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HARMONIC FUNCTIONS OF POLYNOMIAL GROWTH ON

SINGULAR SPACES WITH NONNEGATIVE RICCI CURVATURE

BOBO HUA

(Communicated by Jianguo Cao)

Abstract. In the present paper, we will derive the Liouville theorem and the
finite dimension theorem for polynomial growth harmonic functions defined on
Alexandrov spaces with nonnegative Ricci curvature in the sense of Kuwae-
Shioya and Sturm-Lott-Villani.

1. Introduction

In the 1970s, Yau [26] proved the Liouville theorem for harmonic functions on
complete Riemannian manifolds with nonnegative Ricci curvature, i.e. manifolds
for which there does not exist any nontrivial, positive harmonic function, then con-
jectured in [27], [28] that the linear space of polynomial growth harmonic functions
with a fixed rate is finite dimensional. In 1997, Colding-Minicozzi provided an af-
firmative answer in [3] by the uniform Poincaré inequality and later obtained the
optimal dimension estimate in [4]. In [12], Li used the mean value inequality to
simplify the proof. Moreover, his argument can be applied to other cases such as
manifolds with nonnegative Ricci curvature outside some compact subset (cf. [24]).

Hua [6] generalized the Liouville theorem to Alexandrov spaces with nonnegative
sectional curvature by the Nash-Moser iteration (cf. [15], [5] or [21]). In the present
paper, we generalize the previous results to Alexandrov spaces with nonnegative
Ricci curvature in the sense of Kuwae-Shioya and Sturm-Lott-Villani. In fact, we
prove the uniform Poincaré inequality on such spaces and derive the mean value
inequality for subharmonic functions by the Nash-Moser iteration. The ingredient
of the proofs involves global properties of harmonic functions depending only on
the volume growth property.

In the framework of Colding-Minicozzi [3], [4] and Li [12], one key point is to
consider a class of inner products on the subspace of polynomial growth harmonic
functions. On Riemannian manifolds, by means of the unique continuation property
of the solution to elliptic partial differential equations with smooth coefficients, the
integration over BR, i.e. 〈u, v〉R =

´
BR

uv, is naturally an inner product for any

R. However it is still open for Alexandrov spaces endowed with intrinsic metrics
of low regularity (DC-differential structures, BV-Riemannian structures; cf. [17]).
In order to overcome the difficulty, we shall derive the key Lemma 3.4 which states
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that the above integrations are inner products for sufficiently large R in Alexandrov
spaces.

Throughout the present paper, we denote by X an n-dimensional Alexandrov
space with Sec ≥ −κ (κ > 0) and satisfying the infinitesimal Bishop-Gromov
volume comparison BG(0), i.e. Ric ≥ 0 in the generalized sense; see Definition 2.2
and Remark 2.3 below.

Our main results are as follows:

Theorem 1.1 (Liouville Theorem). Let X be an n-dimensional Alexandrov space
with generalized nonnegative Ricci curvature. Then it does not admit any noncon-
stant, positive, harmonic function.

For some fixed p ∈ X, we denote the distance function by r(x) = d(p, x) and set
the space of polynomial growth harmonic functions with degree less than or equal
to d as

Hd(X) = {u
∣
∣ u is harmonic, |u(x)| ≤ C(rd(x) + 1)}.

Theorem 1.2 (Finite Dimension Theorem). Let X be an n-dimensional Alexandrov
space with generalized nonnegative Ricci curvature. Then dimHd(X) ≤ C(n)dn−1,
where the constant C(n) depends only on the dimension n.

2. Preliminaries

Definition 2.1 (Alexandrov Space; cf. [2] or [1]). A length space is called an
Alexandrov space with sectional curvature bounded from below by κ (κ ∈ R) if the
Toponogov triangle comparison property holds locally on such a space with respect
to the model space of constant curvature κ.

There is a natural extension map by geodesics on the Alexandrov space X. For
fixed p ∈ X, 0 < t ≤ 1, the extension map is denoted by Φp,t : X ⊃ Wp,t → X,
where x ∈ Wp,t if and only if there exist some y ∈ X and a minimal geodesic py
such that x ∈ py and d(p, x) : d(p, y) = t : 1; then we define Φp,t(x) = y. By the
Alexandrov convexity such a y is unique and the map is well defined.

The following is one of the definitions of generalized Ricci curvature on Alexan-
drov spaces.

Definition 2.2 (BG(0); cf. [9]). An n-dimensional Alexandrov space X satisfies
the infinitesimal Bishop-Gromov volume comparison BG(0) at point p ∈ X if

d(Φp,t∗H
n)(x) ≥ tndHn(x),

for any x ∈ X, 0 < t ≤ 1, where Φp,t∗H
n is the push-forward measure by Φp,t of

the n-dimensional Hausdorff measure Hn. We say that X satisfies the condition
BG(0) if it holds everywhere.

