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HAMILTON’S GRADIENT ESTIMATES

AND LIOUVILLE THEOREMS

FOR FAST DIFFUSION EQUATIONS

ON NONCOMPACT RIEMANNIAN MANIFOLDS

XIAOBAO ZHU

(Communicated by Chuu-Lian Terng)

Abstract. Let M be a complete noncompact Riemannian manifold of dimen-
sion n. In this paper, we derive a local gradient estimate for positive solutions
of fast diffusion equations

∂tu = Δuα, 1− 2

n
< α < 1

on M × (−∞, 0]. We also obtain a theorem of Liouville type for positive
solutions of the fast diffusion equation.

1. Introduction

In this paper we study the fast diffusion equation (FDE for short)

∂tu = Δuα,(1.1)

where α ∈ (0, 1). FDE arises in the study of fast diffusions, in particular in diffusion
in plasma ([3]), in thin liquid film dynamics driven by Van der Waals forces ([7],
[8]), and in models of gas-kinetics ([4]). It also arises in geometry: the case α =
n−2
n+2 in dimensions n > 3 describes the evolution of a conformal metric by the

Yamabe flow ([18]); the case α = 0, n = 2 describes the Ricci flow on surfaces
([10], [6], [16]). Precisely, we can find the relationship from ∂tu = Δ( 1

αu
α) =

div(uα∇u
u ) and div(∇u

u ) = div(∇ log u) = Δ log u. We refer the reader to the book
by Daskalopoulos-Kenig ([5]) and the references therein for more about FDE.

As a nonlinear problem, the mathematical theory of FDE is based on a pri-
ori estimates. In 1979, Aronson and Bénilan obtained a celebrated second-order
differential inequality of the form ([1])

∑

i

∂

∂xi
(αuα−2 ∂u

∂xi
) ≥ −κ

t
, κ :=

n

n(α− 1) + 2
,

which applies to all positive solutions of (1.1) defined on the whole Euclidean space
on the condition that α > 1− 2

n .
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There are few results about FDE on manifolds. In 2008, Lu, Ni, Vázquez and
Villani studied the FDE on manifolds ([13]) and got a local Aronson-Bénilan esti-
mate. We do not state their result here. What we will do in this paper is to get
Hamilton’s gradient estimates. First, let us recall what Hamilton’s result is:

Theorem (Hamilton [9]). Let M be a closed Riemannian manifold of dimension
n ≥ 2 with Ricci(M) ≥ −k for some k ≥ 0. Suppose that u is any positive solution
to the heat equation with u ≤ M for all (x, t) ∈ M× (0,∞). Then

|∇u|2
u2

≤ (
1

t
+ 2k) log

M

u
.

Hamilton’s estimate tells us that when the temperature is bounded we can compare
the temperature of two different points at the same time.

In 2006, P. Souplet and Qi S. Zhang ([14]) generalized Hamilton’s estimate to
complete noncompact Riemannian manifolds. In 2007, B. Kotschwar ([11]) used
Hamilton’s estimate and obtained a global gradient estimate for heat kernels on
complete noncompact manifolds. In 2010, M. Bailesteanu, X. Cao and A. Pule-
motov ([2]) generalized Souplet and Zhang’s result to Ricci flow. Also in 2010,
on complete noncompact Riemannian manifolds, J. Wu ([15]) obtained a localized
Hamilton-type gradient estimate for the positive smooth bounded solutions to the
nonlinear diffusion equation ut = Δu − ∇φ · ∇u − au log u − bu, where φ is a C2

function and a �= 0 and b are two real constants. We would like to remark here that
this equation was also studied by Y. Yang in ([17]), where they derived a parabolic
gradient estimate.

In this paper, we consider the positive solution for FDE (1.1). Like what they
did for the heat equation, we derive a similar Hamilton’s estimate for FDE. Inspired
by the inequality of Aronson and Bénilan, we let α > 1− 2

n throughout this paper.

Note that the pressure ṽ := α
α−1u

α−1 < 0,

∂tṽ = (α− 1)ṽΔṽ + |∇ṽ|2.

Conveniently, we let v = −ṽ. Then v > 0 and satisfies

∂tv = (1− α)vΔv − |∇v|2.(1.2)

Our main result is the following:

Theorem 1 (Gradient estimates). Let M be a Riemannian manifold of dimension
n ≥ 2 with Ricci(M) ≥ −k for some k ≥ 0. Suppose that v is any positive solution
to the equation (1.2) in QR,T ≡ B(x0, R) × [t0 − T, t0] ⊂ M × (−∞,∞). Suppose
also that v ≤ M in QR,T . Then there exists a constant C = C(α,M) such that

|∇v|
v1/2

≤ CM1/2(
1

R
+

1√
T

+
√
k)

in QR
2 ,T2

.
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As an application, we get the following Liouville type theorem:

Corollary 1.1 (Liouville type theorem). Let M be a complete, noncompact mani-
fold of dimension n with nonnegative Ricci curvature. Let u be a positive ancient so-

lution to the equation (1.1) with 1− 2
n < α < 1 such that 1

u(x,t) = o([d(x)+
√

|t|] 2
1−α ).

