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GAUSSIAN HYPERGEOMETRIC EVALUATIONS OF TRACES

OF FROBENIUS FOR ELLIPTIC CURVES

CATHERINE LENNON

(Communicated by Matthew A. Papanikolas)

Abstract. We present here a formula for expressing the trace of the Frobenius
endomorphism of an elliptic curve E over Fq satisfying j(E) �= 0, 1728 and
q ≡ 1 (mod 12) in terms of special values of Gaussian hypergeometric series.

This paper uses methods introduced by Fuselier for one-parameter families of
curves to express the trace of Frobenius of E as a function of its j-invariant and
discriminant instead of a parameter, which are more intrinsic characteristics
of the curve.

1. Introduction

Gaussian hypergeometric series were first defined by Greene in [4] as finite field
analogues of the classical hypergeometric series. Since then, they have been shown
to possess interesting arithmetic properties; in particular, special values of these
functions can be used to express the number of Fp-points on certain varieties.
For example, results in [8] and [12] presented formulas expressing the number of
Fp-points of elliptic curves in certain families as special values of Gaussian hyperge-
ometric series. These formulas, however, only used trivial and quadratic characters
as parameters, and the task remained to find some expressions with parameters
that were characters of higher orders [11].

Recently in [3], Fuselier provided formulas for certain families of elliptic curves
which involved Gaussian hypergeometric series with characters of order 12 as pa-
rameters, under the assumption that p ≡ 1 (mod 12) (which is necessary to assure
that characters of order 12 exist). In [10], we provide a formula for the trace
of Frobenius for curves with 3-torsion and j-invariant not equal to 0, 1728 using
characters of order three. Again, we must assume that p ≡ 1 (mod 3).

In all of the previous results, the character parameters in the hypergeometric
series depended on the family of curves considered. In addition, the values at
which the hypergeometric series were evaluated were functions of the coefficients
and so depended on the model used. Here, we give a general formula expressing
the number of Fp-points of an elliptic curve in terms of more intrinsic properties of
the curve. Consequently, this characterization is coordinate-free and can be used to
describe the number of points on any elliptic curve E(Fpe), with j(E) �= 0, 1728 and
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pe ≡ 1 (mod 12) without having to put the curve in a specific form. In particular,
the formula holds over Fp2 for all odd p whenever j �= 0, 1728.

Let q = pe be a power of an odd prime and let Fq be the finite field of q

elements. Extend each character χ ∈ ̂F∗
q to all of Fq by setting χ(0) := 0. For any

two characters A,B ∈ ̂F∗
q one can define the normalized Jacobi sum by

(1.1)

(

A

B

)

:=
B(−1)

q

∑

x∈Fq

A(x)B̄(1− x) =
B(−1)

q
J(A, B̄),

where J(A,B) denotes the usual Jacobi sum.
Recall the definition of the Gaussian hypergeometric series over Fq first defined

by Greene in [4]. For any positive integer n and characters A0, A1, ..., An and

B1, B2, ..., Bn ∈ ̂F∗
q , the Gaussian hypergeometric series n+1Fn is defined to be

(1.2)

n+1Fn

(

A0 A1 ... An

B1 ... Bn

∣

∣

∣

∣

x

)

q

:=
q

q − 1

∑

χ∈̂F∗
q

(

A0χ

χ

)(

A1χ

B1χ

)

...

(

Anχ

Bnχ

)

χ(x).

See also Katz [7] (in particular Section 8.2) for more information on how these
sums naturally arise as the traces of Frobenius at closed points of certain �-adic
hypergeometric sheaves.

If we let a(E(Fq)) denote the trace of the Frobenius endomorphism on E, then

a(E(Fq)) = q + 1− |E(Fq)|
and the following theorem expresses this value, and therefore also |E(Fq)|, in terms
of Gaussian hypergeometric series.

Theorem 1.1. Let q = pe, p > 0 a prime and q ≡ 1 (mod 12). In addition, let

E be an elliptic curve over Fq with j(E) �= 0, 1728 and T ∈ ̂F∗
q a generator of the

character group. The trace of the Frobenius map on E can be expressed as

(1.3) a(E(Fq)) = −q · T
q−1
12

(

1728

Δ(E)

)

· 2F1

(

T
q−1
12 T

q−1
12

T
2(q−1)

3

∣

∣

∣

∣

∣

j(E)

1728

)

q

,

where Δ(E) is the discriminant of E.

