can do this by choosing a suitable β. In fact,

$$
\begin{aligned}
& \beta(\beta+1)(1-\alpha)-\beta-\frac{n(1-\alpha)}{2}+2 \beta(1-\beta(1-\alpha)) \\
= & -(1-\alpha)\left(\beta^{2}-\frac{2-\alpha}{1-\alpha} \beta+\frac{n}{2}\right) .
\end{aligned}
$$

It is easily found that the discriminant is $\left(-\frac{2-\alpha}{1-\alpha}\right)^{2}-2 n$, which is positive when $\alpha \in\left(1-\frac{2}{n}, 1\right)$. So we can choose a suitable β to make sure the term will be positive.

Rearranging, we have

$$
\begin{aligned}
& (1-\alpha) v \Delta w-w_{t} \\
= & 2(1-\beta(1-\alpha)) \nabla w \cdot \nabla v-2(1-\alpha) k v w-(1-\alpha)\left(\beta^{2}-\frac{2-\alpha}{1-\alpha} \beta+\frac{n}{2}\right) v^{\beta-1} w^{2} .
\end{aligned}
$$

From here, we will use the well-known cutoff function of Li and Yau to derive the desired bounds. We caution the reader that the calculation is not the same as that in [12] due to the difference of the first order.

Let $\psi=\psi(x, t)$ be a smooth cutoff function supported in $Q_{R, T}$, satisfying the following properties:
(1) $\psi=\psi\left(d\left(x, x_{0}\right), t\right) \equiv \psi(r, t) ; \psi(r, t)=1$ in $Q_{R / 2, T / 2}, 0 \leq \psi \leq 1$.
(2) ψ is decreasing as a radial function in the spatial variables.
(3) $\left|\partial_{r} \psi\right| / \psi^{a} \leq C_{a} / R,\left|\partial_{r}^{2} \psi\right| / \psi^{a} \leq C_{a} / R^{2}$ when $0<a<1$.
(4) $\left|\partial_{t} \psi\right| / \psi^{1 / 2} \leq C / T$.

By straightforward calculation, one has

$$
\begin{aligned}
& (1-\alpha) v \Delta(\psi w)+b \cdot \nabla(\psi w)-2(1-\alpha) v \frac{\nabla \psi}{\psi} \cdot \nabla(\psi w)-(\psi w)_{t} \\
\geq & -(1-\alpha)\left(\beta^{2}-\frac{2-\alpha}{1-\alpha} \beta+\frac{n}{2}\right) v^{\beta-1} \psi w^{2}+(b \cdot \nabla \psi) w \\
& -2(1-\alpha) v \frac{|\nabla \psi|^{2}}{\psi} w+(1-\alpha) v(\Delta \psi) w-\psi_{t} w-2(1-\alpha) k v \psi w,
\end{aligned}
$$

where $b=-2(1-\beta(1-\alpha)) \nabla v$.
Suppose that the maximum of ψw is reached at $\left(x_{1}, t_{1}\right)$. By [12], we can assume, without loss of generality, that x_{1} is not on the cut-locus of \mathbf{M}. Then at $\left(x_{1}, t_{1}\right)$, one has $\Delta(\psi w) \leq 0,(\psi w)_{t} \geq 0$ and $\nabla(\psi w)=0$. Therefore,

$$
\begin{align*}
&-(1-\alpha)\left(\beta^{2}-\frac{2-\alpha}{1-\alpha} \beta+\frac{n}{2}\right) v^{\beta-1} \psi w^{2}\left(x_{1}, t_{1}\right) \\
& \leq-\left[(b \cdot \nabla \psi) w-2(1-\alpha) v \frac{|\nabla \psi|^{2}}{\psi} w\right. \\
&\left.+(1-\alpha) v(\Delta \psi) w-\psi_{t} w-2(1-\alpha) k v \psi w\right]\left(x_{1}, t_{1}\right) \tag{2.4}
\end{align*}
$$

