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RELATIVELY POINTWISE RECURRENT GRAPH MAP
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ABSTRACT. Let f be a self-continuous map of a graph G. Let P(f) and R(f)
denote the sets of periodic points and recurrent points respectively. We say
that the map f is relatively recurrent if R(f) = G. In this paper, it is shown
that f is relatively recurrent if and only if one of the following statements
holds:

(a) G is a circle and f is a homeomorphism topologically conjugate to an

irrational rotation of the unit circle S1;

(b) P() = G.

Part (b) extends a result of Blokh.

1. INTRODUCTION

A topological dynamical system is a pair (X, f), where X is a compact metric
space and f is a continuous map from X to itself. Let N be the set of positive
integers. Let f° be the identity map of X. Define, inductively, f” = f o f*~! for
any non-zero positive integer n. For ¢ € X, {f"(x) : n € N} is called the orbit
of = and is denoted by O(z, f). Here x is periodic if f™(x) = = for some non-zero
positive integer n. Also, x is called a recurrent point of f if for any neighborhood
U of z and any m € N there exists n > m such that f*(z) € U. It is easy to
see that if = is recurrent, then every iterate of = is also recurrent. The converse
is false. Here x is called an almost periodic point of f if for any neighborhood
U of = there exists N € N such that {f"*(z) : i = 0,1,..., N} NU # 0 for all
n € N. Also, z is a non-wandering point of f provided that for any open set
U containing = there exist y € U and n € N such that f"(y) € U. Let P(f),
AP(f), R(f) and Q(f) denote the set of periodic points, almost periodic points,
recurrent points and non-wandering points respectively. Notice that Q(f) is closed
and for the general topological system (X, f) there are no further relations except
for P(f) C AP(f) C R(f) C Q(f). But for one-dimensional systems one can say
more. For a dendrite map Illanes [8] proved that P(f) = R(f) if and only if the
dendrite does not contain any copy of the Gehman dendrite. For a graph map Mai
and Shao [9] showed that R(f) = P(f)UR(f). In Lemma Bl for a graph map, we

will show that AP(f) = R(f).
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It is interesting to study maps such that P(f) or R(f) satisfies some additional
properties. Montgomery [12], Weaver [15], Epstein [4], and others studied homeo-
morphisms such that P(f) is the whole space X (X is a connected manifold or a
continuum embedded in a 2-manifold). For an interval map, Nitecki [I3] showed
that if P(f) is closed, then P(f) = Q(f). For a graph map Mai [11] proved that
R(f) is the whole space X if and only if one of the following statements holds:

(1) X is a circle, and f is a homeomorphism topologically conjugate to an
irrational rotation of the unit circle;
(2) f is a periodic homeomorphism.

In this paper we will study a relatively pointwise recurrent graph map. Our
main result is the following theorem:

Main Theorem. Let G be a graph and let f : G — G be a continuous map. Then
f is relatively pointwise recurrent if and only if one of the following two statements
holds:

(1) G is a circle, and f is a homeomorphism topologically conjugate to an
irrational rotation of the unit circle S';

2) P(f)=G.

A set W C X is called a minimal set of f if it is nonempty, closed, invariant
(f(W) c W) and no proper subset of W satisfies these three properties, which is
equivalent to the fact that the orbit of every element of W is dense.

In a topological dynamical system there are two well-known theorems which
exhibit the close relationship between almost periodic points and minimal sets; see
Birkhoff [2]. In fact, if X is a locally compact metric space, then the set of almost
periodic points AP(f) is the union of all minimal sets of f.

If X has no isolated point, then f is a transitive map if it has a dense orbit. If
every orbit of f is dense in X, the map f is called minimal. For a transitive graph
map Blokh [3] proved that P(f) is dense. In this paper we show that for a graph
map if R(f) is dense, then P(f) is also dense, which extends this result of Blokh
[3] (see Corollary 3.4).

2. RELATIVELY POINTWISE RECURRENT MAP

A map f of a compact metric space (X,d) is recurrent if it admits iterates
arbitrarily close to the identity, i.e. if there exists a sequence nj; — 400 such that

d(f™,Id) -0 as k— +oo.

We say that f is pointwise recurrent if R(f) = X.

We continue, motivated by a desire to understand the mechanics of recurrent
maps, by a desire to extend some known result and by the following:

In [6] Gottschalk proved that if X is a compact connected metric space, f is a

homeomorphism, and if R(f) = X, then every recurrent cut point of X is periodic.
We start by the following definition.

Definition. f is called a relatively pointwise recurrent map if R(f) = X.

For example a transitive map is a relatively pointwise recurrent map.

Let X be a closed domain of finite volume of the n-Euclidian space R™ or the
n-torus T" and let f be an invertible volume-preserving self-map of X. Then f is
a relatively pointwise recurrent map [7, Theorem 6.1.9].
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We have the following implications:
recurrent = pointwise recurrent =2 relatively pointwise recurrent.
The following examples show that none of these implications can be reversed.

Examples 2.1. (1) An irrational rotation of R? is a pointwise recurrent non-
recurrent map.

(2) In R? we consider the points A, (0, -) and B(n, L) for every integer n > 0.
Put X = (U,.»0 [An, Bn]) U [0, +00[x{0}. Define the map f on X by:

o f(z, %) = (50(37)’ %)’ where

() = z+1 if x<n-1,
wir) = z+l—-nifn-1<z<n.

e f(z,0) = (z+1,0).
f is a relatively pointwise recurrent non-pointwise recurrent map.
In this example one can choose X to be connected.

Theorem 2.2. If a continuous map of a topological space X to itself is either (1)
recurrent, (2) pointwise recurrent, or (3) relatively pointwise recurrent, then so is
f*, for each integer k.

