
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 139, Number 6, June 2011, Pages 2217–2225
S 0002-9939(2010)10627-5
Article electronically published on November 10, 2010

DENDRITES AS POLISH STRUCTURES

RICCARDO CAMERLO

(Communicated by Julia Knight)

Abstract. It is shown that standard universal dendrites under the action of
their group of homeomorphisms give rise to small Polish structures. Moreover,
any non-singleton dendrite forming a small Polish structure (or, more gener-
ally, having at least one uncountable orbit) under the action of its group of
homeomorphisms has NM-rank 1. Finally, dendrites satisfy the existence of
nm-independent extensions.

1. Introduction and basic notions

In [K10] the definition of a Polish structure is given as a pair (X,G), where G is
a Polish group acting faithfully on the set X in such a way that the stabilisers of
singletons are closed.

If (X,G) is a Polish structure and A ⊆ X, denote by GA the pointwise stabiliser
of A. A Polish structure (X,G) is small if for every n ≥ 1 there are only countably
many orbits of the action of G on Xn. In particular, in an uncountable small Polish
structure there are uncountable orbits.

The following is implicitly used in [K10].

Lemma 1. A Polish structure (X,G) is small if and only if for any a1, . . . , an ∈ X,
the action of G{a1,...,an} on X has countably many orbits.

Proof. Suppose the action of G{a1,...,an} on X has uncountably many orbits and
let K be a transversal for the orbit equivalence relation. Then all elements of
{(a1, . . . , an, k)}k∈K are in different orbits of the action of G on Xn+1.

Conversely, suppose the action of G on some Xn+1 has uncountably many orbits
and let n be minimal with this property. If n = 0, then there is nothing more to
prove, so assume n > 0. As the actions of G on Xn and on X have countably
many orbits, there are a1, . . . , an, b ∈ X such that G(a1, . . . , an) × Gb contains
uncountably many orbits of the action of G on Xn+1. Since each such orbit contains
an element of the form (a1, . . . , an, c), it follows that the action of G{a1,...,an} on X
has uncountably many orbits. �

Though the definition of a Polish structure (X,G) does not require X to be a
topological space, an important class of Polish structures is obtained when X is a
compact metric space and G is the group of homeomorphisms of X equipped with
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the compact-open topology and acting on X in the natural way. Among compact
metric spaces, dendrites constitute some of the simplest examples: a dendrite is
a compact, connected, locally connected metric space that does not contain sim-
ple closed curves. Definitions and basic properties about dendrites can be found
in [N92]; those most needed in this paper are collected in section 2, for further
reference.

This note investigates Polish structures of the form (D,G), where D is a dendrite
and G its group of homeomorphisms acting on D in the natural way; when metric
considerations will involve the group G, the supremum distance on G is subsumed.
A dendrite D will be said to be small if the Polish structure (D,G) is small.

Not all dendrites are small: let D be a planar dendrite such that the set of branch
points of D is (]0, 1[∩Q)× {0} with distinct branch points having different orders.
Then all points in [0, 1]×{0} lie in different orbits, so D is not small. Notice that in
this example there are uncountable orbits under homeomorphism, since D contains
open free arcs. For another example, let D be a dendrite with a dense set of branch
points, all of distinct order (such a dendrite can be obtained as in the construction
in [N92, 10.37] of Ważewski’s universal dendrite, but taking care that the branch
points have pairwise different order). Then D is rigid.

Let (X,G) be a Polish structure, �a = (a1, . . . , an) ∈ Xn, and let A ⊆ B be finite
subsets of X. According to [K10], we say that �a is nm-dependent on B over A if
{g ∈ GA | g�a ∈ GB�a} is meagre in GA; otherwise, �a is nm-independent from B
over A. Using this, define a function NM from the set of pairs (�a,A), with �a in
some Xn and A a finite subset of X, to the ordinals satisfying NM(�a,A) ≥ α+ 1
if and only if there is a finite B with A ⊆ B ⊆ X such that �a is nm-dependent on
B over A and NM(�a,B) ≥ α. The NM-rank of (X,G) is the supremum of all
NM(a, ∅), for a ranging in X. Actually in [K10] this definition is given only in
the case of Polish structures admitting nm-independent extensions, to grant some
good properties of NM-ranks; the notation employed here differs slightly from the
one used there.