Denote $-(1-\alpha)\left(\beta^{2}-\frac{2-\alpha}{1-\alpha} \beta+\frac{n}{2}\right)=\frac{2}{\gamma}$. Then $\gamma>0$ only depends on α, β.
Rearranging, we have

$$
\begin{align*}
& 2 \psi w^{2}\left(x_{1}, t_{1}\right) \\
\leq & {\left[-\gamma(b \cdot \nabla \psi) v^{1-\beta} w+2(1-\alpha) \gamma v^{2-\beta} \frac{|\nabla \psi|^{2}}{\psi} w\right.} \\
& \left.-(1-\alpha) \gamma v^{2-\beta}(\Delta \psi) w+\gamma v^{1-\beta} \psi_{t} w+2(1-\alpha) \gamma k v^{2-\beta} \psi w\right]\left(x_{1}, t_{1}\right) \tag{2.5}
\end{align*}
$$

We need to find an upper bound for each term on the right-hand side of (2.5). For the first term,

$$
\begin{align*}
-\gamma(b \cdot \nabla \psi) v^{1-\beta} w & \leq \gamma(b \cdot \nabla \psi) v^{1-\beta} w \\
& =C|\nabla v||\nabla \psi| v^{1-\beta} w \\
& \leq C M^{1-\beta / 2} w^{3 / 2}|\nabla \psi| \\
& \leq \frac{1}{4} \psi w^{2}+C\left(\frac{M^{1-\beta / 2}|\nabla \psi|}{\psi^{3 / 4}}\right)^{4} \\
& \leq \frac{1}{4} \psi w^{2}+C M^{4-2 \beta} \frac{1}{R^{4}} \tag{2.6}
\end{align*}
$$

Here we used the fact that $0<v \leq M$.
For the second term on the right-hand side of (2.5), we proceed as follows:

$$
\begin{align*}
2(1-\alpha) \gamma v^{2-\beta} \frac{|\nabla \psi|^{2}}{\psi} w & \leq C M^{2-\beta} \frac{|\nabla \psi|^{2}}{\psi^{\frac{3}{2}}} \psi^{\frac{1}{2}} w \\
& \leq \frac{1}{4} \psi w^{2}+C M^{4-2 \beta}\left(\frac{|\nabla \psi|^{2}}{\psi^{\frac{3}{2}}}\right)^{2} \\
& \leq \frac{1}{4} \psi w^{2}+C M^{4-2 \beta} \frac{1}{R^{4}} \tag{2.7}
\end{align*}
$$

Furthermore, by the properties of ψ and the assumption on the Ricci curvature, one has

$$
\begin{align*}
& -(1-\alpha) \gamma v^{2-\beta}(\Delta \psi) w \\
& =-(1-\alpha) \gamma\left(\partial_{r}^{2} \psi+(n-1) \frac{\partial_{r} \psi}{r}+\partial_{r} \psi \partial_{r} \log \sqrt{g}\right) v^{2-\beta} w \\
& \leq C M^{2-\beta}\left(\left|\partial_{r}^{2} \psi\right|+(n-1) \frac{\left|\partial_{r} \psi\right|}{r}+\sqrt{k}\left|\partial_{r} \psi\right|\right) w \\
& \leq C M^{2-\beta}\left(\frac{\left|\partial_{r}^{2} \psi\right|}{\psi^{\frac{1}{2}}}+2(n-1) \frac{\left|\partial_{r} \psi\right|}{R \psi^{\frac{1}{2}}}+\sqrt{k} \frac{\left|\partial_{r} \psi\right|}{\psi^{\frac{1}{2}}}\right) \psi^{\frac{1}{2}} w \\
& \leq \frac{1}{4} \psi w^{2}+C M^{4-2 \beta}\left(\left(\frac{\left|\partial_{r}^{2} \psi\right|}{\psi^{\frac{1}{2}}}\right)^{2}+\left(\frac{\left|\partial_{r} \psi\right|}{R \psi^{\frac{1}{2}}}\right)^{2}+\left(\sqrt{k} \frac{\left|\partial_{r} \psi\right|}{\psi^{\frac{1}{2}}}\right)^{2}\right) \\
& \leq \frac{1}{4} \psi w^{2}+C M^{4-2 \beta}\left(\frac{1}{R^{4}}+k \frac{1}{R^{2}}\right) \tag{2.8}
\end{align*}
$$

