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CARLESON MEASURES ON DIRICHLET-TYPE SPACES

GERARDO R. CHACON

(Communicated by Richard Rochberg)

ABSTRACT. We show that a maximal inequality holds for the non-tangential
maximal operator on Dirichlet spaces with harmonic weights on the open unit
disc. We then investigate two notions of Carleson measures on these spaces and
use the maximal inequality to give characterizations of the Carleson measures
in terms of an associated capacity.

1. INTRODUCTION

Given a positive Borel measure p defined on the boundary of the unit disc 0D,
let P, be positive the harmonic function defined on the unit disc D by

27 _ 22
no- [ B0

le?t — 2|2 27

Definition 1.1. The harmonic Dirichlet space B, consists of all real functions
f € L*(9D) such that

1115, = 11172 (o) +/D|V(f)\2PudA < o0,

where V(f) denotes the gradient of the harmonic extension of f to D and dA
denotes the normalized Lebesgue area measure on D.

The Dirichlet type space D(pu) is defined as the space of all analytic functions
on D such that

/D | (2)|PPu(2)dA(z) < <.

If 41 = 0, then define D(u) = H?, the Hardy space on the unit disc. Notice that if
dp = dm is the arc-length Lebesgue measure on 0D, then the Dirichlet-type space
D(m) coincides with the classical Dirichlet space D.

Dirichlet-type spaces were introduced by Richter in [6] when he was investigating
analytic two-isometries. Richter showed that every analytic two-isometry 7' such
that dim ker7™* = 1 can be represented as muliplication by z on a Dirichlet-type
space D(u). These spaces have been studied ever since by several authors; see for
example [2], [3], [, [8], [I0], [11], [12], [14] and [13].
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It is shown in [6] that the space D(u) is contained as a set in the space HZ.
Consequently a norm on D(u) can be defined as

10 = W1 + [ 17 PA)dAC)
and it can be shown that evaluation functionals are continuous on D(u).

Definition 1.2. Given a function f on D, the non-tangential maximal function of
f is the function on 0D defined by
N(f)(e?) = sup [f(2)],

z€l'(et?)
where T'(e?’) denotes the convex hull of the disk {|z| < 1/2} and the point €.

In [3] and [4], Chartrand investigates some properties of Carleson measures on
Dirichlet-type spaces and proves a maximal-type inequality for the case in which p
is a finitely atomic measure and in the case in which y = wdo, where o denotes the
arc-length measure and w is a Muckenhoupt weight. Here we show that a maximal
inequality holds for the general case. This is our main theorem.

Theorem 1.3. Let p be a finite, positive Borel measure on OD. Then there exists
a constant C > 0 such that for every f € D(u),

INFllpgw < Cllf -

Once we have proved the maximal inequality, we can follow Stegenga’s approach
[15] and use appropriate capacities to characterize the Carleson measures for the
D() spaces (Theorem [LH]).

We will say that a positive finite Borel measure v is a Carleson measure for the
Dirichlet space D(p) if there exists a constant C' > 0 such that for every function
f € D(u) the following inequality holds:

(/W%VSQU%@y

Definition 1.4. For any open set O C 0D define the B,,-capacity of O by
capg, (0) = inf{HfH%ﬂ : f>1lae.onO}.

Theorem 1.5. Let u be a finite, positive Borel measure on OD. Then a positive
Borel measure v is a D(p)-Carleson measure if and only if there exists a constant
C > 0 such that for any open set O C 0D

v(T(0)) < Ccapg,, (0),
where T(O) :=={z € D: {e¥ : e — z/|z|]| < 1 —|2|} C O}.

2. THE NON-TANGENTIAL MAXIMAL FUNCTION ON D(u)

In this section, we will show an inequality for the local Dirichlet integral of the
non-tangential maximal function of a function in D(u). First, we will reduce the
problem to one of the harmonic functions by using techniques that can be found in
[16] in which the case of the Dirichlet spaces D? is considered.

In [7], Richter and Sundberg introduced the notion of a Local Dirichlet Integral:
Let f € L*(OD) and ¢ € dD. We assume that f(e®) equals the non-tangential limit
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of its Poisson extension whenever the latter exists. Let ¢ € D; the local Dirichlet
integral of f at ( is given by

mm—A%

If f(¢) does not exist, then we set D¢(f) = oo.
Then the norm of the Dirichlet-type space D(u) is given by

£ = FIO

et —1

dt
o’

0 = Il + [ Del9)du() < oc.

We will show that for every f € D(u) we have that ||f||p(.) ~ ||[Refl|s,, and
consequently it will be enough to prove a maximal inequality for harmonic functions.
For that, we will use the following proposition.