Remark 1.2. It should be noted that the discriminant of the curve, Δ(E), appears
in the formula for the trace of Frobenius above. Although the discriminant itself
depends on the Weierstrass model, isomorphic curves will differ by a twelfth power
of an element of Fq. Since the discriminant only appears as the argument of a
character of order 12, the discriminants of isomorphic curves will output the same
value, so the formula is indeed independent of the Weierstrass model.

Remark 1.3. When p �≡ 1 (mod 12), information about a(E(Fp)) can still be gained
from Theorem 1.1. Because p2 ≡ 1 (mod 12) for all p > 3, Theorem 1.1 applies
with q = p2. Using the relationship

a(E(Fp))
2 = a(E(Fp2)) + 2p,

one can then determine a(E(Fp)) up to a sign. Computations suggest that the
sign is not determined simply by a character. It would be interesting to find a
characterization of this sign and thus determine a(E(Fp)) for all primes.
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2. Proof of Theorem 1.1

2.1. Elliptic curves in Weierstrass form. Theorem 1.1 will follow as a con-
sequence of the next proposition after applying transformation laws for Gaussian
hypergeometric series. Recall that in characteristic not 2 or 3 an elliptic curve can
be written in Weierstrass form as

E : y2 = x3 + ax+ b.

We prove the following theorem:

Theorem 2.1. Let q = pe, p > 3 a prime and q ≡ 1 (mod 12). Let E(Fq) be an
elliptic curve over Fq in Weierstrass form with j(E) �= 0, 1728. Then the trace of
the Frobenius map on E can be expressed as

a(E(Fq)) = −q · T
q−1
4

(

a3

27

)

· 2F1

(

T
q−1
12 T

5(q−1)
12

T
q−1
2

∣

∣

∣

∣

∣

− 27b2

4a3

)

q

.

This theorem extends Proposition III.2.4 of [2] to elliptic curves in the form given
above, and the method of proof follows similarly to that given in [3].

Proof. Let |E(Fq)| denote the number of projective points of E in Fq. If we let

P (x, y) = x3 + ax+ b− y2,

then |E(Fq)| may be expressed as

|E(Fq)| − 1 = #{(x, y) ∈ Fq × Fq : P (x, y) = 0}.
Define the additive character θ : Fq → C

∗ by

(2.1) θ(α) = ζtr(α)

where ζ = e2πi/p and tr : Fq → Fp is the trace map, i.e., tr(α) = α+αp+αp2

+ ...+

αpe−1

. For any integer m, we may form the Gauss sum associated to the characters
Tm and θ

(2.2) Gm := G(Tm) =
∑

x∈Fq

Tm(x)θ(x).

As in [3], we begin by repeatedly using the elementary identity from [6],

(2.3)
∑

z∈Fq

θ(zP (x, y)) =

{

q if P (x, y) = 0,
0 if P (x, y) �= 0,

to express the number of points as

q · (#E(Fq)− 1) =
∑

z∈Fq

∑

x,y∈Fq

θ(zP (x, y))

= q2 +
∑

z∈F∗
q

θ(zb)

︸ ︷︷ ︸

A

+
∑

y,z∈F∗
q

θ(zb)θ(−zy2)

︸ ︷︷ ︸

B

+
∑

z,x∈F∗
q

θ(zx3)θ(zax)θ(zb)

︸ ︷︷ ︸

C

+
∑

x,y,z∈F∗
q

θ(zP (x, y))

︸ ︷︷ ︸

D

.

We will evaluate each of these labeled terms using the following lemma from [3].
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Lemma 2.2 ([3, Lemma 3.3]). For all α ∈ F
∗
q ,

θ(α) =
1

q − 1

q−2
∑

m=0

G−mTm(α),

where T is a fixed generator of the character group and G−m is the Gauss sum
defined previously.