Now we estimate $\gamma v^{1-\beta} \psi_{t} w$ as

$$
\begin{align*}
\gamma v^{1-\beta} \psi_{t} w & \leq \gamma v^{1-\beta}\left|\psi_{t}\right| w \\
& \leq \gamma \frac{\left|\psi_{t}\right|}{\psi^{1 / 2}} \psi^{1 / 2} w M^{1-\beta} \\
& \leq \frac{1}{4} \psi w^{2}+C M^{2-2 \beta} \frac{1}{T^{2}} . \tag{2.9}
\end{align*}
$$

Here we suppose $\beta \leq 1$.
Finally, for the last term, we have

$$
\begin{align*}
2(1-\alpha) \gamma k v^{2-\beta} \psi w & \leq C \psi^{1 / 2} w k M^{2-\beta} \\
& \leq \frac{1}{4} \psi w^{2}+C M^{4-2 \beta} k^{2} \tag{2.10}
\end{align*}
$$

Substituting (2.6)-(2.10) into the right-hand side of (2.5), we deduce that

$$
2 \psi w^{2}\left(x_{1}, t_{1}\right) \leq \frac{5}{4} \psi w^{2}\left(x_{1}, t_{1}\right)+C M^{4-2 \beta}\left(\frac{1}{R^{4}}+\frac{1}{T^{2}}+k^{2}\right)
$$

Therefore,

$$
\psi w^{2}\left(x_{1}, t_{1}\right) \leq C M^{4-2 \beta}\left(\frac{1}{R^{4}}+\frac{1}{T^{2}}+k^{2}\right)
$$

What we get shows, for all $(x, t) \in Q_{R, T}$, that

$$
\begin{aligned}
\psi^{2}(x, t) w^{2}(x, t) & \leq \psi^{2}\left(x_{1}, t_{1}\right) w^{2}\left(x_{1}, t_{1}\right) \\
& \leq \psi\left(x_{1}, t_{1}\right) w^{2}\left(x_{1}, t_{1}\right) \\
& \leq C M^{4-2 \beta}\left(\frac{1}{R^{4}}+\frac{1}{T^{2}}+k^{2}\right)
\end{aligned}
$$

Notice that $\psi(x, t)=1$ in $Q_{R / 2, T / 2}, w=\frac{|\nabla v|^{2}}{v^{\beta}}$. We have

$$
\frac{|\nabla v(x, t)|}{v^{\beta / 2}(x, t)} \leq C M^{1-\beta / 2}\left(\frac{1}{R}+\frac{1}{\sqrt{T}}+\sqrt{k}\right)
$$

where $C=C(\alpha, \beta, \mathbf{M})$.
Then we choose $\beta=1$. This ends the proof of Theorem 1

3. Simple proof of Corollary 1.1

From Theorem 1 we know that, when v is a positive ancient solution to the equation (1.2) such that $v(x, t)=o\left(\left[d\left(x, x_{0}\right)+\sqrt{|t|}\right]^{2}\right)$, then v is a constant.

Notice that $v=\frac{\alpha}{1-\alpha} u^{\alpha-1}=\frac{\alpha}{1-\alpha}\left(\frac{1}{u}\right)^{1-\alpha}$, so when u is a positive ancient solution to the equation (1.1) such that $\frac{1}{u(x, t)}=o\left(\left[d\left(x, x_{0}\right)+\sqrt{|t|}\right]^{\frac{2}{1-\alpha}}\right)$, then u is a constant. This ends the proof of Corollary 1.1 .

Acknowledgement

The author would like to thank Professor Jiayu Li for introducing him to the present problem and for his encouragement.