In section 3 it will be shown that the so-called standard universal dendrites are
small. Section 4 will establish that whenever D is a dendrite with at least one
uncountable orbit, then its NM-rank is 1. In section 5 it will be proved that any
dendrite D admits nm-independent extensions: this means that for any �a ∈ Dn and

finite subsets A,B ⊆ D with A ⊆ B, there is�b ∈ GA�a such that�b is nm-independent
from B over A.

2. Review of dendrites

For convenience, this section collects some definitions, properties and notation
of dendrites that will be used in the sequel. A reference or a sketchy justification
is also provided.

(1) For D a dendrite, denote by E(D) the set of its end points and by R(D) the
set of its branch points. This last set is countable for all dendrites ([N92,
Theorem 10.23]).

(2) The order of a point x inD will be denoted by ord(x,D). Then, ord(x,D) ≤
ℵ0 for any x ∈ D ([N92, Corollary 10.20.1]).

(3) Since D is arcwise connected and contains no simple closed curves, given
x, y ∈ D with x 	= y, there is a unique subarc of D with end points x, y. It
will be denoted by AD

xy.
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(4) Every sequence of subdendrites of a dendrite pairwise meeting in at most
one point has vanishing diameter. Otherwise, one could find a sequence of
arcs An, pairwise intersecting in at most one point, converging to an arc A.
By the condition on the An, the diameters of A∩An converge to 0. Let p, q
be distinct points in A and let U, V be arcwise connected neighbourhoods
of p, q, respectively, with diameters less than 1

2d(p, q). So there is n with
U ∩An 	= ∅ 	= V ∩An and at least one of An ∩A∩U,An ∩A∩ V is empty.
But then the arc-connectedness of U and V yields at least two arcs joining
p and q.

(5) Every point p in a dendrite D has a neighbourhood basis whose members
are dendrites whose boundaries in D have finite cardinality. Indeed, by the
regularity of D, there is an open neighbourhood basis of p whose members
have finite boundaries. By local connectedness, the connected components
of open sets are open, so for each of such neighbourhoods consider the
closure of the connected component containing p.

(6) If C is a subdendrite of D, denote by rC : D → C the first point map for
C ([N92, §10.3]).

3. Standard universal dendrites are small

Following [CD94], if J is a non-empty subset of {3, 4, . . . , ω} let DJ be the unique
(up to homeomorphism) dendrite such that:

• if a ∈ R(DJ ), then ord(a,DJ ) ∈ J ;
• for any arc I ⊆ DJ and any n ∈ J there is a ∈ I such that ord(a,DJ ) = n.

The dendrite DJ has the following universality property: if D is any dendrite such
that ∀x ∈ D ∃n ∈ J ord(x,D) ≤ n, then there is a subset of DJ homeomorphic
to D. This section (Lemma 3 through Theorem 7) is intended to establish the
following result.

Theorem 2. The Polish structure (DJ , G), where G is the group of homeomor-
phisms of DJ acting on it in the natural way, is small.

To begin with, a standard back and forth argument gives the following.

Lemma 3. Let U, V be arcs, with end points a, b and c, d, respectively. Let {Un}n∈N

and {Vn}n∈N be pairwise disjoint countable dense subsets of U \{a, b} and V \{c, d},
respectively. Then there is a homeomorphism g : U → V such that:

• g(a) = c, g(b) = d,
• ∀n ∈ N g(Un) = Vn.

Lemma 4. Let a, d be distinct points of DJ and b, c ∈ ADJ

ad \ {a, d} be such that
ord(b,DJ ) = ord(c,DJ ). Then there is a homeomorphism ϕ : DJ → DJ such that
ϕ(a) = a, ϕ(b) = c, ϕ(d) = d.

Proof. Lemma 3 gives homeomorphisms ζ0 : ADJ

ab → ADJ
ac , ζ1 : ADJ

bd → ADJ

cd such
that ζ0(a) = a, ζ0(b) = ζ1(b) = c, ζ1(d) = d and ord(x,DJ ) = ord(ζi(x), DJ) for

i ∈ {0, 1}, x ∈ domζi. Let θ = ζ0 ∪ ζ1 : ADJ

ad → ADJ

ad .