Remark 2.3. In addition, Sturm [22], [23] and Lott-Villani [14] defined another kind
of generalized Ricci curvature, i.e. the curvature-dimension condition CD(0, n) on
a metric measure space (X, d,m) via optimal transport. For Riemannian manifolds
(M,d,Hn), the curvature-dimension condition CD(0, n) is equivalent to Ric ≥ 0
and dimM ≤ n (cf. [23], [14] or [25]). For Alexandrov spaces (X, d,Hn), Petrunin
proved that Sec ≥ 0 implies CD(0, n) (cf. [18]), which indicates that the Ricci
curvature definition via optimal transport is compatible with the definition in the
sense of Alexandrov. On Alexandrov spaces, the condition BG(0) is weaker than
the curvature-dimension condition CD(0, n) (cf. [23]). Hence, for global properties
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of harmonic functions, it suffices to consider BG(0). In the sequel, we always call
BG(0) the generalized nonnegative Ricci curvature.

Next we recall some basic definitions of harmonic functions on Alexandrov spaces
(cf. [6], [8] or [19]). For some precompact domain Ω � X, the Sobolev space

W 1,2(Ω) (W 1,2
0 (Ω)) is defined as the closure of Lipschitz functions (with compact

support in Ω), Lip(Ω) (Lip0(Ω)), with respect to the norm

‖u‖2W 1,2(Ω) =

ˆ

Ω

(u2 + |�u|2).

Moreover, u ∈ W 1,2
loc (X) if u ∈ W 1,2(Ω) for any precompact domain Ω � X.

Definition 2.4. A function u : X 
→ R is harmonic (subharmonic, superharmonic)

if u ∈ W 1,2
loc (X) such that ∀ ϕ ∈ Lip0(X) and ϕ ≥ 0, we have

(2.1)

ˆ

X

�u · �ϕ = 0 (≤ 0,≥ 0).

The infinitesimal Bishop-Gromov volume comparison BG(0) implies the follow-
ing Bishop-Gromov volume comparison theorem.

Theorem 2.5 (Bishop-Gromov; cf. [9]). Let X be an n-dimensional Alexandrov
space with generalized nonnegative Ricci curvature. Then ∀ p ∈ X, ∀ 0 < r < r′,
we have

Hn(B(p, r′))

Hn(B(p, r))
≤ (

r′

r
)n,(2.2)

Hn(B(p, 2r)) ≤ 2nHn(B(p, r)).(2.3)

3. Poincaré inequality and proofs of the main results

Poincaré inequality. By the general theory of the Poincaré inequalities on metric
spaces, following Saloff-Coste [20], we obtain the uniform Poincaré inequality on
Alexandrov spaces with nonnegative Ricci curvature (cf. [6]).

Theorem 3.1 (Uniform Poincaré Inequality). Let X be an n-dimensional Alexan-
drov space with generalized nonnegative Ricci curvature. Then there exists a con-
stant C = C(n), such that ∀ u ∈ W 1,2

loc (X), ∀ x ∈ X, ∀ r > 0, we have

(3.1)

ˆ

B(x,r)

|u− uB |2 ≤ Cr2
ˆ

B(x,r)

|�u|2,

where uB = 1
|B(x,r)|

´
B(x,r)

u.

First we recall a lemma (Lemma 4.2 in Kuwae-Machigashira-Shioya [8]). Denote
by γxy(t), t ∈ [0, 1] a minimal geodesic joining x and y with parameter proportional
to the arclength. Note that for almost all (x, y) ∈ X×X, there is a unique minimal
geodesic joining x and y (cf. [10] or [16]).

Lemma 3.2. Let X be an n-dimensional Alexandrov space with generalized nonneg-
ative Ricci curvature. Then ∀ x ∈ X, r > 0, nonnegative function u : B(x, r) → R

+

and t ∈ (0, 1], we have

(3.2)

ˆ

B(x,r)

u(γxy(t)) dH
n(y) ≤ 1

tn

ˆ

B(x,tr)

u(z)dHn(z).
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Proof. This is straightforward by the infinitesimal Bishop-Gromov volume compar-
ison BG(0). �

The uniform weak Poincaré inequality follows from the previous lemma. For
simplicity, we always denote dy = dHn(y).

Lemma 3.3. Let X be an n-dimensional Alexandrov space with generalized non-
negative Ricci curvature. Then ∀ u ∈ W 1,2

loc (X), ∀ x ∈ X, ∀ r > 0, we have

(3.3)

ˆ

B(x,r)

|u− uB|2 ≤ 2n+2r2
ˆ

B(x,3r)

|�u|2.

