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(Communicated by Ken Ono)

Abstract. Let p be an odd prime. In this paper, by using the properties of Le-

gendre polynomials we prove some congruences for
∑ p−1

2
k=0

(2k
k

)2
m−k(mod p2).

In particular, we confirm several conjectures of Z.W. Sun. We also pose 13
conjectures on supercongruences.

1. Introduction

Let p be an odd prime. In 2003, Rodriguez-Villegas [11] conjectured the
following congruence:

(1.1)

(p−1)/2∑

k=0

(
2k
k

)2

16k
≡ (−1)

p−1
2 (mod p2).

This was later confirmed by Mortenson [7] via the Gross-Koblitz formula. See also
[9] and [10, p. 204]. Recently the author’s twin brother, Zhi-Wei Sun [13], obtained

the congruences for
∑p−1

k=0

(
2k
k

)2
m−k (mod p) in the cases m = 8,−16, 32 and made

several conjectures for
∑p−1

k=0

(
2k
k

)2
m−k (mod p2). For example, he conjectured

(1.2)
(p−1)/2∑

k=0

(
2k
k

)2

32k
≡

{
0 (mod p2) if 4 | p− 3,

2a− p
2a (mod p2) if 4 | p− 1 and p = a2 + b2 with 4 | a− 1.

Let {Pn(x)} be the Legendre polynomials given by

1√
1− 2xt+ t2

=

∞∑

n=0

Pn(x)t
n (|t| < 1).

It is well known that (see [6, pp. 228-232], [4, (3.132)-(3.133)])

(1.3) Pn(x) =
1

2n

[n/2]∑

k=0

(−1)k(2n− 2k)!

k!(n− k)!(n− 2k)!
xn−2k =

1

2n · n! ·
dn

dxn
(x2 − 1)n

and (n+1)Pn+1(x) = (2n+1)xPn(x)−nPn−1(x), where [x] is the greatest integer
not exceeding x.
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In the paper, by using the expansions of Legendre polynomials we obtain some
congruences for P p−1

2
(x) modulo p2, where p is an odd prime and x is a rational

p-integer. For example, we have

(1.4)

p−1∑

k=0

(
2k
k

)2

16k
(
xk − (−1)

p−1
2 (1− x)k

)
≡ 0 (mod p2)

and

(1.5)

p−1
2∑

k=0

(
2k
k

)2

16k

(
xk −

(x
p

)
x−k

)
≡ 0 (mod p) for x �≡ 0 (mod p),

where
(
x
p

)
is the Jacobi symbol. Taking x = 1 in (1.4) we obtain (1.1) imme-

diately, and taking x = 1
2 in (1.4) we deduce (1.2) for p ≡ 3 (mod 4). We also

determine
∑ p−1

2

k=0
(2kk )

2

32k
k(k − 1) · · · (k − r + 1) (mod p2) for r ∈ {1, 2, . . . , p−1

2 },
∑[p/3]

k=0
(3k)!

54k·k!3 (mod p) and pose some conjectures on supercongruences concerning
binary quadratic forms.

Throughout this paper we use Z, N and Zp to denote the sets of integers, positive
integers and rational p-integers for a prime p, respectively.

2. Main results

Lemma 2.1. For n ∈ N we have

Pn(x) =
n∑

k=0

(
n+ k

2k

)(
2k

k

)(x− 1

2

)k

.

Proof. From [4, (3.135)] we have the following result due to Murphy:

(2.1) Pn(x) =
n∑

k=0

(
n

k

)(
n+ k

k

)(x− 1

2

)k

.

As
(
n+k
2k

)(
2k
k

)
=

(
n+k
k

)(
n
k

)
, we obtain the result. �

Lemma 2.2. Let p be an odd prime and k ∈ {1, 2, . . . , (p− 1)/2}. Then

(p−1
2 + k

2k

)
≡

(
2k
k

)

(−16)k

(
1− p2

k∑

i=1

1

(2i− 1)2

)
(mod p4).

Proof. Clearly
( p−1

2 + k

2k

)
=

( p−1
2 + k)( p−1

2 + k − 1) · · · ( p−1
2 − k + 1)

(2k)!

=
(p+ 2k − 1)(p+ 2k − 3) · · · (p− (2k − 3))(p− (2k − 1))

22k · (2k)!

=
(p2 − 12)(p2 − 32) · · · (p2 − (2k − 1)2)

22k · (2k)!

≡ (−1)k · 12 · 32 · · · (2k − 1)2

22k · (2k)!
(
1− p2

k∑

i=1

1

(2i− 1)2

)
(mod p4).
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To see the result, we note that

12 · 32 · · · (2k − 1)2

22k · (2k)! =
(2k)!2

(2 · 4 · · · (2k))2 · 22k · (2k)! =
(2k)!

24k · k!2 =

(
2k
k

)

16k
. �

Let p be an odd prime, and let {A(n)} be the Apéry numbers given by

A(n) =
n∑

k=0

(
n+ k

k

)2(
n

k

)2

.