For each u ∈ R(DJ )∩ADJ

ad there are either ord(u,DJ )−2, if ord(u,DJ ) is finite,

or ℵ0 connected components {Fun}n of DJ \{u} disjoint from ADJ

ad ; moreover, each
Dun = Fun ∪ {u} is homeomorphic to DJ by [CD94, Theorem 6.2] and has u as
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an end point. Fix a homeomorphism ϕun : Dun → Dθ(u)n such that ϕun(u) = θ(u)
(its existence can again be justified by [CD94, Theorem 6.2]). Then define

ϕ(x) =

{
θ(x) if x ∈ ADJ

ad ,
ϕun(x) if x ∈ Dun.

Since for every ε ∈ R+ all but finitely many Dun have diameter less than ε, function
ϕ is continuous. �

Lemma 5. Let a be an end point of DJ and b, c ∈ DJ \ {a} be such that neither

of ADJ

ab , ADJ
ac is a subarc of the other and ord(b,DJ ) = ord(c,DJ ). Then there is a

homeomorphism ϕ : DJ → DJ such that ϕ(a) = a, ϕ(b) = c.

Proof. As a is an end point, ADJ

ab ∩ ADJ
ac is an arc. So, let e ∈ DJ such that

ADJ

ab ∩ADJ
ac = ADJ

ae . Let f, g be end points ofDJ such that ADJ

ab ⊆ ADJ

af , ADJ
ac ⊆ ADJ

ag .

Using Lemma 3, construct a homeomorphism θ : ADJ

ef → ADJ
eg such that

θ(e) = e, θ(b) = c, ∀x ∈ ADJ

ef ord(x,DJ ) = ord(θ(x), DJ).

For each u ∈ ((ADJ

ef ∪ ADJ
eg ) ∩ R(DJ )) \ {e}, let {Fun}n be an enumeration of the

connected components ofDJ \{u} disjoint from ADJ

af ∪ADJ
ag and letDun = Fun∪{u},

which is homeomorphic to DJ . For u ∈ (ADJ

ef ∩R(DJ )) \ {e} fix homeomorphisms

ϕun : Dun → Dθ(u)n with ϕun(u) = θ(u). Finally, define:

ϕ(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θ(x) if x ∈ ADJ

ef \ {e},
θ−1(x) if x ∈ ADJ

eg \ {e},
ϕun(x) if x ∈ Dun, u ∈ (ADJ

ef ∩R(DJ )) \ {e},
ϕ−1
un(x) if x ∈ Dθ(u)n, u ∈ (ADJ

eg ∩R(DJ )) \ {e},
x otherwise.

Function ϕ is a homeomorphism, similarly to the proof of Lemma 4. �

Corollary 6. Let X,Y both be homeomorphic to DJ . Let a, b ∈ X, c, d ∈ Y such
that a 	= b, c 	= d, ord(a,X) = ord(c, Y ), ord(b,X) = ord(d, Y ). Then there is a
homeomorphism ϕ : X → Y such that ϕ(a) = c, ϕ(b) = d.

Proof. Let {Xn}n<ord(a,X), {Yn}n<ord(c,Y ) be enumerations of the connected com-
ponents of X \ {a}, Y \ {c}, respectively, with b ∈ X0, d ∈ Y0. Set Hn = Xn ∪
{a},Kn = Yn ∪ {c}: these are all homeomorphic to DJ . Let ϕn : Hn → Kn

be a homeomorphism such that ϕn(a) = c. By applying Lemma 4 or Lemma 5,
let ψ : H0 → H0 be a homeomorphism such that ψ(a) = a, ψ(b) = ϕ−1

0 (d). Set
ϕ = ϕ0ψ ∪

⋃
n>0 ϕn. Then ϕ is a homeomorphism, since for any ε ∈ R+ the

diameters of Hn and Kn are eventually less than ε. �

Theorem 7. Let A = {a1, . . . , an} ⊆ DJ and let H = GA be the group of home-
omorphisms of DJ fixing a1, . . . , an. Then the action of H on DJ has countably
many orbits.