Proof. It suffices to consider u ∈ Liploc(X). We have
ˆ

B(x,r)

|u− uB|2 ≤ 1

|B(x, r)|

ˆ

B

ˆ

B

|u(y)− u(z)|2dydz

≤ 4r2

|B(x, r)|

ˆ

B

ˆ

B

ˆ 1

0

|�u(γyz(t))|2dtdydz

=
8r2

|B(x, r)|

ˆ

B

ˆ

B

ˆ 1

1/2

|�u(γyz(t))|2dtdydz.

The last equality follows from a change of variable t′ = 1 − t on [0, 1/2], by using
the symmetry of y and z in the integrals and γyz(t) = γzy(1−t). That is the crucial
trick, which is due to Korevaar and Schoen [11]. Then by Lemma 3.2 we get

ˆ

B(x,r)

|u− uB|2 ≤ 8r2

|B(x, r)|

ˆ

B(x,r)

dy

ˆ 1

1/2

dt

ˆ

B(y,2r)

|�u(γyz(t))|2dz

≤ 8r2

|B(x, r)|

ˆ

B(x,r)

dy

ˆ 1

1/2

1

tn
dt

ˆ

B(y,2tr)

|�u(w)|2dw

≤ 8r2

|B(x, r)|

ˆ

B(x,r)

dy

ˆ 1

1/2

1

tn
dt

ˆ

B(x,3r)

|�u(w)|2dw

≤ 2n+2r2

|B(x, r)|

ˆ

B(x,r)

dy

ˆ

B(x,3r)

|�u(w)|2dw

= 2n+2r2
ˆ

B(x,3r)

|�u|2,

which proves the uniform weak Poincaré inequality. �

Proof of Theorem 3.1. By the Whitney-type covering argument (cf. Corollary 5.3.5
in [20]), the uniform weak Poincaré inequality (3.3) is improved to the uniform
Poincaré inequality as follows:

(3.4)

ˆ

B(x,r)

|u− uB|2 ≤ C(n)r2
ˆ

B(x,r)

|�u|2.

�

Proofs of the main results. In what follows we shall provide the proofs of the
main results of the present paper.

Proof of Theorem 1.1. By the uniform Poincaré inequality (3.1) and the volume
doubling property (2.3), we use the Nash-Moser iteration to obtain the uniform
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Harnack inequality and the Liouville theorem (cf. [6]). The details are included in
the Appendix of this paper. �

In order to prove the finite dimension theorem for polynomial growth harmonic
functions, we need the following lemma.

Lemma 3.4. For any finite dimensional subspace K ⊂ Hd(X), there exists a
constant R0(K) depending on K, such that for ∀ R ≥ R0,

〈u, v〉 =
ˆ

BR

uv

is an inner product on K.

Proof. We shall prove the lemma by contradiction. Let {ui}ki=1 be a basis of K.
Suppose the lemma is not true. Then there exists a sequence Rj → ∞ (j → ∞)

and uj =
∑k

i=1 a
i
jui �= 0 such that

´
BRj

u2
j = 0. Without loss of generality, we may

assume that
∑k

i=1(a
i
j)

2 = 1. By the compactness of the unit sphere Sk−1 ⊂ R
k,

there exists a subsequence aij such that

aij → bi (j → ∞).

Then

(3.5)

k∑

i=1

(bi)2 = 1.

Then with u =
∑

i b
iui, it follows that for any R > 0,

ˆ

BR

u2
j →

ˆ

BR

u2;

thus
´
BR

u2 = 0; u|BR
≡ 0. Since this holds for arbitrary R, u ≡ 0 on X, which

contradicts (3.5), and hence the lemma follows. �

Remark 3.5. One key point of Colding-Minicozzi and Li’s arguments to prove the
finite dimension theorem for polynomial growth harmonic functions is that

´
BR

uv

is an inner product on K for any R. For fixed R,
´
BR

u2 = 0 implies u|BR
≡ 0, but

not u ≡ 0 on X, since the unique continuation property of harmonic functions is
unknown on Alexandrov spaces. However this lemma states that for a fixed sub-
space K, the integration over BR is an inner product on K for sufficiently large R.
Then by Colding-Minicozzi and Li’s arguments, we obtain the uniform dimension
estimate, which does not depend on K, and hence the finite dimension theorem
follows. In what follows, we shall indicate a proof of the finite dimension theorem
by Colding-Minicozzi’s argument and provide a detailed proof by Li’s simplified
argument respectively.