It is well known that (see [1], [10]) A( p−1
2 ) ≡ a(p) (mod p2), where a(n) is defined

by

q

∞∏

n=1

(1− q2n)4(1− q4n)4 =

∞∑

n=1

a(n)qn.

By the fact
(
n+k
k

)(
n
k

)
=

(
n+k
2k

)(
2k
k

)
and Lemma 2.2 we have

A
(p− 1

2

)
=

p−1
2∑

k=0

(p−1
2 + k

2k

)2(
2k

k

)2

≡
p−1
2∑

k=0

( (
2k
k

)

(−16)k

)2
(
2k

k

)2

(mod p2).

Hence

(2.2) a(p) ≡ A
(p− 1

2

)
≡

p−1
2∑

k=0

(
2k
k

)4

44k
(mod p2).

Let b(n) be given by q
∏∞

n=1(1− q4n)6 =
∑∞

n=1 b(n)q
n. Then Mortenson [8] proved

the following conjecture of Rodriguez-Villegas:

(2.3)

p−1
2∑

k=1

(
2k
k

)3

43k
≡ b(p) (mod p2).

Theorem 2.1. Let p be an odd prime and let x be a variable. Then

p−1∑

k=0

(
2k
k

)2

16k
(
xk− (−1)

p−1
2 (1−x)k

)
≡

p−1
2∑

k=0

(
2k
k

)2

16k
(
xk− (−1)

p−1
2 (1−x)k

)
≡ 0 (mod p2).

Proof. For a variable t, by Lemmas 2.1 and 2.2 we have

(2.4) P p−1
2
(t) =

p−1
2∑

k=0

(p−1
2 + k

2k

)(
2k

k

)( t− 1

2

)k

≡
p−1
2∑

k=0

(
2k
k

)2

16k

(1− t

2

)k

(mod p2).

It is known that (see [6]) Pn(t) = (−1)nPn(−t). Thus, by (2.4),

p−1
2∑

k=0

(
2k
k

)2

16k

(1− t

2

)k

≡ (−1)
p−1
2

p−1
2∑

k=0

(
2k
k

)2

16k

(1 + t

2

)k

(mod p2).

Now taking t = 1− 2x in the congruence we deduce that
p−1
2∑

k=0

(
2k
k

)2

16k
(
xk − (−1)

p−1
2 (1− x)k

)
≡ 0 (mod p2).

To complete the proof, we note that for k ∈ {p+1
2 , p+3

2 , . . . , p − 1},
(
2k
k

)
=

2k(2k − 1) · · · (k + 1)/k! ≡ 0 (mod p). �
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Theorem 2.2. Let p be an odd prime. Then
p−1
2∑

k=0

(
2k
k

)2

32k
≡

{
0 (mod p2) if 4 | p− 3,

2a− p
2a (mod p2) if 4 | p− 1 and p = a2 + b2 with 4 | a− 1.

Proof. When p ≡ 3 (mod 4), taking x = 1
2 in Theorem 2.1 we obtain the result.

Now suppose p ≡ 1 (mod 4) and so p = a2 + b2 with a, b ∈ Z and a ≡ 1 (mod 4).
It is well known that ([6])

(2.5) P2n+1(0) = 0 and P2n(0) =
(−1)n

22n

(
2n

n

)
.

Thus, by (2.4) and (2.5) we have

p−1
2∑

k=0

(
2k
k

)2

32k
≡ P p−1

2
(0) =

(−1)
p−1
4

2
p−1
2

(p−1
2

p−1
4

)
(mod p2).

According to the result due to Chowla, Dwork and Evans (see [2] or [3]), we have
(p−1

2
p−1
4

)
≡ 2p−1 + 1

2

(
2a− p

2a

)
(mod p2).

Set q = (2
p−1
2 − (−1)

p−1
4 )/p. Then 2p−1 ≡ 1 + 2(−1)

p−1
4 qp (mod p2). Thus

2p−1 + 1

2 · 2 p−1
2

≡ 2 + 2(−1)
p−1
4 qp

2((−1)
p−1
4 + qp)

= (−1)
p−1
4 (mod p2).

Hence
p−1
2∑

k=0

(
2k
k

)2

32k
≡ (−1)

p−1
4

2
p−1
2

(p−1
2

p−1
4

)
≡ (−1)

p−1
4

2
p−1
2

· 2
p−1 + 1

2

(
2a− p

2a

)
≡ 2a− p

2a
(mod p2).

The proof is now complete. �

Remark 2.1. Theorem 2.2 was conjectured by Zhi-Wei Sun ([13]), and the congru-

ence for
∑ p−1

2

k=0
(2kk )

2

32k
(mod p) was also proved by Zhi-Wei Sun in [13].