Proof. It can be assumed that n ≥ 2. Let T be the smallest subcontinuum of DJ

containing a1, . . . , an. So T is a subtree of DJ ; notice that E(T ) ⊆ A. By enlarging
A, if necessary, it can also be assumed that R(T ) ⊆ A. Let E1, . . . , Em be subarcs
of DJ such that, letting ul, vl be the end points of El:

• ul, vl ∈ A for all l;
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• each element of A is an end point of some El;
• if l 	= l′, then El, El′ intersect at most at one of their end points;
• T =

⋃m
l=1El.

For l ∈ {1, . . . ,m}, let Fl = El \ {ul, vl}. The statement will be proved by estab-
lishing the following claim.

Claim. The orbits of DJ under the action of H are:

(0) each singleton in A;
(1) each set {x ∈ Fl | ord(x,DJ ) = k} for l ∈ {1, . . . ,m}, k ∈ {2} ∪ J ;
(2) each set {x ∈ DJ \ {a} | rT (x) = a, ord(x,DJ ) = k}, for a ∈ A, k ∈

{1, 2} ∪ J ;
(3) each set {x ∈ DJ \ Fl | rT (x) ∈ Fl, ord(rT (x), DJ) = h, ord(x,DJ) = k},

for l ∈ {1, . . . ,m}, h ∈ J, k ∈ {1, 2} ∪ J . �

Proof of claim. First notice that these sets are invariant under the action of H and
their union is DJ . It remains to show that for any pair x, y of points in each of
these, there is ϕ ∈ H with ϕ(x) = y.

(1) If x, y ∈ Fl are such that ord(x,DJ ) = ord(y,DJ ), let X = r−1
T (Fl) ∪

{ul, vl}. Notice that X is homeomorphic to DJ , since each subarc of X
contains points of all orders in J . So the claim follows by applying Lemma 4
to find a homeomorphism ψ ofX fixing ul, vl and sending x to y; then define
ϕ : DJ → DJ as being equal to ψ on X and to the identity on DJ \r−1

T (Fl):
this ϕ is continuous by the glueing lemma.

(2) If a ∈ A, let X = r−1
T ({a}), which (if not a singleton) is homeomorphic

to DJ . Let x, y ∈ X \ {a} be such that ord(x,DJ ) = ord(y,DJ ). Use
Corollary 6 to establish a homeomorphism ψ : X → X such that ψ(a) =
a, ψ(x) = y. Let ϕ : DJ → DJ agree with ψ on X and be the identity
elsewhere.

(3) Let x, y ∈ DJ \ Fl be such that
• rT (x), rT (y) ∈ Fl,
• ord(rT (x), DJ) = ord(rT (y), DJ ),
• ord(x,DJ ) = ord(y,DJ ).

Applying Lemma 3, let θ : El → El be a homeomorphism fixing the end
points, such that ∀z ∈ El, ord(z,DJ ) = ord(θ(z), DJ) and such that
θrT (x) = rT (y). For each z ∈ (Fl ∩ R(DJ )) \ {rT (x)}, fix a homeo-
morphism ϕz : r−1

T ({z}) → r−1
T ({θ(z)}) such that ϕz(z) = θ(z). Using

Corollary 6, also let ϕrT (x) : r−1
T ({rT (x)}) → r−1

T ({rT (y)}) be a home-
omorphism with ϕrT (x)(rT (x)) = rT (y), ϕrT (x)(x) = y. Now define the
bijection ϕ : DJ → DJ as follows:

ϕ(u) =

⎧⎨
⎩

u if u /∈ r−1
T (Fl),

θ(u) if u ∈ Fl,
ϕz(u) if u ∈ r−1

T (Fl) \ Fl, rT (u) = z.

Again, by the vanishing of the diameters of the r−1
T ({z}) the continuity of

ϕ follows. �
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4. Ranks of dendrites

Fix a dendrite D and denote by G its group of homeomorphisms. The goal of
this section is to show that if D has at least one uncountable orbit (in particular,
if D is small), then the NM-rank of (D,G) is 1.

Recall from [K10, Theorem 2.5(3)] that points a ∈ Acl(A), that is, points whose
orbits are countable under the action of GA for some finite A, are nm-independent
from B over A for any finite B with A ⊆ B. Consequently, if the orbit of a under G
is countable, then NM(a, ∅) = 0. In particular, this holds for branch points of D.
So it will be enough to compute NM(a, ∅) when a ∈ D is such that ord(a,D) ≤ 2.