Proposition 2.1 ([3, Prop. 2.9]). Let f be a harmonic function on D of the form
f=f++ f-, where f1, f— € D(u), and f_(0) =0. Then

/ Dc(f)dM(C)Z/IV(f)\ZPMdA.
oD D

Now, with this in hand, we have that if f € D(u), then there exist harmonic
functions k1 and ho such that f = hy + the and h; satisfies the conditions of the
previous proposition. Moreover, since hq and hq are harmonic conjugates, then (see
[5], Theorem 4.1) ||h2||r2(omy S |1h1ll22(om)- Consequently,

171300 =HN%+AUV&M
S\WHWWWM§M+AWMWWA
SHM@W+AWMWWA

= |3,

On the other hand, it is clear that ||h|5, < ||fllp(u). Consequently, we have
that

(2.1) 1 Ip) ~ [IRef]|s,-

Now, we will use a truncation method to show the maximal inequality for func-
tions in B, and consequently in D(u).
Let ¢ be a non-decreasing function in C§°(R) which satisfies

[0, ift<1)2
‘P(t)_{ 1, ift>1,

and consider the smooth truncation {F};}>_:

Fi(f) =2 (2%') . j=0,+1,42, ... .
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Then for each j we have that
> dt

; [f(e™)]

2 [ (57 5

_ o2 <|f(eft)l>
/{f|>211}<p 2

229){1£1 > 2771},

1E5 ()72 om)

2 dt
2T

IN

where for a set A C 9D, |A| denotes the normalized Lebesgue measure of A on 9D.
Consequently,

o0

Z IE; (DlIZ2my < Z 271{|f > 271}

j=—00 j=—00

0o 27
3 /2],,121-1\{|f|>2ﬂ-1}\dt

< Z/ {11 > theat

j=—00

| 111> e
0
= |I£132om)-
Lemma 2.2. There exists a constant C > 0 such that
Z IE5(HllE, < ClfIIE,-
j=—00

Proof. The corresponding inequality for the L?(0D)-norm is shown above. Thus,
it is enough to show that there exists a constant C' > 0 such that for any t,s € R,

‘f — f(e™)
ezt

— eZS

o) 2

) S [Al(e) = Rl

ett — gts

l=—00

The proof of this is done in [I6]. We include it here for the sake of completeness.
Let j and k be integers such that 27=! < |f(e®)| < 27 and 281 < |f(e®)| < 2.
Without loss of generality we may assume that j > k. Then for the case j = k
we use the Mean Value Theorem for the function ¢ to obtain that there exists a
constant ¢ € (0, 1) such that

o0

S IRf(e") = B(f(e™)

l=—0c0

|F(F(e") = Ej(f(e)?

ORI - £
7(e™) = Fe)?

N

and inequality ([2:2) holds.
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Now, if 7 > k + 1, then we use the Mean Value Theorem twice to find two
constants ¢ and d in (0, 1) such that

DR E) = R(f(E))P = 25 = Fu(f(e*)] + [F(f(eM)
l=—o0
= 2%%|p(1) — (27| (™))
+2¥ o277 f(e")]) — (1/2)]?
= ¢ (@PE" = [7(e))?
He' (@ (1f ()] = 2271)?
S () = fe)D? S IF () = fe™)
and inequality ([2.2]) also holds. O

Lemma 2.3. For all f € B, we have the estimate

/0 capgs, ({If1 > th)tdt < |1 f11%,.

Proof. Since
2J+1

[ e, (st e =S [ cam, (011 >
0 e
2J+1
< 3 / 2 capg, (1] > 27 })dt
j_foo
Y P (If] > 2)
Jj=—00
and 27 F,(f) > 1 on the set {|f| > 2*}, then using Lemma 22, we have that
> 2% capg, ({If| > 2")) < ZHFk N, < 15113, - O

We will show that the operator IV satisfies

De(Nf) S De(f)-
For a function g € L'(9D) define the following function as

e — 1lg(e’™*D) — g(e™)] dt
|I|

M =su 5
g 161}) lets — 1] 27
where the supremum is taken over all the open intervals I C JD centered at 1. It
is well known (see for example [9]) that for every e € ID,
4 v dt
(23) sup Jo(=e") = g(:)| S sup o7 [ 1ol — gl 5L
z€el(1) e 2m

We will also need the following lemmas.
Lemma 2.4. Let g € LY(0D). Then for every A > 0

||g||L1(8D) )

|{e" €D : Mg(e™) > A} < N

i.e. M maps L*(OD) to weak-L'(OD).
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Proof. Notice that