Theorem 2.3. Let p be an odd prime and r ∈ {1, 2, . . . , (p− 1)/2}. Then

p−1
2∑

k=0

(
2k
k

)2

32k
k(k − 1) · · · (k − r + 1)

≡

⎧
⎨

⎩
0 (mod p2) if 4 | (p+ 1− 2r),

(−1)
p−1+2r

4 2−
p−1
2

( p−1
2 +r)!

p−1−2r
4 ! p−1+2r

4 !
(mod p2) if 4 | (p− 1− 2r).

Proof. By (2.4) we have

dr P p−1
2
(t)

dtr
≡

p−1
2∑

k=0

(
2k
k

)2

(−32)k
· d

r(t− 1)k

dtr

=

p−1
2∑

k=0

(
2k
k

)2

(−32)k
k(k − 1) · · · (k − r + 1)(t− 1)k−r (mod p2).

(2.6)
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Hence

dr P p−1
2
(t)

dtr

∣∣∣∣
t=0

= (−1)r

p−1
2∑

k=0

(
2k
k

)2

32k
k(k − 1) · · · (k − r + 1).

By (1.3) we have

dr

dtr
P p−1

2
(t) =

1

2(p−1)/2
· dr

dtr

[ p−1
4 ]∑

m=0

(−1)m(p− 1− 2m)!

m!( p−1
2 −m)!( p−1

2 − 2m)!
t
p−1
2 −2m

=
1

2(p−1)/2

[ p−1−2r
4 ]∑

m=0

(−1)m(p− 1− 2m)!

m!( p−1
2 −m)!( p−1

2 − 2m)!

× (
p− 1

2
−2m)(

p− 1

2
−2m−1)· · ·(p− 1

2
− 2m− r + 1)t

p−1
2 −2m−r.

Thus,

drP p−1
2
(t)

dtr

∣∣∣
t=0

=

{
0 if r �≡ p−1

2 (mod 2),
(−1)m(p−1−2m)!

2(p−1)/2·m!( p−1
2 −m)!

if r = p−1
2 − 2m.

Now combining all the above we obtain the result. �

Corollary 2.1. Let p be an odd prime. Then

p−1
2∑

k=0

k2
(
2k
k

)2

32k
≡

⎧
⎨

⎩
(−1)

p+3
4 2−

p−1
2

p+3
2 !

p−5
4 ! p+3

4 !
(mod p2) if p ≡ 1 (mod 4),

(−1)
p+1
4 2−

p−1
2

p+1
2 !

p−3
4 ! p+1

4 !
(mod p2) if p ≡ 3 (mod 4).

Proof. By Theorem 2.3 we have

p−1
2∑

k=0

k
(
2k
k

)2

32k
≡

⎧
⎨

⎩
0 (mod p2) if p ≡ 1 (mod 4),

(−1)
p+1
4 2−

p−1
2

p+1
2 !

p−3
4 ! p+1

4 !
(mod p2) if p ≡ 3 (mod 4)

and

p−1
2∑

k=0

k(k − 1)
(
2k
k

)2

32k
≡

⎧
⎨

⎩
(−1)

p+3
4 2−

p−1
2

p+3
2 !

p−5
4 ! p+3

4 !
(mod p2) if p ≡ 1 (mod 4),

0 (mod p2) if p ≡ 3 (mod 4).

Observe that k2 = k(k − 1) + k. From the above we deduce the result. �

Lemma 2.3. Let p be a prime greater than 3 and let t be a variable. Then

P[ p3 ]
(t) ≡

[p/3]∑

k=0

(3k)!

k!3

(1− t

54

)k

(mod p).
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Proof. Suppose r = 1 or 2 according to whether 3 | p− 1 or 3 | p− 2. Then clearly

(p−r
3 + k

2k

)
=

( p−r
3 + k)( p−r

3 + k − 1) · · · ( p−r
3 − k + 1)

(2k)!

=
(p+ 3k − r)(p+ 3k − r − 3) · · · (p− (3k + r − 3))

32k · (2k)!

≡ (−1)k
(3k − r)(3k − r − 3) · · · (3− r) · r(r + 3) · · · (3k + r − 3)

32k · (2k)!

=
(−1)k · (3k)!

3 · 6 · · · 3k · 32k · (2k)! =
(−1)k · (3k)!

3k · k! · 32k · (2k)! (mod p).

Hence, by Lemma 2.1 we have

P[ p3 ]
(t) =

[p/3]∑

k=0

(
[p3 ] + k

2k

)(
2k

k

)( t− 1

2

)k ≡
[p/3]∑

k=0

(−1)k · (3k)!
33k · k!(2k)! · (2k)!

k!2

( t− 1

2

)k

=

[p/3]∑

k=0

(3k)!

27k · k!3
(1− t

2

)k

(mod p).

This proves the lemma. �

Theorem 2.4. Let p be a prime greater than 3 and let x be a variable. Then

[p/3]∑

k=0

(3k)!

27k · k!3
(
xk − (−1)[

p
3 ](1− x)k

)
≡ 0 (mod p).

Proof. As Pn(t) = (−1)nPn(−t), using Lemma 2.3 we deduce that

[p/3]∑

k=0

(3k)!