Proof 1 of Theorem 1.2. By Lemma 3.4, the Poincaré inequality (3.1) and the rel-
ative volume comparison (2.2), we can use Colding-Minicozzi’s argument in [4]
without essential modification on Alexandrov spaces with nonnegative Ricci cur-
vature. The dimension estimate is asymptotically optimal, i.e. dimHd(X) ≤
C(n)dn−1. �

By the Nash-Moser iteration, we obtain the mean value inequality on Alexandrov
spaces with generalized nonnegative Ricci curvature.
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Theorem 3.6 (Mean Value Inequality; cf. Theorem A.2 in the Appendix). Let
X be an n-dimensional Alexandrov space with nonnegative Ricci curvature. Then
there exists a constant C(n), for any harmonic function u on X and p ∈ X such
that

(3.6) |u(p)| ≤ C
1

Hn(BR(p))

ˆ

BR(p)

|u|.

Following Li’s mean value inequality argument in [12] or [13], we shall prove the
next two lemmas on Alexandrov spaces (cf. Lemma 13.3, Theorem 13.4 in [13]).

Lemma 3.7 (Li). Let X be an n-dimensional Alexandrov space with generalized
nonnegative Ricci curvature and let K be a k-dimensional subspace of Hd(X). For
p ∈ X, β > 1, δ > 0, R0 > 0, there exists R > R0 such that if {ui}ki=1 is an
orthonormal basis of K with respect to the inner product AβR(u, v) =

´
BβR(p)

uv,

then
k∑

i=1

ˆ

BR(p)

u2
i ≥ kβ−(2d+n+δ).

Proof. For each R > 0, let AR be the bilinear form defined onK given by AR(u, v) =´
BR(p)

uv. By Lemma 3.4, it suffices to consider AR for R ≥ R0(K) which are inner

products on K. Let us denote by trR′ R (detR′ R) the trace (determinant) of the
inner product AR with respect to AR′ , i.e. the trace (determinant) of the following
matrix:

(AR(vi, vj))i,j=1,··· ,k,

where {vi}ki=1 is an orthonormal basis of K with respect to the inner product AR′ .
Suppose the lemma is not true. Then there exist p, β, δ, R0, such that ∀ R ≥ R0,

trβR AR =
k∑

i=1

ˆ

BR(p)

u2
i < kβ−(2d+n+δ),

where {ui}ki=1 is an orthonormal basis of K with respect to AβR. On the other
hand, the arithmetic-geometric means asserts that

(detβR AR)
1
k ≤ trβR AR

k
< β−(2d+n+δ).

Since detβR AR = 1
detR AβR

, we have

detR AβR > βk(2d+n+δ).

Replacing R by R, βR, · · · , βjR, · · · , and noting that detR1
AR2

detR2
AR3

=
detR1

AR3
, we obtain

(3.7) detR AβjR > βjk(2d+n+δ).

By the polynomial growth assumptions on K and the volume growth condition,

(3.8) detR AβjR ≤ k!Ck(βjR)k(2d+n).

This contradicts (3.7) as j → ∞, and hence the lemma is proved. �

Lemma 3.8 (Li). Let X be an n-dimensional Alexandrov space with generalized
nonnegative Ricci curvature and let K be a k-dimensional subspace of Hd(X). Then
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there exists a constant C(n) such that for any basis of K, {ui}ki=1, ∀ p ∈ X,R >
0, 0 < ε < 1

2 , we have

k∑

i=1

ˆ

BR(p)

u2
i ≤ C(n)ε−(n−1) sup

u∈〈A,U〉

ˆ

B(1+ε)R(p)

u2,

where 〈A,U〉 = {v =
∑

i aiui,
∑

i a
2
i = 1}.

Proof. For fixed x ∈ BR(p), we set Kx = {u ∈ K | u(x) = 0}. The subspace

Kx ⊂ K is of at most codimension 1, since for any v, w �∈ Kx, v − v(x)
w(x)w ∈ Kx.

Then there exists an orthogonal transformation mapping {ui}ki=1 to {vi}ki=1, where
vi ∈ Kx, i ≥ 2. By the mean value inequality (3.6), we have

k∑

i=1

u2
i (x) =

k∑

i=1

v2i (x) = v21(x) ≤ C

 

B(1+ε)R−r(x)(x)

v21

≤ C|B(1+ε)R−r(x)(x)|−1 sup
u∈〈A,U〉

ˆ

B(1+ε)R(p)

u2,(3.9)

where r(x) = d(p, x). For simplicity, denote Vp(t) = |Bt(p)| and Ap(t) = |∂Bt(p)|.
By the Bishop-Gromov volume comparison (2.2), we have

Vx((1 + ε)R − r(x)) ≥ (
(1 + ε)R− r(x)

2R
)nVx(2R) ≥ (

(1 + ε)R − r(x)

2R
)nVp(R).