} lg(e+0) — g(e')] dt
Mg(e®™) < su —
g(e™) =< 1611)/ \6”3—1\ o
<
~ 1 ||9||L1(6]DJ)

WT
Consequently,

{e" € oD : Mg(e™) > A} C {e” €D : ﬁ”g”pwm > )\} ,

and the result follows. O

By equation (23] we have that

sup ‘Z_l‘—|g(ze ) —9(2)] < Mg(e'™),

zeT(1) et —1]

which, by the previous lemma, implies that the operator defined as

Mg(eix) = sup |Z 1||g(zem) g(z)|
2er(1) etz — 1|

maps L(0D) to weak-L!(9D).
Lemma 2.5. The sublinear operator M maps L>(0D) to L>*(ID).
Proof. Suppose g € L*°(0D). Then

AT [ oiT g —g(z
Mg(e ) = sup |Z_]'||(z;c)—()|
z€r(1) ler* — 1]
(1-r) o 1—r? 1—72 ity At
027121 |et® 0 |ei(t*1’) —r2 et —r? g(e )27T
1—r)(1—=7r2) [*™ [ |2Rere (1 — e odi
< oo R [ (e ) el
ooren few =11 Jy \[eD = rfzle =] o
_ 2 27 —it T .
< sup W/ \2Re(7‘e 1)(1 € )‘ ‘ (ezt) ﬂ
o<r<1 [ =1 0 leit=2) — r|2|eit — 2 o
L—r)(1—1r2) [?" 9Re (1 — ei® Lt
+ sup %/ < 7;(t|7a:) ( > Zt)l 2)|g(€t)|—
ocr<r e =1 Jy o e —r2leit — 1] o
27 2\2
(1—=7) dt
< oo
~ 02{21/0 |ei(t—2) — p[2|eit — 7n|27r\|9\|L (OD)
2m 2)2
—r?) dt
T 1 N
+ o e =1 [ e e P ol o
27 (1 'I”) dt
< su ) = .
s o [ e g ol
+ sup |e" — 1] i rlnl Qﬂei"tiﬂughm oD
0<r<1 0 |ei(t—a:) _ ,r.|2 7 (6D)
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Consequently,

(oo}
Mg(e™) < Nlgllze=@m) + [ — 1[l|g]| L~ (o) S > Pinleine
<r<

n=—oo
iz 1—r2

= llgll L om) + € = 1|[|gl| L= (o) 02}81 o 2

s ||g||L°°(8]DJ)- O

Now we can use the Marcinkiewicz Interpolation Theorem (see for example [17])

to conclude that the operator M maps LP(0D) boundedly to itself for any 1 < p <
oo. Therefore, if a function f € H'(D) is such that

iy - [T
fle™) = (1)
et —1

Flee™) = (2) = (26" ~ Dg(ae") — (=~ Dg(z)
= z(e"” = 1)g(ze") + (z — 1)(g(2€"") — g(2)),

then the function g(e®) := belongs to LP(0D) and

and consequently,

|f(ze™) — f(2)]

e — 1]

. g(ze'®) — g(z
< Fllgee)| + 12 - 12 =gl

Hence,

24) T(f)(e") < N(g)(e) + sup |s— 1L =9
=€r(1) et — 1]
where T is defined as the sublinear operator

super) | f(2€%) = f(2)|

T 1T = ‘
1) e
Thus,
. 27 ‘ dt 1/p
o < ([Tarenrs)
0 2T
< |INgllzr(amy + 1Myl o om)
N ||g||Lp(a1D>),

where we have used the fact that the operator N maps LP(9D) boundedly to itself.
Therefore for any 1 < p < oo,

DY(Nf) < Di(f),

and notice that if ¢ € ID, for f € D(u) we define g(z) := f(2(); then D¢ (f) =
D+ (g) and D¢ (N f) = D1(Ng). Therefore, we have the more general equation

(2.5) D¢(Nf) < De(f),
where the constant involved does not depend on (. Finally, by equation (23]

we have that / D¢(Nf)du(¢) < / D¢(f)dp(¢), and again using the fact that
oD oD
IN fllzz < || f |2, we have proved Theorem [[3



1612 GERARDO R. CHACON

This theorem answers a question asked by Chartrand [4] and generalizes Lem-
ma 3.12 of [], where the result is proven for the case in which the measure p is
absolutely continuous with respect to the Lebesgue measure and satisfies Mucken-
houpt’s condition.