27k · k!3
((1− t

2

)k

− (−1)[p/3]
(1 + t

2

)k)
≡ 0 (mod p).

Now putting t = 1− 2x in the congruence we obtain the result. �

Corollary 2.2. Let p be a prime greater than 3. Then

[p/3]∑

k=0

(3k)!

27k · k!3 ≡
(p
3

)
(mod p).

Proof. Taking x = 1 in Theorem 2.4 and noting that (−1)[p/3] = ( p3 ) we deduce the
result. �

Remark 2.2. By [8] or [10, p. 204] we have the stronger supercongruence∑p−1
k=0

(3k)!
27k·k!3 ≡ ( p3 ) (mod p2).

Lemma 2.4. Let p be an odd prime and k ∈ {1, 2, . . . , p−1
2 }. Then

(
(p− 1)/2

k

)
≡ 1

(−4)k

(
2k

k

)(
1− p

k∑

i=1

1

2i− 1

)
(mod p2).
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Proof. It is clear that

(p−1
2

k

)
=

p−1
2 ( p−1

2 − 1) · · · ( p−1
2 − k + 1)

k!
=

(p− 1)(p− 3) · · · (p− (2k − 1))

2k · k!

≡ (−1)(−3) · · · (−(2k − 1))

2k · k!
(
1− p

k∑

i=1

1

2i− 1

)

=
(−1)k · (2k)!
(2k · k!)2

(
1− p

k∑

i=1

1

2i− 1

)
(mod p2).

This yields the result. �

Theorem 2.5. Let p be a prime greater than 5. Then

[p/3]∑

k=0

(3k)!

54k · k!3 ≡
{
0 (mod p) if 6 | p− 5,

2A (mod p) if 6 | p− 1 and p = A2 + 3B2 with 3 | A− 1

and
[p/3]∑

k=0

k · (3k)!
54k · k!3 ≡

{
0 (mod p) if 6 | p− 1,
1
3 (−1)

p+1
6 2−

p+1
3

((p+1)/3
(p+1)/6

)
(mod p) if 6 | p− 5.

Proof. Taking t = 0 in Lemma 2.3 and applying (2.5) and Lemma 2.4 we deduce
that

[p/3]∑

k=0

(3k)!

54k · k!3 ≡
{
0 (mod p) if p ≡ 5 (mod 6),
(−1)(p−1)/6

2(p−1)/3

((p−1)/3
(p−1)/6

)
≡

((p−1)/2
(p−1)/6

)
(mod p) if p ≡ 1 (mod 6).

Now suppose p ≡ 1 (mod 6), and so p = A2+3B2 with A,B ∈ Z and A ≡ 1 (mod 3).

By [2, Theorem 9.4.4] we have
((p−1)/2
(p−1)/6

)
≡ 2A (mod p). Thus the first part follows.

By Lemma 2.3 we have

d

dt
P[ p3 ]

(t) ≡ −
[p/3]∑

k=0

(3k)!

54k · k!3 · k(1− t)k−1 (mod p).

Thus, d
dtP[ p3 ]

(t)
∣∣
t=0

≡ −
∑[p/3]

k=0
k·(3k)!
54k·k!3 (mod p). From (1.3) we know that

d

dt
P[ p3 ]

(t)
∣∣
t=0

=

⎧
⎨

⎩
0 if p ≡ 1 (mod 6),

2−
p−2
3 · (−1)

p−5
6

p+1
3 !

p−5
6 ! p+1

6 !
if p ≡ 5 (mod 6).

Thus the second part is true. �

Lemma 2.5. Let p be an odd prime and k ∈ {1, 2, . . . , p−1
2 }. Then

(−1)k
(
(p−1)/2+k

k

)
(
(p−1)/2

k

) ≡ 1 + 2p

k∑

i=1

1

2i− 1
≡ 3− 2(−4)k

(
(p−1)/2

k

)
(
2k
k

) (mod p2).
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Proof. It is clear that

(−1)k
(
(p−1)/2+k

k

)
(
(p−1)/2

k

) =
( p−1

2 + k)( p−1
2 + k − 1) · · · ( p−1

2 + 1)

(−1)k p−1
2 ( p−1

2 − 1) · · · ( p−1
2 − k + 1)

=
(p+ 2k − 1)(p+ 2k − 3) · · · (p+ 1)

(−1)k(p− 1)(p− 3) · · · (p− (2k − 1))

≡
1 · 3 · · · (2k − 1)(1 + p

∑k
i=1

1
2i−1 )

1 · 3 · · · (2k − 1)(1− p
∑k

i=1
1

2i−1 )

≡
(
1 + p

k∑

i=1

1

2i− 1

)2

≡ 1 + 2p

k∑

i=1

1

2i− 1
(mod p2).

This together with Lemma 2.4 yields the result. �

Theorem 2.6. Let p be an odd prime, x ∈ Zp and x �≡ −1 (mod p). Then

P p−1
2
(x) ≡

(2(x+ 1)

p

)
P p−1

2

(3− x

1 + x

)
(mod p).