Then u is a constant.

2. Proof of Theorem 1

Let w ≡ |∇v|2
vβ , β > 0 to be determined.

We will derive an equation for w. First notice that

wt =
2vivit
vβ

− β
v2i vt
vβ+1

=
2vi((1− α)vΔv − |∇v|2)i

vβ
− β

v2i ((1− α)vΔv − |∇v|2)
vβ+1

= 2(1− α)
v2i vjj
vβ

+ 2(1− α)
vivjji
vβ−1

− 4
vivijvj
vβ

− β(1− α)
v2i vjj
vβ

+ β
v2i v

2
j

vβ+1
,(2.1)

wj =
2vivij
vβ

− β
v2i vj
vβ+1

,

wjj =
2v2ij
vβ

+
2vivijj
vβ

− 4β
vivijvj
vβ+1

− β
v2i vjj
vβ+1

+ β(β + 1)
v2i v

2
j

vβ+2
.(2.2)

By (2.1) and (2.2),

(1− α)vΔw − wt

= 2(1− α)
v2ij
vβ−1

+ 2(1− α)
vivijj
vβ−1

− 4β(1− α)
vivijvj
vβ

− β(1− α)
v2i vjj
vβ

+ β(β + 1)(1− α)
v2i v

2
j

vβ+1

− 2(1− α)
v2i vjj
vβ

− 2(1− α)
vivjji
vβ−1

+ 4
vivijvj
vβ

+ β(1− α)
v2i vjj
vβ

− β
v2i v

2
j

vβ+1

= 2(1− α)
v2ij
vβ−1

− 2(1− α)
v2i vjj
vβ

+ 2(1− α)
Rijvivj
vβ−1

+ 4(1− β(1− α))
vivijvj
vβ

+ (β(β + 1)(1− α)− β)
v2i v

2
j

vβ+1
.

Here, in the second equality, we use the Ricci formula: vijj − vjji = Rijvj .
Notice that

∇w · ∇v = wjvj =
2vivijvj

vβ
− β

v2i v
2
j

vβ+1
.(2.3)
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Using (2.3), we obtain

(1− α)vΔw − wt

= 2(1− α)
v2ij
vβ−1

− 2(1− α)
v2i vjj
vβ

+ 2(1− α)
Rijvivj
vβ−1

+ 4(1− β(1− α))
vivijvj
vβ

+ (β(β + 1)(1− α)− β)
v2i v

2
j

vβ+1

≥− n(1− α)

2

|∇v|4
vβ+1

− 2(1− α)k
|∇v|2
vβ−1

+ 2(1− β(1− α))∇w · ∇v

+ 2β(1− β(1− α))
v2i v

2
j

vβ+1
+ (β(β + 1)(1− α)− β)

v2i v
2
j

vβ+1

= 2(1− β(1− α))∇w · ∇v − 2(1− α)k
|∇v|2
vβ−1

+ (β(β + 1)(1− α)− β − n(1− α)

2
+ 2β(1− β(1− α)))

|∇v|4
vβ+1

.

For the purpose of obtaining the gradient estimates as in [14], we need to have the
coefficient of w2 be positive. Fortunately, we can do this by choosing a suitable β.
In fact,

β(β + 1)(1− α)− β − n(1− α)

2
+ 2β(1− β(1− α))

=− (1− α)(β2 − 2− α

1− α
β +

n

2
).

It is easily found that the discriminant is (− 2−α
1−α )

2 − 2n, which is positive when

α ∈ (1− 2
n , 1). So we can choose a suitable β to make sure the term will be positive.

Rearranging, we have

(1− α)vΔw − wt

= 2(1− β(1− α))∇w · ∇v − 2(1− α)kvw − (1− α)(β2 − 2− α

1− α
β +

n

2
)vβ−1w2.

From here, we will use the well-known cutoff function of Li and Yau to derive
the desired bounds. We caution the reader that the calculation is not the same as
that in [12] due to the difference of the first order.

Let ψ = ψ(x, t) be a smooth cutoff function supported in QR,T , satisfying the
following properties:

(1) ψ = ψ(d(x, x0), t) ≡ ψ(r, t); ψ(r, t) = 1 in QR/2,T/2, 0 ≤ ψ ≤ 1.
(2) ψ is decreasing as a radial function in the spatial variables.
(3) |∂rψ|/ψa ≤ Ca/R, |∂2

rψ|/ψa ≤ Ca/R
2 when 0 < a < 1.