Hence, substituting it into (3.9) and integrating over BR(p), we have

(3.10)

k∑

i=1

ˆ

BR(p)

u2
i ≤ C2n

Vp(R)
sup

u∈〈A,U〉

ˆ

B(1+ε)R(p)

u2

ˆ

BR(p)

(1 + ε−R−1r(x))−ndx.

Define f(t) = (1 + ε−R−1t)−n. Then f ′(t) = n
R (1 + ε−R−1t)−(n+1) ≥ 0 and

ˆ

BR(p)

f(r(x))dx =

ˆ R

0

f(t)Ap(t)dt.

Since Ap(t) = V
′

p (t) a.e., integrating by parts we obtain
ˆ R

0

f(t)Ap(t)dt = f(t)Vp(t) |R0 −
ˆ R

0

Vp(t)f
′(t)dt.

Noting that f ′(t) ≥ 0 and the Bishop-Gromov volume comparison (2.2), we have
ˆ R

0

Vp(t)f
′(t)dt ≥ Vp(R)

Rn

ˆ R

0

tnf ′(t)dt

=
Vp(R)

Rn
{tnf(t) |R0 −n

ˆ R

0

t(n−1)f(t)dt}.

Therefore
ˆ

BR(p)

f(r(x))dx ≤ nVp(R)

Rn

ˆ R

0

t(n−1)f(t)dt ≤ n

n− 1
Vp(R)ε−(n−1).

Combining this with (3.10), we prove the lemma. �

By the previous two lemmas, we obtain the optimal dimension estimate and
prove the finite dimension theorem for polynomial growth harmonic functions.
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Proof 2 of Theorem 1.2. For any k-dimensional subspace K ⊂ Hd(X), we set β =
1+ε. Let {ui}ki=1 be an orthonormal basis ofK with respect to AβR. By Lemma 3.7,
we have

k∑

i=1

ˆ

BR(p)

u2
i ≥ k(1 + ε)−(2d+n+δ).

Lemma 3.8 implies that

k∑

i=1

ˆ

BR(p)

u2
i ≤ C(n)ε−(n−1).

Setting ε = 1
2d and letting δ tend to 0, we have

(3.11) k ≤ C(n)(
1

2d
)−(n−1)(1 +

1

2d
)(2d+n+δ) ≤ Cdn−1.

Noting that (3.11) holds for arbitrary subspace K, we prove the theorem. �

Appendix

In this Appendix, we outline the proof of the Liouville theorem for harmonic
functions by the Nash-Moser iteration on Alexandrov spaces with nonnegative Ricci
curvature (see [6] for details). First we derive the Sobolev inequality.

Theorem A.1 (Sobolev Inequality). Let X be an n-dimensional Alexandrov space
with generalized nonnegative Ricci curvature. There exists a constant C = C(n)

such that ∀ p ∈ X, ∀ r > 0, B := B(p, r), u ∈ W 1,2
0 (B), we have

(A.1)
(  

B

u2χ
) 1

χ ≤ Cr2
 

B

|�u|2,

where χ = n
n−2 (n ≥ 3), χ > 1 (n = 2) and

ffl
B
u = 1

|B|
´
B
u.

Proof. By means of the standard pseudo-Poincaré technique (see Theorems 5.2.3
and 3.2.9 in Saloff-Coste [20]) and the relative volume comparison (2.2), we obtain
the Sobolev inequality; see [6] for details. �

As long as the Poincaré and Sobolev inequalities are obtained, the standard
Nash-Moser iteration can be carried out (cf. [15] or [7]). We shall carry out the
estimates in all geodesic balls because the scaling technique is not suitable here.

Theorem A.2. Let X be an n-dimensional Alexandrov space with generalized non-
negative Ricci curvature. For any subharmonic function u on X and ∀ p > 0,
0 < θ < τ ≤ 1, there exists a constant C = C(n, p, θ, τ ) such that ∀ BR := B(x,R),

(A.2) sup
BθR

u ≤ C
( 

BτR

|u|p
)1/p

.

Proof.

Step 1. We prove the theorem for p ≥ 2. Set u+ = max{u, 0}, ū = u++ k for some
k > 0, and for some m > 0,

ūm =

{
ū, u < m,
k +m, u ≥ m.

