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A ONE-PARAMETER FAMILY OF PICK FUNCTIONS DEFINED

BY THE GAMMA FUNCTION AND RELATED TO THE

VOLUME OF THE UNIT BALL IN n-SPACE

CHRISTIAN BERG AND HENRIK L. PEDERSEN

(Communicated by Walter Van Assche)

Abstract. We show that

Fa(x) =
lnΓ(x+ 1)

x ln(ax)

can be considered as a Pick function when a ≥ 1, i.e. extends to a holomorphic
function mapping the upper half-plane into itself. We also consider the function

f(x) =

(
πx/2

Γ(1 + x/2)

)1/(x ln x)

and show that ln f(x+1) is a Stieltjes function and that f(x+1) is completely

monotonic on ]0,∞[. In particular, f(n) = Ω
1/(n lnn)
n , n ≥ 2, is a Hausdorff

moment sequence. Here Ωn is the volume of the unit ball in Euclidean n-space.

1. Introduction and results

Since the appearance of the paper [3], monotonicity properties of the functions

(1) Fa(x) =
ln Γ(x+ 1)

x ln(ax)
, x > 0, a > 0,

have attracted the attention of several authors in connection with monotonicity
properties of the sequence {Ωn} of volumes of the unit ball in Euclidean n-space.
Recent papers about inequalities involving Ωn are [2], [15], [18]. See also the survey
paper [4].

Let us first consider the case a = 1. In [10] the authors proved that F1 is a
Bernstein function, which means that it is positive and has a completely monotonic
derivative, i.e.,

(2) (−1)nF
(n+1)
1 (x) ≥ 0, x > 0, n ≥ 0.

This extended monotonicity and concavity are proved in [5] and [13] respectively.
We actually proved a stronger statement than (2), namely that the reciprocal

function x lnx/ ln Γ(x+1) is a Stieltjes transform, i.e. belongs to the Stieltjes cone
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S of functions of the form

(3) g(x) = c+

∫ ∞

0

dμ(t)

x+ t
, x > 0,

where c ≥ 0 and μ is a non-negative measure on [0,∞[ satisfying∫ ∞

0

dμ(t)

1 + t
< ∞.

The result was obtained using the holomorphic extension of the function F1 to
the cut plane A = C\]−∞, 0], leading to an explicit formula for the measure μ in
(3). Our derivation used the fact that the holomorphic function log Γ(z) vanishes
in A only at the points z = 1 and z = 2, a result interesting in itself and included
as an appendix in [10]. A simpler proof of the non-vanishing of log Γ(z) appeared
in [11], where we also proved that F1 is a Pick function and obtained the following
representation formula:

(4) F1(z) = 1−
∫ ∞

0

d1(t)

z + t
dt, z ∈ A,

with

(5) d1(t) =
ln |Γ(1− t)|+ (k − 1) ln t

t((ln t)2 + π2)
for t ∈ ]k − 1, k[ , k = 1, 2, . . . ,

and d1(t) tends to infinity when t approaches 1, 2, . . .. Since d1(t) > 0 for t > 0, (2)
is an immediate consequence of (4).

We recall that a Pick function is a holomorphic function ϕ in the upper half-plane
H = {z = x+ iy ∈ C | y > 0} satisfying �ϕ(z) ≥ 0 for z ∈ H; cf. [12].

For a = 2 Anderson and Qiu proved in [5] that F2 is strictly increasing on [1,∞[,
thereby proving a conjecture from [3]. Alzer proved in [2] that F2 is concave on
[46,∞[. In [16] the concavity was extended to the optimal interval ] 12 ,∞[.

We will now describe the main results of the present paper.
First a few words about notation. We use ln for the natural logarithm but only

applied to positive numbers. The holomorphic extension of ln from the open half-
line ]0,∞[ to the cut plane A = C\] − ∞, 0] is denoted Log z = ln |z| + iArg z,
where −π < Arg z < π is the principal argument. The holomorphic branch of the
logarithm of Γ(z) for z in the simply connected domain A, equal to ln Γ(x) for
x > 0, is denoted log Γ(z). This branch can also be defined as the integral

log Γ(z) =

∫ z

1

Γ′(w)

Γ(w)
dw, z ∈ A,

where the integration is along the segment from 1 to z. The imaginary part of
log Γ(z) is a continuous branch of argument of Γ(z) which we denote arg Γ(z), i.e.,

log Γ(z) = ln |Γ(z)|+ i arg Γ(z), z ∈ A.