Since Lemma 2.2 holds only when the parameter is nonzero, we require that
a �= 0 and b �= 0, or equivalently j(E) �= 0, 1728. For A we have

A =
1

q − 1

∑

i

G−iT
i(b)

∑

z

T i(z) = G0 = −1,

where the second equality follows from the fact that the innermost sum is 0 unless
i = 0, at which it is q − 1. Similarly,

B =
1

(q − 1)2

∑

i,j

G−iG−jT
i(b)T j(−1)

∑

z

T i+j(z)
∑

y

T 2j(y),

and the inner sums here are nonzero only when 2j = 0 and j = −i. Plugging in
these values gives

B = 1 + qT
q−1
2 (b).

We simply expand C (because it will cancel soon) to get

C =
1

(q − 1)3

∑

i,j,k

G−iG−jG−kT
j(a)T k(b)

∑

z

T i+j+k(z)
∑

x

T 3i+j(x).

Finally, we expand D:

D =
1

(q − 1)4

∑

i,j,k,l

G−iG−jG−kG−lT
j(a)T k(b)T l(−1)

·
∑

z

T i+j+k+l(z)
∑

x

T 3i+j(x)
∑

y

T 2l(y).

Again, the only nonzero terms occur when l = 0 or l = q−1
2 . The l = 0 term is

1

(q − 1)3

∑

i,j,k

G−iG−jG−kG0T
j(a)T k(b)

∑

z

T i+j+k(z)
∑

x

T 3i+j(x),

and since G0 = −1 this term cancels with the C term in the expression for
q(|E(Fq)| − 1). Assuming now that l = q−1

2 , both inner sums will be nonzero

only when j = −3i and k = q−1
2 + 2i. We may write this term as

(2.4) D q−1
2

:=
1

q − 1

∑

i

G−iG3iG− q−1
2 −2iG q−1

2
T−3i(a)T

q−1
2 +2i(b)T

q−1
2 (−1),

and we may reduce this equation further by noting that q ≡ 1 (mod 4) implies that

G q−1
2

=
√
q and T

q−1
2 (−1) = 1. Combining the above results yields the expression

(2.5)

q(|E(Fq)| − 1) = q2 + q · T
q−1
2 (b) +

√
q

q − 1

∑

i

G−iG3iG− q−1
2 −2iT

−3i(a)T
q−1
2 +2i(b).

Now we expand G3i and G− q−1
2 −2i = G−2( q−1

4 +i) using the Davenport-Hasse

relation from [9].
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Theorem 2.3 (Davenport-Hasse Relation [9]). Let m be a positive integer and let
q = pe be a prime power such that q ≡ 1 (mod m). Let θ be the additive character
on Fq defined by θ(α) = ζtrα, where ζ = e2πi/p. For multiplicative characters

χ, ψ ∈ ̂F
∗
q we have

∏

χm=1

G(χψ) = −G(ψm)ψ(m−m)
∏

χm=1

G(χ).

The cases for m = 3, m = 2 may be restated as follows.

Theorem 2.4 (Davenport-Hasse for q ≡ 1 (mod 3)). If k ∈ Z and q satisfies q ≡ 1
(mod 3), then

GkGk+ q−1
3
G

k+ 2(q−1)
3

= qT−k(27)G3k.

Theorem 2.5 (Davenport-Hasse for q ≡ 1 (mod 2)). If k ∈ Z and q satisfies q ≡ 1
(mod 2), then

G−kG− q−1
2 −k = G−2kT

k(4)G q−1
2
.

We may then write

G3i =
GiGi+ q−1

3
G

i+ 2(q−1)
3

T i(27)

q

G− q−1
2 −2i =

G−i− q−1
4
G−i− 3(q−1)

4

G q−1
2
T i+ q−1

4 (4)
.

Plugging this into (2.4) gives

D q−1
2

=
T

q−1
2 (b)

q(q − 1)T
q−1
4 (4)

∑

i

G−iGiGi+ q−1
3

G
i+

2(q−1)
3

G−i− q−1
4

G−i− 3(q−1)
4

T i

(
27b2

4a3

)
.

In order to write a(E(Fq)) as a finite field hypergeometric function, we use the
fact that if Tm−n �= ε, then

(2.6)

(

Tm

Tn

)

=
GmG−nT

n(−1)

Gm−nq
.

This is another way of stating the classical identityG(χ1)G(χ2)=J(χ1, χ2)G(χ1χ2),
which holds whenever χ1χ2 is a primitive character.