Proof. It is known that (see [4, (3.134)])

Pn(x) =

n∑

k=0

(
n

k

)2(x+ 1

2

)n−k(x− 1

2

)k

.

Thus, using Lemma 2.5 and (2.1) we see that

P p−1
2
(x) =

(x+ 1

2

) p−1
2

p−1
2∑

k=0

(p−1
2

k

)2(x− 1

x+ 1

)k

≡
(2(x+ 1)

p

) p−1
2∑

k=0

( p−1
2

k

)(p−1
2 + k

k

)
(−1)k

(x− 1

x+ 1

)k

=
(2(x+ 1)

p

)
P p−1

2

(
1 + 2 · 1− x

1 + x

)
=

(2(x+ 1)

p

)
P p−1

2

(3− x

1 + x

)
(mod p).

This proves the theorem. �

Corollary 2.3. Let p be a prime of the form 4k + 3. Then P p−1
2
(3) ≡ 0(mod p).

Proof. By Theorem 2.6 and (2.5) we have P p−1
2
(3) ≡ ( 2p )P p−1

2
(0) = 0 (mod p). �

Theorem 2.7. Let p be an odd prime, x ∈ Zp and x �≡ 0 (mod p). Then

p−1
2∑

k=0

(
2k
k

)2

16k

(
xk −

(x
p

)
x−k

)
≡ 0 (mod p).

Proof. Clearly the result is true for x ≡ 1 (mod p). Now assume x �≡ 1 (mod p).
As Pn(t) = (−1)nPn(−t) (see [6]), using Theorem 2.6 we see that for t ∈ Zp with
t �≡ ±1 (mod p),

(2(t+ 1)

p

)
P p−1

2

(3− t

1 + t

)
≡ (−1)

p−1
2

(2(−t+ 1)

p

)
P p−1

2

(3 + t

1− t

)
(mod p).
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Thus,

P p−1
2

(3− t

1 + t

)
≡

( t2 − 1

p

)
P p−1

2

(3 + t

1− t

)
(mod p).

Now applying (2.4) we deduce that

p−1
2∑

k=0

(
2k
k

)2

16k

(1− 3−t
1+t

2

)k

≡
( t2 − 1

p

) p−1
2∑

k=0

(
2k
k

)2

16k

(1− 3+t
1−t

2

)k

(mod p)

and so

p−1
2∑

k=0

(
2k
k

)2

16k

(( t− 1

t+ 1

)k

−
( (t− 1)/(t+ 1)

p

)( t+ 1

t− 1

)k)
≡ 0 (mod p).

Set t = (1 + x)/(1− x). Then t �≡ ±1 (mod p) and x = (t− 1)/(t+ 1). Hence the
result follows. �

Let p be an odd prime, and let x ∈ Zp with x �≡ 0, 1 (mod p). By Theorems 2.1
and 2.7 we have

(2.7)

(p−1)/2∑

k=0

(
2k
k

)2

(16x)k
≡

(x(x− 1)

p

) (p−1)/2∑

k=0

(
2k
k

)2

(16(1− x))k
(mod p).

Theorem 2.8. Let p be an odd prime, x ∈ Zp and x �≡ 0 (mod p). Then

p−1
2∑

k=0

(
2k

k

)2(x
4

)2k

≡
(−x

p

)
P p−1

2

(x+ x−1

2

)
(mod p).

Proof. From [4, (3.138)] we have the following result due to Kelisky:

(2.8)

n∑

k=0

(
2n− 2k

n− k

)(
2k

k

)
x2k = 22nxnPn

(x+ x−1

2

)
.

Taking n = (p− 1)/2 in (2.8) we have

p−1
2∑

k=0

(
p− 1− 2k
p−1
2 − k

)(
2k

k

)
x2k=2p−1x

p−1
2 P p−1

2

(x+x−1

2

)
≡
(x
p

)
P p−1

2

(x+x−1

2

)
(mod p).

To see the result, using Lemma 2.2 we note that for 0 ≤ k ≤ p−1
2 ,

(
p− 1− 2k
p−1
2 − k

)
=

(p− 1− 2k)(p− 2− 2k) · · · (p− ( p−1
2 + k))

( p−1
2 − k)!

(2.9)

≡ (−1)
p−1
2 −k (2k + 1)(2k + 2) · · · ( p−1

2 + k)

( p−1
2 − k)!

= (−1)
p−1
2 −k

(p−1
2 + k

2k

)
≡ (−1)

p−1
2

(
2k
k

)

16k
(mod p).

�
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Theorem 2.9. Let p be a prime of the form 4k + 1 and p = a2 + b2 with a, b ∈ Z

and a ≡ 1 (mod 4). Then
p−1
2∑

k=0

(
2k
k

)2

8k
≡

p−1
2∑

k=0

(
2k
k

)2

(−16)k
≡ P p−1

2
(3) ≡ (−1)

p−1
4

(
2a− p

2a

)
(mod p2).

