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BERGMAN OPERATORS
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(Communicated by Michael T. Lacey)

Abstract. In this paper, we identify a large collection of open subsets of
the complex plane for which the core of corresponding unbounded Bergman
operators is densely defined. This result gives the necessary background to
investigate the concept of invariant subspaces, index, and cyclicity in the un-
bounded case.

1. Introduction

Let T denote a densely defined linear operator on a Hilbert space H; that is,
T : D (T ) → H, where the domain of T, given by D (T ) = {h ∈ H : Th ∈ H}, is
dense in H. For n ≥ 1, define the iterates of T by Tn : D (Tn) → H, where

D (Tn) = {h ∈ D (Tn−1) : Th ∈ D (T )}
with the convention that T 0 = Id is the identity operator on H.

Definition 1.1. Given a densely defined operator T on H, the core of T is defined
by

(1.2) D T =

∞⋂

n=1

D (Tn).

Whenever the operator T is understood, we simply write D instead of D T .

It follows immediately that TD ⊆ D ; i.e., T leaves D invariant and, by defini-
tion, it must be the largest invariant set. Therefore, any definition for an invariant
subspace of T should be restricted to its core D T . It may very well happen that
D T is the trivial zero subspace for T (necessarily unbounded); however, one would
naturally like to have the other extreme. In other words, one wishes to work with
densely defined operators such that their cores are also dense in the underlying
Hilbert spaces. Of course, this question could only make sense when a particular
operator is concerned.

To provide an easy, yet important, example, we consider the Fock space F 2. This
is the space of all entire functions on the complex plane C such that their modulus

are square integrable with respect to the gaussian measure dμ(z) = e−|z|2dA(z),
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where dA(z) =
1

π
dxdy is the normalized Lebesgue area measure. The operator

of multiplication by the independent variable z is defined by (Mzf)(z) = zf(z)
for all f in D (Mz) = {f ∈ F 2 : zf ∈ F 2}. It follows that Mz is an unbounded
operator (see [2]). Moreover, using the power series expansion of an entire function
f(z) =

∑∞
n=0 anz

n in C, it is not hard to show (see [1]) that the partial sums
converge to f in F 2. As a consequence, we have that the set of all polynomials
is a dense linear manifold in the Fock space. Now from the definition of the core
(1.2), one can easily see that polynomials are contained in DMz

. Therefore, Mz

has a dense core. The same question for the core of unbounded multiplication
operators on the Bergman space is non-trivial. In fact, the main purpose of this
paper is to prove the existence of a large collection of unbounded open subsets of
the plane for which the core of the corresponding multiplication operator by the
independent variable z is dense. We also mention that this collection of open sets
includes most natural cases such as simply connected regions, any open subset of
a simply connected region, and much more. As a result, we will give the necessary
condition for developing a fruitful invariant theory, where concepts such as the index
of an invariant subspace and cyclicity can be extended from the bounded case to
the unbounded situation (see Duren and Schuster [6] for definitions and obtained
results in this regard for the theory of (bounded) Bergman operators).

Throughout this paper G is assumed to be an open subset of the complex plane
C. Denote by L2(G) the Hilbert space of square integrable functions with respect to
the Lebesgue area measure dA = dxdy restricted to G. The Bergman space L2

a(G)
is the closed subspace of L2(G) whose elements are analytic functions on G. The
algebra of all analytic functions on G is denoted by Hol(G), and H∞(G) is the
space of bounded analytic functions on G. If ϕ belongs to Hol(G) and D (Mϕ,G) ={
f ∈ L2

a(G) : ϕf ∈ L2(G)
}
, the operator of multiplication by ϕ on G is defined

as Mϕ,G : f �→ ϕf for f in D (Mϕ,G). In particular if ϕ(z) = z, Mz,G is called
the (unbounded) Bergman operator and it will be denoted by SG. When there is
no ambiguity regarding the open set G, Mϕ,G and SG are denoted by Mϕ and S,
respectively.

The operator Mz on the Fock space mentioned above and the multiplication
operator Mϕ,G, where G is an unbounded open subset of the plane, belong to
a larger class of operators which are called the unbounded subnormal operators .
Significant progress in understanding these operators has been made during the
recent past. The papers [4], [10], and [12] are a few to mention and contain further
references on this topic. The study of unbounded Bergman operators has also
been started in [4], [7], [8], and [9] . These papers deal particularly with some
fundamental questions regarding the unbounded Bergman operators. The present
work can be considered as a continuation of this study.

2. Density problem for the core

In what follows D is the open unit disc, ∂D stands for the unit circle, and C∞
denotes the extended complex numbers. Our main goal is to prove the following
result.

Theorem 2.1. Let G be an open subset of the plane. If the component of the
complement of G with respect to C∞ that contains the point at infinity does not
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equal the singleton {∞}, then the Bergman operator S defined on G has a dense
core in L2

a(G).