Now use (2.6) to write

Gi+ q−1
3
G−i− q−1

4
=

(

T i+ q−1
3

T i+ q−1
4

)

G q−1
12

qT i+ q−1
4 (−1),(2.7)

G
i+

2(q−1)
3

G−i− 3(q−1)
4

=

(

T i+
2(q−1)

3

T i+ 3(q−1)
4

)

G− q−1
12

qT i+
3(q−1)

4 (−1),(2.8)

and plugging in (2.7), (2.8) gives

D q−1
2

=
T

q−1
2 (b)q

(q − 1)T
q−1
4 (4)

G q−1
12

G− q−1
12

∑

i

GiG−i

(
T i+ q−1

3

T i+ q−1
4

)(
T i+

2(q−1)
3

T i+
3(q−1)

4

)
T i

(
27b2

4a3

)
.

Since G q−1
12

G− q−1
12

= qT
q−1
12 (−1) we may write

D q−1
2

=
T

q−1
2 (b)T

q−1
12 (−1)q2

(q − 1)T
q−1
4 (4)

∑

i

GiG−i

(

T i+ q−1
3

T i+ q−1
4

)(

T i+ 2(q−1)
3

T i+ 3(q−1)
4

)

T i

(

27b2

4a3

)

.
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Next, we eliminate the GiG−i term. If i �= 0, then GiG−i = qT i(−1), and if
i = 0, then GiG−i = 1 = qT i(−1)− (q − 1). Plugging in the appropriate identities
for each i we may write (2.4) as

D q−1
2

=
T

q−1
2 (b)T

q−1
12 (−1)q3

(q − 1)T
q−1
4 (4)

∑

i

(

T i+ q−1
3

T i+ q−1
4

)(

T i+ 2(q−1)
3

T i+
3(q−1)

4

)

T i

(

−27b2

4a3

)

− T
q−1
2 (b)T

q−1
12 (−1)q2

T
q−1
4 (4)

(

T
q−1
3

T
q−1
4

)(

T
2(q−1)

3

T
3(q−1)

4

)

.

By (2.6) we have
(

T
q−1
3

T
q−1
4

)(

T
2(q−1)

3

T
3(q−1)

4

)

=
G q−1

3
G− q−1

4
G 2(q−1)

3
G− 3(q−1)

4

G q−1
12

G− q−1
12

q2
=

T
q−1
3 (−1)T

q−1
4 (−1)

qT
q−1
12 (−1)

,

and so the second term reduces to −T
q−1
2 (b)T

q−1
4 (−1)q

T
q−1
4 (4)

. Equation (2.4) becomes

D q−1
2

=
T

q−1
2 (b)T

q−1
12 (−1)q3

(q − 1)T
q−1
4 (4)

∑

i

(

T i+ q−1
3

T i+ q−1
4

)(

T i+ 2(q−1)
3

T i+
3(q−1)

4

)

T i

(

−27b2

4a3

)

− T
q−1
2 (b)T

q−1
4 (−1)q

T
q−1
4 (4)

.

Make the substitution i → i− q−1
4 to get

D q−1
2

= T
q−1
12 (−1)q2T

q−1
4

(

−a3

27

)

· q

q − 1

∑

i

(

T i+ q−1
12

T i

)(

T i+
5(q−1)

12

T i+ q−1
2

)

T i

(

−27b2

4a3

)

− T
q−1
2 (b)T

q−1
4 (−1)q

T
q−1
4 (4)

= T
q−1
12 (−1)q2T

q−1
4

(

−a3

27

)

2F1

(

T
q−1
12 T

5(q−1)
12

T
q−1
2

∣

∣

∣

∣

∣

− 27b2

4a3

)

q

− T
q−1
2 (b)T

q−1
4 (−1)q

T
q−1
4 (4)

.

Putting this all together then gives

q(|E(Fq)| − 1) = q2 + qT
q−1
2 (b)− T

q−1
2 (b)T

q−1
4 (−1)q

T
q−1
4 (4)

+ T
q−1
12 (−1)T

q−1
4

(

−a3

27

)

q2 · 2F1

(

T
q−1
12 T

5(q−1)
12

T
q−1
2

∣

∣

∣

∣

∣

− 27b2

4a3

)

q

.