Proof. By Theorem 2.1 and (2.4) we have
∑ p−1

2

k=0

(
2k
k

)2
8−k ≡

∑ p−1
2

k=0

(
2k
k

)2
(−16)−k ≡

P p−1
2
(3) (mod p2). From Theorem 2.6, (2.5) and Gauss’ congruence

((p−1)/2
(p−1)/4

)
≡ 2a

(mod p) (see [2]) we have

P p−1
2
(3) ≡

(2
p

)
P p−1

2
(0) =

(2
p

) (−1)(p−1)/4

2(p−1)/2

(
(p− 1)/2

(p− 1)/4

)
≡ (−1)

p−1
4 · 2a (mod p).

Write P p−1
2
(3) = (−1)

p−1
4 ·2a+qp. Then P p−1

2
(3)2 ≡ 4a2+(−1)

p−1
4 ·4aqp (mod p2).

By a result due to Van Hamme [15], we have (
∑ p−1

2

k=0

( p−1
2
k

)( p−1
2 +k
k

)
)2 ≡ 4a2 −

2p (mod p2). This together with (2.1) yields P p−1
2
(3)2 ≡ 4a2 − 2p (mod p2). Hence

(−1)
p−1
4 ·4aq ≡ −2 (mod p), and so P p−1

2
(3) ≡ (−1)

p−1
4 ·2a− p

2(−1)(p−1)/4a
(mod p2).

Now combining all the above we obtain the result. �
Remark 2.3. For a prime p = 4k+1 = a2 + b2 with a ≡ 1 (mod 4), the congruence
∑(p−1)/2

k=0

(
2k
k

)2
8−k ≡

∑(p−1)/2
k=0

(
2k
k

)2
(−16)−k ≡ (−1)

p−1
4 ·2a (mod p) was proved by

Zhi-Wei Sun in [13], and he also conjectured

(p−1)/2∑

k=0

(
2k

k

)2

8−k ≡
(p−1)/2∑

k=0

(
2k

k

)2

(−16)−k

≡ (−1)
p−1
4 (2a− p

2a
) (mod p2).

Theorem 2.10. Let p be a prime of the form 4k + 1, and so p = a2 + b2 with
a, b ∈ Z and a ≡ 1 (mod 4). Then

p−1
4∑

k=0

(
4k
2k

)2

162k
≡ 1

2
+ (−1)

p−1
4 a− (−1)

p−1
4

p

4a
(mod p2).

Proof. Since
∑ p−1

2

k=0

(
2k
k

)2
16−k +

∑ p−1
2

k=0

(
2k
k

)2
(−16)−k = 2

∑ p−1
4

k=0

(
4k
2k

)2
16−2k, by (1.1)

and Theorem 2.9 we deduce the result. �
For a prime p > 3 and A,B,C ∈ Zp, and let #Ep(y

2 = x3 +Ax2 +Bx+ C) be
the number of points on the curve Ep : y2 = x3 +Ax2 +Bx+ C over the field Fp

of p elements.

Lemma 2.6 ([5]). Let p > 3 be a prime and λ ∈ Zp with λ �≡ 0, 1 (mod p). Then

p+1−#Ep(y
2 = x(x−1)(x−λ)) ≡ (−1)

p−1
2

p−1
2∑

k=0

( p−1
2 + k

k

)(p−1
2

k

)
(−λ)k (mod p).

Theorem 2.11. Let p > 3 be a prime and t ∈ Zp. Then

P p−1
2
(t)≡

p−1
2∑

k=0

(
2k

k

)2(1− t

32

)k

≡−
(−6

p

) p−1∑

x=0

(x3−3(t2+3)x+2t(t2−9)

p

)
(mod p).
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Proof. For t ≡ ±1 (mod p) we have

p−1∑

x=0

(x3 − 3(t2 + 3)x+ 2t(t2 − 9)

p

)

=

p−1∑

x=0

(x3 − 12x∓ 16

p

)
=

p−1∑

x=0

( (2x)3 − 12(2x)∓ 16

p

)
=

(2
p

) p−1∑

x=0

(x3 − 3x∓ 2

p

)

=
(2
p

) p−1∑

x=0

( (x± 1)2(x∓ 2)

p

)
=

(2
p

)( p−1∑

x=0

(x∓ 2

p

)
−
(∓3

p

))
= −

(∓6

p

)
.

Thus applying (2.4) and the fact Pn(±1) = (±1)n (see [6]) we deduce the result.
Now assume t �≡ ±1 (mod p). For A,B,C ∈ Zp, it is easily seen that (see for

example [12, pp. 221-222])

#Ep(y
2 = x3 +Ax2 +Bx+ C) = p+ 1 +

p−1∑

x=0

(x3 +Ax2 +Bx+ C

p

)
.

Taking λ = (1− t)/2 in Lemma 2.6 and applying the above and (2.1) we see that

P p−1
2
(t) =

p−1
2∑

k=0

( p−1
2 + k

k

)(p−1
2

k

)( t− 1

2

)k

≡ (−1)
p−1
2

(
p+ 1−#Ep(y

2 = x(x− 1)(x− (1− t)/2))
)

= (−1)
p+1
2

p−1∑

x=0

(x(x− 1)(x− (1− t)/2)

p

)
(mod p).