Note that �ūm = �ū = �u a.e. 0 < u < m; otherwise �ūm = 0 a.e.
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Set the test function ϕ = η2(ūβ
mū − kβ+1) ∈ W 1,2

0 (BR) for any β ≥ 0, η ∈
Lip0(BR) and η ≥ 0. A direct calculation shows that

0 ≥
ˆ

�u · �ϕ ≥ 1

2

ˆ
η2ūβ

m|�ū|2 + β

ˆ
η2ūβ

m|�ūm|2 − 2

ˆ
ūβ
m|ū|2|�η|2,

(A.3)
1

2

ˆ
η2ūβ

m|�ū|2 + β

ˆ
η2ūβ

m|�ūm|2 ≤ 2

ˆ
ūβ
m|ū|2|�η|2.

By setting w = ū
β
2
mū, (A.3) implies that

(A.4)

ˆ
|�(ηw)|2 ≤ 18(β + 1)

ˆ
w2|�η|2.

For given θ0 ≤ θ, any θ0 ≤ a < b ≤ 1, we choose 0 ≤ η ∈ Lip0(BbR), η |BaR
= 1

and |�η| ≤ 1
(b−a)R . The Sobolev inequality (A.1) and the Bishop-Gromov volume

comparison |BbR|
|BaR| ≤

bn

an ≤ 1
θn
0
imply that

(  

BaR

|w|2χ
) 1

χ ≤ C(n, θ0)(β + 1)

(b− a)2

 

BbR

w2.

By setting γ = β + 2 ≥ 2 and letting m → ∞, it follows that

(A.5)
(  

BaR

ūγχ
) 1

γχ ≤
(C(γ − 1)

(b− a)2

) 1
γ
(  

BbR

ūγ
) 1

γ

.

We start the Moser iteration as follows. Set ri = θR + (τ−θ)
2i−1 R and γi = pχi−1

for i = 1, 2, . . . , and Ii =
( ffl

Bri
|ū|γi

) 1
γi . Then

(A.6) Ii+1 ≤
( C

(τ − θ)2

)∑
1
γj 4

∑ j−1
γj

∏

(γj − 1)
1
γj I1.

Noting that
∑

1
γj

≤ n
2p ,

∑ j−1
γj

≤ C(n, p) and

∏

(γj − 1)
1
γj ≤

∏

(γj)
1
γj ≤ p

∑
1
γj χ

∑ j−1
γj ≤ C(n, p),

and letting i → ∞, k → 0 in (A.6), we obtain

sup
BθR

u+ ≤ C(n, p, θ0)
( 1

(τ − θ)n

 

BτR

(u+)p
)1/p

.

Step 2. For the case p < 2, noting that by Young’s inequality

sup
BθR

u+ ≤ C(n, θ0)
( 1

(τ − θ)n

 

BτR

(u+)2
)1/2

≤ C
1

(τ − θ)
n
2

(

sup
BτR

u+
)1− p

2
(  

BτR

(u+)p
)1/2

≤ 1

2
sup
BτR

u+ +
C(n, p, θ0)

(τ − θ)
n
p

( 

BτR

(u+)p
)1/p

,(A.7)

we prove the theorem by the following lemma (cf. Lemma 4.3 in [7]).
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Lemma A.3. Let f be a nonnegative and bounded function on [τ0, τ1] with τ0 ≥ 0.
Suppose for τ0 ≤ t < s ≤ τ1 we have

f(t) ≤ θf(s) +
A

(s− t)α
+B

for some θ ∈ [0, 1). Then for any τ0 ≤ t < s ≤ τ1,

f(t) ≤ c(α, θ){ A

(s− t)α
+B}. �

Theorem A.4. Let X be an n-dimensional Alexandrov space with generalized non-
negative Ricci curvature. For any nonnegative superharmonic function u on X and
∀ 0 < θ < τ < 1, 0 < p < n

n−2 , there exists a constant C = C(n, p, θ, τ ) such that

∀ BR := B(x,R),

(A.8) inf
BθR

u ≥ C
( 

BτR

|u|p
)1/p

.

Proof.

Step 1. The theorem holds for some p0 > 0. Set ū = u + k > 0, for some k > 0.
By letting k → 0, it suffices to prove the theorem for ū. Set v = ū−1, the test
function ϕ = φ

ū2 for any φ ∈ W 1,2
0 (X) and φ ≥ 0. A direct calculation shows

that v is subharmonic. By Theorem A.2, ∀ p > 0, 0 < θ < τ ≤ 1, there exists
C = C(n, p, θ, τ ) such that

sup
BθR

v ≤ C
( 

BτR

|v|p
)1/p

,

inf
BθR

ū ≥ C
( 

BτR

|ū|−p
)− 1

p

= C
( 

BτR

|ū|−p

 

BτR

|ū|p
)− 1

p
( 

BτR

|ū|p
)1/p

.

(A.9)

It suffices to prove that for some p0(n, τ ) > 0,

(A.10)

 

BτR

|ū|−p0

 

BτR

|ū|p0 ≤ C(n, τ ).