The proof of Theorem 2.1 uses the theory of Hardy spaces and univalent func-
tions . Recall that an analytic function f in D belongs to the Hardy spaceHp(D), 0 <

p < ∞, if supr<1

{
(2π)−1

∫ 2π

0
|f(reit)|p dt

}
< ∞. We will assume some basics from

the theory of Hp spaces.
Lemma 2.3 is the key factor in proving Theorem 2.1. This lemma and its corollary

are also interesting in the theory of Hardy spaces and have not been observed before.
In fact, since there is no advantage in restricting ourselves to the Hardy spaces, we
prove Lemma 2.3 for a larger class of functions, the Nevanlinna class , which includes
all the Hardy spaces Hp(D). In brief, a non-zero analytic function f in D belongs
to the Nevanlinna class N if and only if f is the quotients of two bounded analytic
functions, f = g/h, where h has no zeros on D. For other equivalent statements
regarding functions in N, we refer to any classical work on this topic. Finally, recall
also that an outer function on D is of the form

(2.2) F (z) = α exp

(
1

2π

∫ 2π

0

eit + z

eit − z
logω(eit) dt

)
,

where |α| = 1, ω(eit) > 0 a.e. on the unit circle ∂D, and log ω(eit) is integrable
with respect to the Lebesgue measure on ∂D. We begin with a lemma.

Lemma 2.3. If F is an outer function in N, then there is a bounded outer function
g on D such that gFn ∈ H∞(D) for all n ≥ 1.

Proof. In order to prove the lemma, it is more convenient to regard Hp(D), 0 <
p ≤ ∞, as a subspace of Lp(∂D). That is, we identify Hp(D) with the set of
boundary functions f(eiθ) for f in Hp(D), and similar identification will be made
regarding functions in the Nevanlinna class N (see [5]). Throughout the proof m
is the normalized Lebesgue measure on ∂D.

First assume that |F (w)| ≥ e a.e. [m], and let h(w) = log |F (w)|. Clearly h(z) ≥ 1
a.e. [m] and h ∈ L1(∂D). Next, for k = 0, 1, 2, . . . , define

(2.4) Ak =
{
w ∈ ∂D : 2k ≤ h(w) < 2k+1

}
,

and let

(2.5) Φ(w) =
∞∑

k=0

2k XAk
(w),

where XA(w) is the characteristic function for the set A. Using (2.4) and (2.5), it
is easy to check that

(2.6) 1 ≤ Φ(w) ≤ h(w) ≤ 2Φ(w) a.e [m].

Consequently
∞∑

k=0

2k m(Ak) =

∫

∂D

Φ dm ≤
∫

∂D

h dm < ∞.

It is an elementary exercise that there exists a sequence of positive constants {ck}
such that ck → ∞ and

(2.7)
∞∑

k=0

2k ck m(Ak) < ∞.
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Now if we define Ψ on ∂D by

Ψ(w) =
∞∑

k=0

2k ck XAk
(w) ,

inequality (2.7) implies that Ψ ∈ L1(∂D). Thus from the standard construction of
an outer function (see [5]), there exists a bounded outer function g on D satisfying
|g(w)| = e−Ψ(w) a.e. [m]. We will show that g is the desired function. To see this,
note that for any fixed n ≥ 1

|g(w)Fn(w)| = enh(w)−Ψ(w).

On the other hand, from (2.6) together with definitions of Φ and Ψ, we have

nh(w)−Ψ(w) ≤ 2nΦ(w)−Ψ(w)

=
∞∑

k=0

2n 2k XAk
(w)−

∞∑

k=0

2k ck XAk
(w)

=
∞∑

k=0

(2n− ck) 2
k XAk

(w) a.e. [m].

Since limk→∞ ck = ∞, there is a positive constantM such that 2n−ck < 0 whenever
k > M. Therefore

∞∑

k=M+1

(2n− ck) 2
k XAk

(w) ≤ 0 a.e. [m],

and as a result

nh(w)−Ψ(w) ≤
M∑

k=0

(2n− ck) 2
k XAk

(w)

≤
M∑

k=0

(2n− ck) 2
k a.e. [m].

Putting all together, we have shown that for a fixed n ≥ 1

|g(w)Fn(w)| ≤ exp

(
M∑

k=0

(2n− ck) 2
k

)
a.e. [m],

where M only depends on n. Since n is arbitrary, we conclude that if |F (w)| ≥ e
a.e. on ∂D, gFn ∈ H∞(D) for all n ≥ 1.

Next assume that F is an arbitrary outer function in N. Let

Υ(w) =

{
e−1 |F (w)| if |f(w)| < e,

1 if |f(w)| ≥ e.

It follows that Υ(w) ≤ 1 a.e. [m]. Moreover since log |F | ∈ L1(∂D), log |Υ| ∈
L1(∂D). Thus, from the standard Hp theory, one can find a bounded outer function
h such that |h(w)| = Υ(w) a.e. [m]. Now since the quotient of outer functions is
again an outer function, it follows that F/h is an outer function in N satisfying
|F (w)/h(w)| ≥ e a.e. [m]. Therefore, by a similar argument as in the first part of
the proof, there exists an outer function g in H∞(D) such that

g Fn

hn
∈ H∞(D) for all n ≥ 1.
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Finally noting that hn ∈ H∞(D), we conclude that g Fn ∈ H∞(D) for all n ≥ 1.
This completes the proof of the lemma. �

Observe that if F is an outer function in N, 1/F is also outer and belongs to N.
Thus we have also obtained the following result.