Since

p−1∑

x=0

(x(x− 1)(x− (1− t)/2)

p

)

=

p−1∑

x=0

( x
2 (

x
2 − 1)(x2 − 1−t

2 )

p

)
=

(2
p

) p−1∑

x=0

(x(x− 2)(x+ t− 1)

p

)

=
(2
p

) p−1∑

x=0

(x3 + (t− 3)x2 − 2(t− 1)x

p

)

=
(2
p

) p−1∑

x=0

( (x− t−3
3 )3 + (t− 3)(x− t−3

3 )2 − 2(t− 1)(x− t−3
3 )

p

)

=
(2
p

) p−1∑

x=0

(x3 − t2+3
3 x+ 2t3−18t

27

p

)
=

(2
p

) p−1∑

x=0

( (x3 )
3 − t2+3

3 · x
3 + 2t3−18t

27

p

)

=
(6
p

) p−1∑

x=0

(x3 − 3(t2 + 3)x+ 2t(t2 − 9)

p

)
,

by the above and (2.4) we obtain the result. The proof is now complete. �
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Theorem 2.12. Let p > 3 be a prime. Then

P p−1
2
(−31) ≡

p−1
2∑

k=0

(
2k

k

)2

≡
p−1
2∑

k=0

(
2k
k

)2

256k
≡ −

(p
3

) p−1∑

x=0

(x3 − 723x− 7378

p

)
(mod p),

P p−1
2
(33)

≡
p−1
2∑

k=0

(−1)k
(
2k

k

)2

≡(−1)
p−1
2

p−1
2∑

k=0

(
2k
k

)2

(−256)k
≡(−1)

p+1
2

p−1∑

x=0

(x3 − 91x+ 330

p

)
(mod p),

P p−1
2
(−15) ≡

p−1
2∑

k=0

(
2k
k

)2

2k
≡

(2
p

) p−1
2∑

k=0

(
2k
k

)2

128k
≡ (−1)

p+1
2

p−1∑

x=0

(x3 − 19x− 30

p

)
(mod p),

P p−1
2
(9)≡

p−1
2∑

k=0

(
2k
k

)2

(−4)k
≡ (−1)

p−1
2

p−1
2∑

k=0

(
2k
k

)2

(−64)k
≡ (−1)

p+1
2

p−1∑

x=0

(x3 − 7x+ 6

p

)
(mod p),

P p−1
2
(5) ≡

p−1
2∑

k=0

(
2k
k

)2

(−8)k
≡

(−2

p

) p−1
2∑

k=0

(
2k
k

)2

(−32)k
≡ −

(p
3

) p−1∑

x=0

(x3 − 21x+ 20

p

)
(mod p).

Proof. Taking t = −31 in Theorem 2.11 and applying Theorem 2.7 we see that

P p−1
2
(−31) ≡

p−1
2∑

k=0

(
2k

k

)2

≡
p−1
2∑

k=0

(
2k
k

)2

256k
≡−

(−6

p

)p−1∑

x=0

(x3−3(312+3)x−62(312−9)

p

)

= −
(−6

p

) p−1∑

x=0

( (2x)3 − 4 · 723 · 2x− 8 · 7378
p

)

= −
(−3

p

) p−1∑

x=0

(x3 − 723x− 7378

p

)
(mod p).

Taking t = 33 in Theorem 2.11 and applying Theorem 2.7 we see that

P p−1
2
(33)

≡
p−1
2∑

k=0

(−1)k
(
2k

k

)2

≡
(−16

p

) p−1
2∑

k=0

(
2k
k

)2

(−256)k
≡ −

(−6

p

) p−1∑

x=0

(x3 − 3276x+ 71280

p

)

= −
(−6

p

) p−1∑

x=0

( (6x)3 − 36 · 91 · 6x+ 216 · 330
p

)

= −
(−1

p

) p−1∑

x=0

(x3 − 91x+ 330

p

)
(mod p).

The remaining congruences can be proved similarly. �

For a, b, n ∈ N, if n = ax2 + by2 for some x, y ∈ Z, we say that n = ax2 + by2.
In 2003, Rodriguez-Villegas [11] posed many conjectures on supercongruences. In
particular, he conjectured that for any prime p > 3,

p−1∑

k=0

(4k)!

256kk!4
≡

{
4x2 − 2p (mod p2) if p ≡ 1, 3 (mod 8), and so p = x2 + 2y2,

0 (mod p2) if p ≡ 5, 7 (mod 8)
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and
p−1∑

k=0

(
2k
k

)2(3k
k

)

108k
≡

{
4x2 − 2p (mod p2) if 3 | p− 1, and so p = x2 + 3y2,

0 (mod p2) if 3 | p− 2.