By setting w := log ū− μ, where μ =
ffl
BτR

log ū, (A.10) follows from

(A.11)

 

BτR

ep0|w| ≤ C(n, τ ).

Note that

ep0|w| = 1 + p0|w|+
(p0|w|)2

2
+ · · ·+ (p0|w|)α

α!
+ · · · ,

where α ∈ N. Hence it suffices to estimate every term of the expression
 

BτR

(p0|w|)α
α!

.

First we derive the inequality for w. For any ϕ ∈ W 1,2
0 (X) and ϕ ≥ 0, set the

test function ϕ2ū−1. A direct calculation shows that

(A.12)

ˆ
ϕ2|�w|2 ≤ 4

ˆ
|�ϕ|2.

Choosing ϕ |BτR
= 1, suppϕ ⊂ BR and |�ϕ| ≤ 1

(1−τ)R , we obtain
ˆ

BτR

|�w|2 ≤ 4

(1− τ )2R2
|BR|.
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Noting that
´
BτR

w = 0, we get by the Poincaré inequality that

(A.13)

 

BτR

|w|2 ≤ C(n)τ2R2

 

BτR

|�w|2 ≤ C(n, τ )
|BR|
|BτR|

≤ C
1

τn
≤ C(n, τ ),

which is the required estimate for α = 2.

Claim A.5. For any τ ′ ∈ (τ, 1) we have

(A.14)

 

Bτ′R

|w|2 ≤ C(n, τ, τ ′).

Proof of Claim A.5. Choosing ϕ |Bτ′R= 1 and suppϕ ⊂ BR, we have
ˆ

Bτ′R

|�w|2 ≤ 4

(1− τ ′)2R2
|BR|.

The Poincaré inequality yields
 

Bτ′R

|w − wBτ′R |
2 ≤ C(n)(τ ′R)2

 

Bτ′R

|�w|2 ≤ C(n, τ ′).

Hence noting that
ffl
BτR

w = 0, we obtain
 

Bτ′R

|w|2 ≤ C(ε)

 

Bτ′R

|w − wBτ′R |
2 + (1 + ε)|wBτ′R |

2

≤ C(n, τ ′, ε) + (1 + ε)
|Bτ ′R\BτR|

|Bτ ′R|

 

Bτ′R

w2.(A.15)

By the Bishop-Gromov volume comparison (2.2), it follows that

(A.16)
|Bτ ′R\BτR|

|Bτ ′R|
= 1− |BτR|

|Bτ ′R|
≤ 1−

( τ

τ ′

)n

.

By choosing ε = ε(τ, τ ′) such that (1 + ε)
(

1 −
(

τ
τ ′

)n)
< 1, the claim follows from

(A.15) and (A.16).

Next we turn to estimate
ffl
BτR

|w|α for any α ≥ 2. Set the test function ϕ =

ζ2|wm|2β ū−1, where β ≥ 1, ζ ∈ Lip0(X) and ζ ≥ 0,

wm =

⎧

⎨

⎩

m, w > m,
w, |w| ≤ m,
−m, w < −m.

By Young’s and the Hölder inequalities, a direct calculation shows that
ˆ

|�w|2ζ2|wm|2β ≤ 16β2

ˆ
|wm|2β |�ζ|2 + 2(2β)2β

ˆ
ζ2|�wm|2.

By letting m → ∞, Young’s inequality and (A.12) imply that

(A.17)

ˆ
|�(ζ|w|β)|2 ≤ 128

{

(2β)2β
ˆ

|�ζ|2 + β2

ˆ
|w|2β |�ζ|2

}

.

For any τ ≤ a < b ≤ 1, choose ζ |BaR
= 1, suppζ ⊂ BbR and |�ζ| ≤ 1

(b−a)R . It

follows from the Sobolev inequality (A.1) that

(  

BaR

|w|2βχ
) 1

χ ≤ C(n, τ )(2β)2

(b− a)2

{

(2β)2β +

 

BbR

|w|2β
}

.
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Now we start the Moser iteration as follows. Setting βi = 2χi−1, ri =
(

τ+ 1−τ
2i

)

R

and Ii =
( ffl

Bri
|w|βi

) 1
βi for i = 1, 2, . . . , we have

Ii+1 ≤ C
∑

i
βi

(∏

β
1
βi
i

)2( i∑

j=1

βj + I1

)

.

Noting that
∑

i
βi

< C,
∏

β
1
βi
i < C and

i∑

j=1

βj < Cβi+1, we obtain

Ii+1 ≤ C(n, τ )(βi+1 + I1).