References

[1] D. G. Aronson and P. Bénilan, Régularité des solutions de l'équation des milieux poreux dans R^{n}. C. R. Acad. Sci. Paris. Sér. A-B 288 (1979), A103-A105. MR 0524760 (82i:35090)
[2] M. Bailesteanu, X. Cao and A. Pulemotov, Gradient estimates for the heat equation under Ricci flow. J. Funct. Anal., 258 (2010), 3517-3542. MR 2601627
[3] J. G. Berryman and C. J. Holland, Asymptotic behavior of the nonlinear differential equation $n_{t}=\left(n^{-1} n_{x}\right)_{x}$, J. Math. Phys. 23 (1982), 983-987. MR659997(83m:35070)
[4] H. E. Conner, Some general properties of a class of semilinear hyperbolic systems analogous to the differential-integral equations of gas dynamics. J. Differential Equations 10 (1971), 188-203. MR 0289945 (44:7130)
[5] P. Daskalopoulos and C. E. Kenig, Degenerate Diffusions. Initial value problems and local regularity theory, EMS Tracts in Mathematics. Vol. 1. EMS, 2007. MR2338118|(2009b:35214)
[6] P. Daskalopoulos and M. A. del Pino, On a singular diffusion equation, Comm. Anal. Geom. 3 (1995), 523-542. MR 1371208 (97b:35116)
[7] P. G. de Gennes, Lois d'étalement pour des gouttes microscopiques, C. R. Acad. Sci. Paris Sér. I Math. 298 (1984), 475-478.
[8] P. G. de Gennes, Wetting: statics and dynamics, Rev. Modern Phys. 57 (3) (1985), 827-863.
[9] R. S. Hamilton, A matrix Harnack estimate for the heat equation, Comm. Anal. Geom. 1 (1993), 113-126. MR1230276 (94g:58215)
[10] R. S. Hamilton, The Ricci flow on surfaces, in Mathematics and general relativity (Santa Cruz, CA, 1986), Contemp. Math. 71, Amer. Math. Soc., Providence, RI, 1988, 237-262. MR954419 (89i:53029)
[11] B. L. Kotschwar, Hamilton's gradient estimate for the heat kernel on complete manifolds, Proc. Amer. Math. Soc. 135 (2007), no. 9, 3013-3019. MR2317980 (2008e:58034)
[12] P. Li and S. T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), 153-201. MR834612 (87f:58156)
[13] P. Lu, L. Ni, J. L. Vázquez and C. Villani, Local Aronson-Bénilan estimates and entropy formulae for porous medium and fast diffusion equations on manifolds, J. Math. Pures Appl. 91 (2009), 1-19. MR2487898 (2010j:35563)
[14] P. Souplet and Qi S. Zhang, Sharp gradient estimate and Yau's Liouville theorem for the heat equation on noncompact manifolds. Bull. London Math. Soc. 38 (2006), 1045-1053. MR2285258(2008f:35157)
[15] J. Wu, Gradient estimates for a nonlinear diffusion equation on complete manifolds, J. Partial Differ. Equ. 23 (2010), 68-79. MR 2640448
[16] L.-F. Wu, A new result for the porous medium equation derived from the Ricci flow, Bull. Amer. Math. Soc. (N.S.) 28 (1993), 90-94. MR1164949 (93f:58245)
[17] Y. Yang, Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds. Proc. Amer. Math. Soc. 136 (2008), 4095-4102. MR2425752 (2009d:58048)
[18] R. Ye, Global existence and convergence of Yamabe flow, J. Differential Geom. 39 (1) (1994), 35-50. MR 1258912 (95d:53044)

Institute of Mathematics, Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing 100190, People's Republic of China

E-mail address: zhuxiaobao@amss.ac.cn

[^0]: Received by the editors May 8, 2010.
 2010 Mathematics Subject Classification. Primary 35B45, 35B53, 35K55, 35K65, 58J35.
 Key words and phrases. Gradient estimate, fast diffusion equation, Liouville theorem.