(4) |∂tψ|/ψ1/2 ≤ C/T .
By straightforward calculation, one has

(1− α)vΔ(ψw) + b · ∇(ψw)− 2(1− α)v
∇ψ

ψ
· ∇(ψw)− (ψw)t

≥− (1− α)(β2 − 2− α

1− α
β +

n

2
)vβ−1ψw2 + (b · ∇ψ)w

− 2(1− α)v
|∇ψ|2
ψ

w + (1− α)v(Δψ)w − ψtw − 2(1− α)kvψw,
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where b = −2(1− β(1− α))∇v.
Suppose that the maximum of ψw is reached at (x1, t1). By [12], we can assume,

without loss of generality, that x1 is not on the cut-locus of M. Then at (x1, t1),
one has Δ(ψw) ≤ 0, (ψw)t ≥ 0 and ∇(ψw) = 0. Therefore,

− (1− α)(β2 − 2− α

1− α
β +

n

2
)vβ−1ψw2(x1, t1)

≤− [(b · ∇ψ)w − 2(1− α)v
|∇ψ|2
ψ

w

+ (1− α)v(Δψ)w − ψtw − 2(1− α)kvψw](x1, t1).(2.4)

Denote −(1− α)(β2 − 2−α
1−αβ + n

2 ) =
2
γ . Then γ > 0 only depends on α, β.

Rearranging, we have

2ψw2(x1, t1)

≤ [−γ(b · ∇ψ)v1−βw + 2(1− α)γv2−β |∇ψ|2
ψ

w

− (1− α)γv2−β(Δψ)w + γv1−βψtw + 2(1− α)γkv2−βψw](x1, t1).(2.5)

We need to find an upper bound for each term on the right-hand side of (2.5).
For the first term,

−γ(b · ∇ψ)v1−βw ≤ γ(b · ∇ψ)v1−βw

= C|∇v||∇ψ|v1−βw

≤ CM1−β/2w3/2|∇ψ|

≤ 1

4
ψw2 + C(

M1−β/2|∇ψ|
ψ3/4

)4

≤ 1

4
ψw2 + CM4−2β 1

R4
.(2.6)

Here we used the fact that 0 < v ≤ M .
For the second term on the right-hand side of (2.5), we proceed as follows:

2(1− α)γv2−β |∇ψ|2
ψ

w ≤ CM2−β |∇ψ|2

ψ
3
2

ψ
1
2w

≤ 1

4
ψw2 + CM4−2β(

|∇ψ|2

ψ
3
2

)2

≤ 1

4
ψw2 + CM4−2β 1

R4
.(2.7)
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Furthermore, by the properties of ψ and the assumption on the Ricci curvature,
one has

− (1− α)γv2−β(Δψ)w

= −(1− α)γ(∂2
rψ + (n− 1)

∂rψ

r
+ ∂rψ∂r log

√
g)v2−βw

≤ CM2−β(|∂2
rψ|+ (n− 1)

|∂rψ|
r

+
√
k|∂rψ|)w

≤ CM2−β(
|∂2

rψ|
ψ

1
2

+ 2(n− 1)
|∂rψ|
Rψ

1
2

+
√
k
|∂rψ|
ψ

1
2

)ψ
1
2w

≤ 1

4
ψw2 + CM4−2β((

|∂2
rψ|
ψ

1
2

)2 + (
|∂rψ|
Rψ

1
2

)2 + (
√
k
|∂rψ|
ψ

1
2

)2)

≤ 1

4
ψw2 + CM4−2β(

1

R4
+ k

1

R2
).(2.8)

Now we estimate γv1−βψtw as

γv1−βψtw ≤ γv1−β |ψt|w

≤ γ
|ψt|
ψ1/2

ψ1/2wM1−β

≤ 1

4
ψw2 + CM2−2β 1

T 2
.(2.9)

Here we suppose β ≤ 1.
Finally, for the last term, we have

2(1− α)γkv2−βψw ≤ Cψ1/2wkM2−β

≤ 1

4
ψw2 + CM4−2βk2.(2.10)

Substituting (2.6)–(2.10) into the right-hand side of (2.5), we deduce that

2ψw2(x1, t1) ≤
5

4
ψw2(x1, t1) + CM4−2β(

1

R4
+

1

T 2
+ k2).

Therefore,

ψw2(x1, t1) ≤ CM4−2β(
1

R4
+

1

T 2
+ k2).

What we get shows, for all (x, t) ∈ QR,T , that

ψ2(x, t)w2(x, t) ≤ ψ2(x1, t1)w
2(x1, t1)

≤ ψ(x1, t1)w
2(x1, t1)

≤ CM4−2β(
1

R4
+

1

T 2
+ k2).
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Notice that ψ(x, t) = 1 in QR/2,T/2, w = |∇v|2
vβ . We have

|∇v(x, t)|
vβ/2(x, t)

≤ CM1−β/2(
1

R
+

1√
T

+
√
k),

where C = C(α, β,M).
Then we choose β = 1. This ends the proof of Theorem 1.

3. Simple proof of Corollary 1.1

From Theorem 1, we know that, when v is a positive ancient solution to the
equation (1.2) such that v(x, t) = o([d(x, x0) +

√
|t|]2), then v is a constant.

Notice that v = α
1−αu

α−1 = α
1−α (

1
u )

1−α, so when u is a positive ancient solution

to the equation (1.1) such that 1
u(x,t) = o([d(x, x0)+

√
|t|] 2

1−α ), then u is a constant.

This ends the proof of Corollary 1.1.
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