Corollary 2.8. If F is an outer function in N, then there is an outer function g
in H∞(D) such that gFn ∈ H∞(D) for all n ∈ Z.

Our next proposition is in fact about the density of the core of the multiplication
operator by an outer function. Moreover, it provides the last needed tool in proving
our main result.

Proposition 2.9. If Ω is an open subset of D and if F is an outer function in N,
then the D F =

⋂∞
n=0 D (MFn) is dense in L2

a(Ω).

Proof. Let g be the bounded outer function in accordance with Lemma 2.3. In
Rubel and Shields [11, see Theorem 5.1] it is shown that if F is a bounded outer
function, then the set {F h : h ∈ H∞(D)} is weak∗ sequentially dense in H∞(D).
Thus, in our case, there exists a sequence {hn} in H∞(D) such that ghn → 1 weak∗

in L∞(D), or equivalently

(2.10) sup
n≥1

‖ghn‖∞ < ∞ and g(z)hn(z) → 1 for all z in D.

Now let f be a non-zero function in L2
a(Ω), and define gn on Ω by gn = g hnf.

It follows from Lemma 2.3 that gn ∈
⋂∞

k=0D (MFk) for all n ≥ 1. Furthermore

‖gn − f‖2L2
a(Ω) =

∫

Ω

|g(z)hn(z)− 1|2 |f(z)|2 dA(z).

The Dominated Convergence Theorem together with (2.10) implies that gn → f in
L2
a(Ω). This proves the proposition. �

Remark 2.11. From Definition 1.1, one can easily check that Mn
ϕ = Mϕn ; that is,

for ϕ ∈ Hol(G), D (Mn
ϕ ) = D (Mϕn) and Mn

ϕ agrees with Mϕn , the operator of
multiplication by ϕn (see also [7]).

Proof of Theorem 2.1. Denote by E the component of the complement of G with
respect to C∞ that contains the point at infinity, and let Λ = C∞ \ E. It follows
that Λ is a region in C∞, G ⊆ Λ and, since by assumption E consists of more than
one point, Λ is a simply connected region in C which is not the whole plane. By the
Riemann Mapping Theorem, for a fixed point a in G, there is a unique conformal
mapping from D onto Λ, ϕ : D → Λ, such that ϕ(0) = a and ϕ′(0) > 0. Now if we
put Ω = ϕ−1(G), it follows that Ω is an open subset of the unit disc.

Next define U : L2
a(G) → L2

a(Ω) by
(
Uf

)
(z) = ϕ′(z)f(ϕ(z)) for all f ∈ L2

a(G).
Since ϕ is one-to-one and analytic on Ω, it is well known that the mapping U is
an isometric isomorphism of L2

a(G) onto L2
a(Ω) (see [3]). Furthermore, from the

equality

‖wnf‖2L2
a(G) =

∫

G

|wnf |2 du dv =

∫

Ω

|ϕnf(ϕ(z))|2|ϕ′|2 dx dy = ‖ϕnUf‖2L2
a(Ω)

along with Remark 2.11, one easily sees that

(2.12) U
[
D (Sn

G)
]
= D (Mϕn,Ω) for all n ≥ 1.
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Now in view of (2.12) and the fact that U is an isomorphism, we conclude that the

core of S, D S =
∞⋂

n=0
D (Sn), is dense in L2

a(G) if and only if the the core of Mϕ,

DMϕ
=

∞⋂
n=0

D (Mn
ϕ ), is dense in L2

a(Ω). So the proof is complete by showing that

the latter equivalent statement holds. Letting ψ(z) = ϕ(z) − a, if necessary, and
observing that D (Mn

ψ ) = D (Mn
ϕ ), we may assume that ϕ(0) = 0.

Recall that if p > 0 and f ∈ Hp(D), then f has a unique factorization of the
form f(z) = B(z)S(z)F (z), where B(z) is a Blaschke product , S(z) is a singular
inner function, and F (z) is an outer function in Hp(D) defined as in (2.2) (see [5],
Theorem 2.8). It is also known that if f is one-to-one and analytic in D, then f ∈ Hp

for all p < 1
2 and the singular inner factor of f is constantly 1 ([5], Theorems 3.16

and 3.17). Hence, since ϕ(0) = 0, ϕ is one-one and analytic

(2.13) ϕ(z) = zF (z)

where F is an outer function in Hp for all p < 1
2 . But (2.13) implies that D (Mn

F ) ⊆
D (Mn

ϕ ), for all n ≥ 1, and consequently D F ⊆ D ϕ. Now the theorem follows from
Proposition 2.9. �
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