For any integer α ≥ 2 (the estimate of α = 0, 1 is trivial), there exists i ≥ 1, such
that βi ≤ α < βi+1. Then by the Hölder inequality and the Bishop-Gromov volume
comparison, this implies that

(  

BτR

|w|α
) 1

α ≤
(  

BτR

|w|βi+1

) 1
βi+1 ≤ C(βi+1 + I1)

≤ C(α+ I1) ≤ C0(n, τ )α.(A.18)

The last step follows from I1 =
( ffl

Bτ′R
|w|2

) 1
2 ≤ C(n, τ ) for τ ′ = 1+τ

2 .

Hence, for any α ≥ 2, Sterling’s formula implies that
 

BτR

(p0|w|)α
α!

≤ (p0C0α)
α

α!
≤ (p0C0e)

α.

Choosing p0 = (2C0e)
−1, we draw the conclusion that

 

BτR

ep0|w| ≤ C
(

1 +
1

2
+

1

4
+ . . .

)

≤ C(n, τ ).

Step 2. In order to prove the theorem for any 0 < p < n
n−2 , by iteration it suffices

to prove the following claim.

Claim A.6. For any θ ≤ l1 < l2 < 1, and 0 < p2 < p1 < n
n−2 , there exists a

constant C = C(n, l1, l2, p1, p2, θ) such that

(A.19)
(  

Bl1R

ūp1

) 1
p1 ≤ C

(  

Bl2R

ūp2

) 1
p2
.

Proof of Claim A.6. By setting the test function ϕ = ū−βζ2 for β ∈ (0, 1), a direct
calculation shows that

ˆ
ū−β−1ζ2|�ū|2 ≤ 4

β2

ˆ
ū1−β |�ζ|2.

Let γ = 1− β, w = ū
γ
2 . Then it follows that
ˆ

|�(ζw)|2 ≤ 4

(1− γ)2

ˆ
w2|�ζ|2.

For any θ ≤ a < b < 1, by choosing ζ |BaR
= 1, suppζ ⊂ BbR and |�ζ| ≤ 1

(b−a)R ,

the Sobolev inequality (A.1) yields, for any γ ∈ (0, 1),

(A.20)
( 

BaR

ūγχ
) 1

γχ ≤
( C(n, θ)

(1− γ)2(b− a)2

) 1
γ
(  

BbR

ūγ
) 1

γ

.
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We start the Moser iteration as follows. Setting γi = l1 +
l2−l1
2i−1 , ri = p2χ

i−1 and

Ii =
( ffl

BriR
ūγi

) 1
γi , for i = 1, 2, . . ., we have

Ii+1 ≤ C

i∑

j=1

j
γj

(l2 − l1)
2

i∑

j=1

1
γj
(

i∏

j=1

(1− γj)
1
γj )2

I1.

For 0 < p2 < p1 < n
n−2 , we may assume p2 < 1. There exists i ≥ 1 such that

γi ≤ p1 < γi+1. Hence by the Hölder inequality and the Bishop-Gromov volume
comparison, we have

(  

Bl1R

ūp1

) 1
p1 ≤ CIi+1 ≤ C

i∑

j=1

j
γj

(l2 − l1)
2

i∑

j=1

1
γj
( i∏

j=1

(1− γj)
1
γj

)2

I1.

Noting that
i∑

j=1

j
γj

< C(p1, p2),
i∏

j=1

(1 − γj)
1
γj ≥

i∏

j=1

(1 − p1)
1
γj ≥ (1 − p1)

n
2p2 , we

prove the claim

( 

Bl1R

ūp1

) 1
p1 ≤ C(n, l1, l2, p1, p2, θ)

( 

Bl2R

ūp2

) 1
p2
.

Our conclusion follows directly from Step 1 and Step 2. �

Now Theorems A.2 and A.4 imply the uniform Harnack inequality.

Theorem A.7 (Harnack Inequality). Let X be an n-dimensional Alexandrov space
with generalized nonnegative Ricci curvature. For any nonnegative harmonic func-
tion u on X and r > 0, there exists C = C(n) such that

(A.21) sup
Br

u ≤ C inf
Br

u.

Proof. The theorem follows by choosing θ = 1
4 , τ = 1

2 and p = 1. �

It follows from Saloff-Coste [20] that the uniform Harnack inequality (A.21)
implies the Liouville Theorem.

Proof of Theorem 1.1. For u ≥ 0, we know infX u ≥ 0. Applying the uniform
Harnack inequality to (u− infX u), we have

sup
Br

(u− inf
X

u) ≤ C inf
Br

(u− inf
X

u)

for any r > 0, and C does not depend on r. By letting r → ∞, we observe that the
right-hand side of the inequality tends to zero. Hence u = infX u = constant. �
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