Lemma 8. Let (X,H) be any Polish structure, �a ∈ Xn and let A,B be finite subsets
of X with A ⊆ B. Suppose there is i such that HAai is uncountable and HBai is
countable. Then �a is nm-dependent on B over A. In particular NM(�a,A) ≥ 1.

Proof. Let HBai = {h0ai, h1ai, . . .} where each hj is in HB . In order to show that
{g ∈ HA | g�a ∈ HB�a} is meagre in HA, observe that

{g ∈ HA | g�a ∈ HB�a} = {g ∈ HA | �a ∈ {g−1h0�a, g
−1h1�a, . . .}}

=
⋃

j{g ∈ HA | �a = g−1hj�a}
=

⋃
j{g ∈ HA | g−1hj ∈ H{a1,...,an}}

=
⋃

j(hjH{a1,...,an} ∩HA)

⊆
⋃

j(hjH{ai} ∩HA).

Each term appearing in this last countable union, a coset of the stabiliser of ai in
HA, is closed and is nowhere dense in HA, since the index of H{ai} ∩HA in HA is
uncountable. �

Lemma 9. Let (X,H) be any Polish structure, �a ∈ Xn and let A,B be finite subsets
of X with A ⊆ B. If for all i the orbit HAai is countable, then �a is nm-independent
from B over A.

Proof. Notice that the hypothesis implies that HA�a is countable. So one can use
the remark after [K10, Proposition 3.4] stating that [K10, Theorem 2.5] holds for
imaginary extensions as well.

For convenience, however, the direct proof similar to [K10, Theorem 2.5(3)] is
as follows. The index of HA∪{a1,...,an} in HA is countable, so HA∪{a1,...,an} is non-
meagre in HA. Consequently, HBHA∪{a1,...,an} is also non-meagre in HA. Now
apply [K10, Proposition 2.3]. �

Lemma 10. Let a ∈ E(D) and let B be a finite subset of D with a /∈ B. Then
{g ∈ G | g(a) ∈ GBa} contains a neighbourhood of the identity; in particular, a is
nm-independent from B over ∅.

Proof. If a is isolated in Ga, let ε ∈ R+ be such that there is no other point of Ga
within ε of a. Then {g ∈ G | g(a) ∈ GBa} contains the open sphere in G centered
in the identity and radius ε. So assume a is not isolated in Ga.

Let T be the smallest subtree of D containing B. Denote p = rT (a). Let C be
a subdendrite of D such that C is a neighbourhood of a with diameter less than
d(a, p) and the boundary of C in D has exactly one element, say q. Then q ∈ AD

ap.
Pick b ∈ E(C)\{a, q}; the existence of b is granted by the fact that a is not isolated
in Ga. Let c = rAD

aq
(b), call L the connected component of b in D \ {c} and let

K = L ∪ {c}. Similarly, let L′ be the connected component of a in D \ {c} and set
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K ′ = L′ ∪ {c}. Since K is a neighbourhood of b and K ′ is a neighbourhood of a,
let ε ∈ R+ be such that

- the open ball centered in b and radius ε is contained in K,
- the open ball centered in a and radius ε is contained in K ′,
- the open ball centered in p and radius ε is disjoint from C.

Fix any homeomorphism f of D less than ε apart from the identity, in order to show
f(a) ∈ GBa. Notice that f(b) ∈ K, f(a) ∈ K ′, f(p) /∈ C. Moreover, any arc having
an end point in K ′ and the other in D \ (K ∪K ′) has c as a unique common point
with K. So AD

ap ∩AD
bc = {c}; then AD

f(a)f(p) ∩AD
f(b)f(c) = {f(c)}, and c ∈ AD

f(a)f(p).

Since AD
f(a)f(p) has an end point in K ′ and meets AD

f(b)f(c) in f(c), this implies that

f(c) = c. Consequently f(K ′) = K ′. So if g : D → D is defined as f on K ′ and as
the identity on D \K ′, one has g(a) = f(a), g ∈ GB, whence f(a) ∈ GBa. �

Corollary 11. If a ∈ E(D) and the orbit of a is uncountable, then NM(a, ∅) = 1.