Equivalently,

|E(Fq)| = q + 1 + T
q−1
2 (b)

(

1− T
q−1
4 (−1)

T
q−1
4 (4)

)

+ T
q−1
12 (−1)T

q−1
4

(

−a3

27

)

q · 2F1

(

T
q−1
12 T

5(q−1)
12

T
q−1
2

∣

∣

∣

∣

∣

− 27b2

4a3

)

q

.
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Noting that T
q−1
12 (−1)T

q−1
4

(

−a3

27

)

= T
q−1
4

(

a3

27

)

and T
q−1
4 (−1) = T

q−1
2 (2) (both

depend only on the congruence of q (mod 8)) reduces the expression to

|E(Fq)| = q + 1 + T
q−1
4

(

a3

27

)

q · 2F1

(

T
q−1
12 T

5(q−1)
12

T
q−1
2

∣

∣

∣

∣

∣

− 27b2

4a3

)

q

.

Since a(E(Fq)) = q + 1− |E(Fq)|, we have proven that

a(E(Fq)) = −q · T
q−1
4

(

a3

27

)

· 2F1

(

T
q−1
12 T

5(q−1)
12

T
q−1
2

∣

∣

∣

∣

∣

− 27b2

4a3

)

q

. �

2.2. Hypergeometric transformation laws and the proof of Theorem 1.1.
We now prove Theorem 1.1 as a consequence of Theorem 2.1 and the following
transformation laws found in [4] given here for the special case of 2F1 functions.

Theorem 2.6 ([4, Theorem 4.4(i)]). For characters A,B,C of Fq and x ∈ Fq,
x �= 0, 1,

2F1

(

A B
C

∣

∣

∣

∣

x

)

q

= A(−1) · 2F1

(

A B
ABC

∣

∣

∣

∣

1− x

)

q

.

Theorem 2.7 ([4, Theorem 4.2(ii)]). For characters A,B,C of Fq and x ∈ F
∗
q,

2F1

(

A B
C

∣

∣

∣

∣

x

)

q

= ABC(−1)A(x) · 2F1

(

A AC
AB

∣

∣

∣

∣

1

x

)

q

.

Proof of Theorem 1.1. We begin by noting that we may apply Theorem 2.6 to the

expression in Theorem 2.1 because the parameter − 27b2

4a3 will equal 1 if and only if
the discriminant of E is 0, which we exclude. Similarly, it will equal 0 if and only
if b = 0, in which case j = 1728, and we exclude this case as well. So we begin by
applying Theorem 2.6 to obtain the expression

a(E(Fq)) = −qT
q−1
4

(

−a3

27

)

2F1

(

T
q−1
12 T

5(q−1)
12

ε

∣

∣

∣

∣

4a3 + 27b2

4a3

)

q

.

Applying Theorem 2.7 to this then gives

a(E(Fq)) =− q · T
q−1
4

(−a3

27

)
T

q−1
12

(
4a3

4a3 + 27b2

)
2F1

(
T

q−1
12 T

q−1
12

T
2(q−1)

3

∣∣∣∣∣
4a3

4a3 + 27b2

)

q

=− q · T
q−1
12

( −4a12

39(4a3 + 27b2)

)
2F1

(
T

q−1
12 T

q−1
12

T
2(q−1)

3

∣∣∣∣∣
4a3

4a3 + 27b2

)

q

=− q · T
q−1
12

(
a12

312
· 4333

−16(4a3 + 27b2)

)
2F1

(
T

q−1
12 T

q−1
12

T
2(q−1)

3

∣∣∣∣∣
4a3

4a3 + 27b2

)

q

=− q · T
q−1
12

(
1728

−16(4a3 + 27b2)

)
2F1

(
T

q−1
12 T

q−1
12

T
2(q−1)

3

∣∣∣∣∣
4a3

4a3 + 27b2

)

q

=− q · T
q−1
12

(
1728

Δ(E)

)
2F1

(
T

q−1
12 T

q−1
12

T
2(q−1)

3

∣∣∣∣∣
j(E)

1728

)

q

where Δ(E) = −16(4a3+27b2) is the discriminant of E and j(E) = 1728·4a3

4a3+27b2 is the
j-invariant of E. �
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