3. CARLESON MEASURES ON D(f) SPACES

In this section, we will characterize Carleson measures for the D(u) spaces. In
order to do that, we will rely on results from the previous section. Specifically,
notice that from equation (1)) we can conclude that a positive measure v on D is
a D(u)-Carleson measure if and only if there exists a constant C' > 0 such that for
every h € B, we have that

[ @) < i,
D

Proof of Theorem [LE. Suppose v is a D(u)-Carleson measure. By definition, there
exists a function h € B, such that ~ > 1 on O and Hh||28“ < 2capg (0). Since
[|2/ll5, < llhls, we can assume that h >0 on dD. Let O = (J, I;, where {I;} are
disjoint arcs on 9D. Note that T'(O) = (J; T'(I;). Now, since for any z € T(I;) we
have that h(z) > ;-, then

u@w»sww/

T(0)

Conversely, since v({z € D : |f(z)| > t}) < v(T({N(f) > t})), then by the
hypothesis and the previous lemmas,

/D|f(z)|2dy = /OOO v({zeD:|f(z)] > t})tdt

i < (402 [ 1 < IR, < oo, (0)

5/ capg, (T({N(f) > t}))tdt
0

SN s,
S 1 1ls,.- O

In [3], Chartrand introduces the notion of a Carleson-type measure in a different
way than the one used here. We will refer to that condition as condition (Ch).

Definition 3.1 ([3]). A finite, positive Borel measure v is said to satisfy condition
(Ch) for D(u) if there exists a constant C' > 0 such that for every f € D(u)

/PWWWMSQW&W

where P(|f|?u) denotes the Poisson extension of the measure |f|?du to the unit
disc, i.e.

| F(OFP ().

1— |22

PSP = |
ap | — 2
In [4] Chartrand characterizes the measures v that satisfy condition (Ch) for
measures 4 that are either a finite sum of atoms or absolutely continuous with
respect to Lebesgue measure and satisfying Muckenhoupt’s condition. We will
show that Chartrand’s definition of Carleson measures (condition (Ch)) and the
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definition presented in these notes are different by exhibiting two examples. In
order to do that, we will need a result from [4].

Proposition 3.2. Let u = > apd¢,, a finite sum of atoms on OD. Let v be a
finite, positive, Borel measure on ID) Then v satisﬁes condition (Ch) if and only if

S, (Ck) < oo for each k, where S,(¢) == [ 1‘4 E ZI‘ dv (=

Example 3.3. Suppose u = ;. We will show that v is a D(d7)-Carleson measure
if and only if |z — 1]|?dv is a Carleson measure for the Hardy space H?2.

Suppose v is a D(d7)-Carleson measure and let g € H2. Define f(z) := (2 —
1)g(z). Then f € D(41) and

[1e=1Plg)Pavs) = [ Ifaw

< WG + llgllFe
< gl

Hence, |2 — 1|2dv(z) is a Carleson measure for the Hardy space.

Conversely, suppose |z — 1|?dv(z) is an H?-Carleson measure and let f € D(d).

Then g € H?, where g(z) := f) - (1)

z—1
[

and

/ |F(1) + (2 — 1)g(2)|?dv

< UOWMDyg/p—1mmaP@@)
S D) + lgllzre
S WD Gy):
. . 1 1
Now, for ¢ € Z* consider the sequences r; := 1 — = and a; := —. Take v =
? 1

Y22, aidy,. Note that > a; < oo and consequently v is a finite measure. Moreover,
if I € 9D is an interval such that 1 € I, then

/‘|z—u%m@
S(1)

Z ai\ri — 1|2

ri>1—|I|
=1
< P Y 5
i>1/|1]
s

Therefore |z — 1|2dv(z) is an H2-Carleson measure and hence v is a D(d;)-Carleson
measure. However, by Proposition v satisfies condition (Ch) if and only if
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f = 2‘2 ) < co. However,
1— |z > 1—r?
Sl ol B ] — g,
=) ;(1—73)2“
i 1+7r;
= —qy
P (1—7) "
-
~ Z - .

1

~.
Il

So, v is a D(d1)-Carleson measure but does not satisfy condition ( h).
1
T2

1
On the other hand, define the sequences s; :== — — 1 and b; Then the

3i
measure o = y .o, b;d;, is finite.

Now, consider for each non-negative integer k the interval Iy C 0D centered at
1
—1 and with length |I}| = 3 Then

/ 11— z|%do(z)
S(Ik)

|
=
—~
—_
I
»
<
~—
N
S
&

1 1
2Dy

i=k+1

1 — 2|?do(2) k
fs(lk) A > (g) — oo when k tends to infinity. Hence o is not
k

a D(dy)-Carleson measure. However, o satisfies condition (Ch):

Thus,

LIl o ><f =

— 5 aol\z — Q.

[1—z? 20
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