Proof. By Lemmas 8 and 10, for B a finite subset of D, point a is nm-dependent
on B over ∅ if and only if a ∈ B. Taken any finite B ⊆ D with a ∈ B, by Lemma 9,
a is nm-independent from C over B for any finite C with B ⊆ C. �

Lemma 12. Let a ∈ D with ord(a,D) = 2 and let B be a finite subset of D such
that a /∈ B. Then {g ∈ G | g(a) ∈ GBa} contains a neighbourhood of the identity.
In particular, a is nm-independent from B over ∅.

Proof. By possibly enlarging B it can be assumed that B intersects both connected
components of D \ {a}; say B1, B2 are such intersections. For j ∈ {1, 2} let Tj be
the smallest subtree of D containing Bj and set pj = rTj

(a).

Case 1. There is a neighbourhood of a, of the form AD
bc ⊆ AD

p1p2
, all of whose points

have order 2 in D.
If ε ∈ R+ is such that the ε-neighbourhood of a is included in AD

bc and f is a
homeomorphism of D less than ε apart from the identity, let a∗ = f(a). Let g be
equal to the identity on D \AD

bc and define g|AD
bc

as a homeomorphism of AD
bc such

that g(b) = b, g(c) = c, g(a) = a∗. Then g ∈ GB and thus f(a) ∈ GBa.

Case 2. Point a is the limit of a sequence of branch points of D lying on AD
p1a, but

there is q ∈ AD
ap2

\ {a} such that AD
aq does not contain any branch point of D (or

symmetrically, switching p1, p2). Pick s, s′, s′′, r ∈ AD
p1q \ {p1, q} such that

AD
p1s ⊂ AD

p1s′ ⊂ AD
p1a ⊂ AD

p1s′′ ⊂ AD
p1r.

Fix ε ∈ R+ such that:

• the ε-neighbourhood of p1 is included in r−1
AD

p1p2

(AD
p1s);

• the ε-neighbourhood of a is included in r−1
AD

p1p2

(AD
s′s′′);

• the ε-neighbourhood of r is included in AD
s′′q.

Let f be a homeomorphism of D less than ε apart from the identity. By the choice
of ε, f(r) ∈ AD

s′′q. Since AD
ar does not contain branch points, so AD

f(a)f(r) does not

contain such points as well; once again using the choice of ε, f(a) ∈ AD
as′′ . Since

points in AD
as′′ \{a} are not limits of a sequence of branch points, whereas a is such

a limit, the equality f(a) = a is obtained. So f(a) ∈ GBa.
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Case 3. Point a is the limit of a sequence in R(D) ∩ AD
p1a and of a sequence in

R(D) ∩AD
ap2

.

Pick points r1, s, s
′, r2 ∈ AD

p1p2
\ {p1, p2} such that

AD
p1r1 ⊂ AD

p1s ⊂ AD
p1a ⊂ AD

p1s′ ⊂ AD
p1r2 .

Let ε1 ∈ R+ be such that:

• the ε1-neighbourhood of pj is included in r−1
AD

p1p2

(AD
pjrj ), for j ∈ {1, 2};

• the ε1-neighbourhood of a is included in r−1
AD

p1p2

(AD
ss′).

For j ∈ {1, 2}, pick bj ∈ AD
pja∩R(D) with d(a, bj) < ε1 and take cj ∈ r−1

AD
p1p2

({bj})\
{bj}. Let ε2<ε1 be such that the ε2-neighbourhood of cj is contained in r−1

AD
p1p2

({bj})
and let f be any homeomorphism of D less than ε2 apart from the identity. Then
f(bj) = bj , since AD

cjbj
= AD

p1cj
∩ AD

p2cj
and AD

f(cj)bj
= AD

f(p1)f(cj)
∩ AD

f(p2)f(cj)
.