Recently Zhi-Wei Sun ([13, 14]) made a lot of conjectures on supercongruences. In
particular, he conjectured that for a prime p �= 2, 7,

p−1∑

k=0

(
2k

k

)3

≡
p−1∑

k=0

(4k)!

81kk!4
≡

{
4x2 − 2p (mod p2) if ( p7 ) = 1 and so p = x2 + 7y2,

0 (mod p2) if ( p7 ) = −1.

Inspired by his work, we pose the following conjectures.

Conjecture 2.1. Let p > 3 be a prime. Then

p−1∑

k=0

(4k)!

648kk!4
≡

{
4x2 − 2p (mod p2) if p ≡ 1 (mod 4) and p = x2 + y2 with 2 � x,

0 (mod p2) if p ≡ 3 (mod 4).

Conjecture 2.2. Let p > 3 be a prime. Then

p−1∑

k=0

(4k)!

(−144)kk!4
≡

{
4x2 − 2p (mod p2) if p ≡ 1 (mod 3), and so p = x2 + 3y2,

0 (mod p2) if p ≡ 2 (mod 3).

Conjecture 2.3. Let p �= 2, 3, 7 be a prime. Then

p−1∑

k=0

(4k)!

(−3969)kk!4
≡
{
4x2− 2p (mod p2) if p≡1, 2, 4 (mod 7), and so p=x2 + 7y2,

0 (mod p2) if p≡3, 5, 6 (mod 7).

Conjecture 2.4. Let p �= 2, 3, 11 be a prime. Then

p−1∑

k=0

(6k)!

663k(3k)!k!3
≡
{
( p
33 )(4x

2 − 2p) (mod p2) if 4 |p−1 and p=x2 + y2 with 2 �x,

0 (mod p2) if 4 |p−3.

Conjecture 2.5. Let p > 5 be a prime. Then

p−1∑

k=0

(6k)!

203k(3k)!k!3
≡
{
(−5

p )(4x2 − 2p) (mod p2) if p≡1, 3 (mod 8) and p=x2 + 2y2,

0 (mod p2) if p≡5, 7 (mod 8).

Conjecture 2.6. Let p > 5 be a prime. Then

p−1∑

k=0

(6k)!

54000k(3k)!k!3
≡
{
( p5 )(4x

2 − 2p) (mod p2) if 3 | p− 1, and so p = x2 + 3y2,

0 (mod p2) if 3 | p− 2.

Conjecture 2.7. Let p > 5 be a prime. Then

p−1∑

k=0

(6k)!

(−12288000)k(3k)!k!3

≡
{
( 10p )(L2 − 2p) (mod p2) if p ≡ 1 (mod 3), and so 4p = L2 + 27M2,

0 (mod p2) if p ≡ 2 (mod 3).

Conjecture 2.8. Let p > 7 be a prime. Then

p−1∑

k=0

(6k)!

(−15)3k(3k)!k!3
≡
{
( p
15 )(4x

2 − 2p) (mod p2) if ( p7 )=1, and so p=x2 + 7y2,

0 (mod p2) if ( p7 )=−1.
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Conjecture 2.9. Let p �= 2, 3, 5, 7, 17 be a prime. Then

p−1∑

k=0

(6k)!

2553k(3k)!k!3
≡

{
( p
255 )(4x

2 − 2p) (mod p2) if ( p7 ) = 1, and so p = x2 + 7y2,

0 (mod p2) if ( p7 ) = −1.

Conjecture 2.10. Let p > 3 be a prime. Then

p−1∑

k=0

(
2k
k

)2(3k
k

)

1458k
≡

{
4x2 − 2p (mod p2) if p ≡ 1 (mod 3), and so p = x2 + 3y2,

0 (mod p2) if p ≡ 2 (mod 3).

Conjecture 2.11. Let p > 5 be a prime. Then

p−1∑

k=0

(
2k
k

)2(3k
k

)

153k
≡

⎧
⎪⎨

⎪⎩

4x2 − 2p (mod p2) if p≡1, 4 (mod 15), and so p=x2+15y2,

2p− 12x2 (mod p2) if p≡2, 8 (mod 15), and so p=3x2 + 5y2,

0 (mod p2) if p ≡ 7, 11, 13, 14 (mod 15).

Conjecture 2.12. Let p > 5 be a prime. Then

p−1∑

k=0

(
2k
k

)2(3k
k

)

(−8640)k
≡

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

4x2 − 2p (mod p2) if 3 | p− 1, p = x2 + 3y2 and 5 | xy,
p− 2x2 ± 6xy (mod p2) if 3 | p− 1, p = x2 + 3y2, 5 � xy

and x ≡ ±y,±2y (mod 5),

0 (mod p2) if 3 | p− 2.

Conjecture 2.13. Let p > 3 be a prime. Then

p−1∑

k=0

(3k)!

54k · k!3 ≡
{
(x3 )(2x− p

2x ) (mod p2) if 3 | p− 1, and so p = x2 + 3y2,

0 (mod p2) if 3 | p− 2.
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