Proof. (1) and (2) follow from [I4] and [6] respectively.
We have R(f) C R(f*), and so if R(f) = X, then R(f*) = X, which implies
. O

(3)
Proposition 2.3. If f is relatively pointwise recurrent, then f is surjective.

Proof. If y € R(f), then there exists a point € X such that f(z) = y.

Let y be an element of X — R(f). Then there exists a sequence y,, of R(f) which
converges to y. For all n there exits x,, such that f(x,) = y,. Since X is compact,
the sequence z,, has a limit point x and so f(z) = y. Therefore f is surjective. [J

Proposition 2.4. If f is relatively pointwise recurrent, then Q(f) = X.

Proof. Let x be an element of X. If z is a recurrent point, it is also non-wandering.
If z is a non-recurrent point, then every neighborhood of x contains a recurrent
point, and so it is in Q(f). O

The referee noticed that the converse of Proposition 2.4 also holds; see, for
example, [, Theorem 1.27].

Proposition 2.5. If f is a relatively pointwise recurrent non-recurrent map, then
f is not equicontinuous.

Proof. Since f is a relatively pointwise recurrent non-recurrent map, then R(f) is
not closed and so is not equal to Q(f). From [I0, Proposition 2.1] it follows that f
is not equicontinuous. (I

The following proposition can be derived from [10, Proposition 2.1].

Proposition 2.6. If f is an equicontinuous relatively pointwise recurrent map,
then f is a pointwise recurrent map.
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3. PROOF OF MAIN THEOREM

Before going into the proof of the main theorem we recall the definition of a
graph. A (finite) graph G is a compact connected Hausdorf space which contains a
finite non-empty set V' (the set of vertices), such that every connected component
of G\ V is homeomorphic to an open interval of the real line. These connected
components are called edges. Since any graph can be embedded in R?, in what
follows we will consider each graph endowed with the topology induced by the
topology of R3. A graph map is a continuous map from a graph G to itself.

To prove the main theorem we need the following lemmas:

Lemma 3.1. Let f be a graph map. Then R(f) = AP(f).

Proof. We recall that AP(f) is the closure of the union of all minimal sets of f and
AP(f) € R(f).

In [Tl Theorem 1] the authors showed that a minimal set of a graph map is a
finite set or a Cantor set or a union of (finitely many) pairwise disjoint circles. One
can deduce that each component of G — (AP(f)UV) is an open arc of G.

Let ]a, b be a component of G — (AP(f)UV) such that a € AP(f). We suppose
that Ja, b[NR(f) # 0. Let  be an element of |a, b|NR(f). Since x is recurrent, there
exists an increasing sequence (ng) such that (f™(x)) converges to x. There exist
three integers i < j < k such that one of the following two statement holds:

(1) a <z < fr(z) < f(z) < f”"'(ar)-
(2) a< fm(z) < fr(z) < fr*(z) <
By applying [9, Lemma 2.2] we obtain:

(1) = f™(a) €la,b].
(2) = fr7(a) €la, bl.
In both cases the interval Ja, b[ will intersect AP(f), which is impossible. ]

Lemma 3.2. Let f be a relatively pointwise recurrent map of a graph G. If W is a
proper minimal set of f, then W is not a union of (finitely many) pairwise disjoint
circles.

Proof. In [Il Theorem 1] the authors showed that a minimal set of a graph map is
a finite set or a Cantor set or a union of (finitely many) pairwise disjoint circles.
Suppose that W is a union of (finitely many) pairwise disjoint circles. Then G is
not a circle (because W # G). From the fact that G is connected it follows that W
contains a branching point w. Let A be an arc of G such that ANW = {w}. Since
R(f) = G, there exists in A a sequence (w,,) of recurrent points which converges to
w. From the fact that O(w, f) is dense in W it follows that there exists an integer
p such that fP(w) is not a branching point and so by continuity of fP, there exists
an integer N such that fP(w,) € W for all n > N. The recurrence of w,, implies
that there exists an integer ¢ > p such that f9(w,) € A — {w}, which implies that
FP(fP(wy,)) € A — {w}, which contradicts the fact that W is invariant. O

Lemma 3.3. Let f be a relatively pointwise recurrent map of a graph G. If f is
not a minimal map, then P(f) = AP(f).

Proof. We always have the inclusion P(f) C AP(f).
By applying [I, Theorem 1] and Lemma it follows that every minimal set
of f is a periodic orbit or a Cantor set. Let W be a minimal set which is a



RELATIVELY POINTWISE RECURRENT GRAPH MAP 2091

Cantor set. Let w be an element of W and let w’ be an element of G — V(G)
such that the open arc (w,w’) does not meet W. If (w,w") N P(f) = 0, then from
the fact that (w,w’) N R(f) # 0 and by applying [9, Lemma 2.2] it follows that
(w,w)NO(w, f) # 0, which is impossible. Thus w € P(f). Since P(f) is invariant,

O(w, f) C P(f) and so W C P(f). Therefore AP(f) = P(f). O

Proof of the main theorem. The two statements imply that f is a relatively point-
wise recurrent map.

Conversely, (1) if f is a minimal map, then first by [1I, Theorem 3.2] it follows
that G is a circle, and second by [11, Lemma 3.1] it follows that f is a homeomor-
phism. From Proposition 24 it follows that f is a pointwise non-wandering circle
map without periodic points. Thus it is topologically conjugate to an irrational
rotation.

(2) If f is not a minimal map, then from Lemma [B.1] and Lemma B3] it follows

that P(f) = G. U

The fact that the set of periodic points of a transitive graph map is dense was
proved by Blokh in [3]. The following corollary extends this result.

Corollary 3.4. Let f be a relatively pointwise recurrent map of a graph G. If f is
not a minimal map, then P(f) =G.
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