Consequently, f(r−1
AD

b1b2

(AD
b1b2

\ {b1, b2})) = r−1
AD

b1b2

(AD
b1b2

\ {b1, b2}). Let g : D → D

be equal to the identity on r−1
AD

b1b2

({b1, b2}) and to f on r−1
AD

b1b2

(AD
b1b2

\{b1, b2}). Then
g ∈ GB, g(a) = f(a), granting f(a) ∈ GBa. �

Corollary 13. If a ∈ D, ord(a,D) = 2 and the orbit of a is uncountable, then
NM(a, ∅) = 1.

Proof. As for Corollary 11, but using Lemmas 8, 12 and 9. �

Corollary 14. Let D be a dendrite. Then:

• if all orbits of D are countable, then NM(D) = 0;
• if there is an uncountable orbit in D, then NM(D) = 1.

Proof. By Corollaries 11, 13 and the initial remark about points whose orbits are
countable. �

5. Existence of independent extensions

One of the reasons for the importance of small Polish structures is that they
satisfy the existence of nm-independent extensions: if the Polish structure (X,H)
is small, �a ∈ Xn, and A,B are finite subsets of X with A ⊆ B, then there exists
�b ∈ HA�a such that �b is nm-independent from B over A. The proof of this is in
[K10], together with the discussion of its significance and examples of non-small
Polish structures that admit (or do not admit) nm-independent extensions.

The situation for dendrites is that they do satisfy this property, even non-small
ones. So this section is concerned with proving the following theorem, which exploits
again arguments such as those in Lemmas 10 and 12.

Theorem 15. Let D be a dendrite and G its group of homeomorphisms. Then for

all �a ∈ Dn, for all finite subsets A,B ⊆ D with A ⊆ B, there is �b ∈ GA�a such that
�b is nm-independent from B over A.

Proof. Given �a,A,B as in the statement of the theorem, pick �b ∈ GA�a such that for

each i, if GAai is uncountable, then bi /∈ B. The existence of �b can be justified as
follows: let i0 be least such that GAai0 is uncountable but ai0 ∈ B; then arbitrarily
close to the identity there are elements of GA that move ai0 . By finiteness of B,
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it is possible to pick g ∈ GA so that g(ai0) /∈ B and, if aj /∈ B, then g(aj) /∈ B.
Now g�a has at least one component less than �a having uncountable GA-orbit and

belonging to B. Continuing this way, the tuple �b is recovered. Now the aim is to

show that �b is nm-independent from B over A.
Let ε > 0 be less than all distances between pairwise distinct elements of B ∪

{b1, . . . , bn}. By (5) of section 2, for each i ∈ {1, . . . , n} let Di be a dendrite such
that

- diam(Di) <
ε
2 ,

- Di is a neighbourhood of bi,
- the boundary of Di in D is finite.

Let B′ be the union of B and the boundaries of all Di for i ∈ {1, . . . , n}. Now
notice that for all i there is δi > 0 such that {g ∈ GA | g(bi) ∈ GB′bi} contains the
δi-neighbourhood in GA of the identity. Indeed, if GAbi is countable (this includes
the case bi ∈ B), apply the proof of [K10, Theorem 2.5(3)]. If instead GAbi is
uncountable, then ord(bi, D) ≤ 2; now apply either Lemma 10 or Lemma 12 to get
a δi-neighbourhood in G of the identity contained in {g ∈ G | g(bi) ∈ GB′bi} and
thus the claim.

Let δ < min(δ1, . . . , δn) be such that for each i the δ-ball centered in bi is
contained in Di. The proof of the theorem will be concluded by showing that for
all g ∈ GA, if g is less than δ apart from the identity, then there is h ∈ GB′ with

h�b = g�b. So fix such a g. Let hi ∈ GB′ be such that g(bi) = hi(bi). Notice that
g(bi) ∈ Di; thus hi is a homeomorphism of D fixing all points of B′ and sending
bi to g(bi), both of these points being interior to Di. This entails hi(Di) = Di:
for one inclusion, if p ∈ Di was such that hi(p) /∈ Di, then AD

pbi
∩ B′ = ∅, while

hi(A
D
pbi

)∩hi(B
′) = AD

hi(p)hi(bi)
∩B′ 	= ∅; the other inclusion uses a similar argument

on h−1
i . It is now enough to define h : D → D by letting

h(x) =

⎧⎪⎨
⎪⎩

hi(x) if x ∈ Di,

x if x /∈
n⋃

i=1

Di.

�
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