The expression

(6) Fa(z) =
log Γ(z + 1)

z Log(az)

clearly defines a holomorphic extension of (1) to A\{1/a}, and z = 1/a is a simple
pole unless a = 1, where the residue ln Γ(1 + 1/a) vanishes. Thus z = 1 is a
removable singularity for F1.
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Using the residue theorem we shall obtain:

Theorem 1.1. For a > 0 the function Fa has the integral representation

(7) Fa(z) = 1 +
lnΓ(1 + 1/a)

z − 1/a
−
∫ ∞

0

da(t)

z + t
dt, z ∈ A \ {1/a},

where

(8) da(t) =
ln |Γ(1− t)|+ (k − 1) ln(at)

t((ln(at))2 + π2)
for t ∈ ]k − 1, k[ , k = 1, 2, . . . ,

and da(0) = 0, da(k) = ∞, k = 1, 2, . . .. We have da(t) ≥ 0 for t ≥ 0, a ≥ 1/2. (This
is slightly improved in Remark 2.6 below.) Furthermore, Fa is a Pick function for
a ≥ 1 but not for 0 < a < 1.

From this follows the monotonicity property conjectured in [16]:

Corollary 1.2. Assume a ≥ 1. Then

(9) (−1)nF (n+1)
a (x) > 0, x > 1/a, n = 0, 1, . . . .

In particular, Fa is strictly increasing and strictly concave on the interval ]1/a,∞[.
The function

f(x) =

(
πx/2

Γ(1 + x/2)

)1/(x lnx)

(10)

has been studied because the volume Ωn of the unit ball in Rn is

Ωn =
πn/2

Γ(1 + n/2)
, n = 1, 2, . . . .

We prove the following integral representation of the extension of ln f(x+ 1) to
the cut plane A.

Theorem 1.3. For z ∈ A we have

(11) log f(z + 1) = −1

2
+

ln(2/
√
π)

z
+

ln(
√
π)

Log(z + 1)
+

1

2

∫ ∞

1

d2((t− 1)/2)

z + t
dt.

In particular, 1/2 + ln f(x + 1) is a Stieltjes function and f(x + 1) is completely
monotonic.

We recall that completely monotonic functions ϕ : ]0,∞[ → R are characterized
by Bernstein’s theorem as

(12) ϕ(x) =

∫ ∞

0

e−xt dμ(t),

where μ is a positive measure on [0,∞[ such that the integrals above make sense
for all x > 0.

We also recall that a sequence {an}n≥0 of positive numbers is called a Hausdorff
moment sequence if it has the form

(13) an =

∫ 1

0

xn dσ(x), n ≥ 0,

where σ is a positive measure on the unit interval. Note that limn→∞ an = σ({1}).
Hausdorff proved that these sequences are exactly the same as completely mono-
tonic sequences; see [20, p. 108] or [8, p. 134]. It is easy to see that if ϕ is completely
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monotonic with the integral representation (12), then an = ϕ(n + 1), n ≥ 0, is a
Hausdorff moment sequence, because

an =

∫ ∞

0

e−(n+1)t dμ(t) =

∫ 1

0

xn dσ(x),

where σ is the image measure of e−t dμ(t) under e−t. Since limx→∞ f(x+1) = e−1/2

we get

Corollary 1.4. The sequence

(14) f(n+ 2) = Ω
1/((n+2) ln(n+2))
n+2 , n = 0, 1, . . . ,

is a Hausdorff moment sequence tending to e−1/2.

A Hausdorff moment sequence {an}n≥0 is easily seen to be decreasing and con-
vex, and it is even logarithmically convex, meaning that a2n ≤ an−1an+1, n ≥ 1. In
fact, by the Cauchy-Schwarz inequality

a2n =

(∫ 1

0

xn dσ(x)

)2

=

(∫ 1

0

x(n−1)/2x(n+1)/2 dσ(x)

)2

≤
∫ 1

0

xn−1 dσ(x)

∫ 1

0

xn+1 dσ(x) = an−1an+1.

The logarithmic convexity of {an}n≥0 was obtained in [16] in a different way.

2. Properties of the function Fa

In this section we will study the holomorphic extension (6) of the function Fa

defined in (1). We shall use the following property of log Γ(z); cf. [10, Lemma 2.1].

Lemma 2.1. We have, for any k ≥ 1,

lim
z→t,�z>0

log Γ(z) = ln |Γ(t)| − iπk

for t ∈]− k,−k + 1[ and

lim
z→t,�z>0

| log Γ(z)| = ∞

for t = 0,−1,−2, . . ..

Lemma 2.2. For a > 0 and t ≤ 0 we have

(15) lim
y→0+

�Fa(t+ iy) = πda(−t),

where da is given by (8).

Proof. For −1 < t < 0 we get

lim
y→0+

Fa(t+ iy) =
ln Γ(1 + t)

t(ln(a|t|) + iπ)
;

hence limy→0+ �Fa(t+ iy) = πda(−t). For −k < t < −k+ 1, k = 2, 3, . . . , we find,
using Lemma 2.1, that

lim
y→0+

Fa(t+ iy) =
ln |Γ(1 + t)| − i(k − 1)π

t(ln(a|t|) + iπ)
.

Hence limy→0+ �Fa(t+ iy) = πda(−t) also in this case.
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For t = −k, k = 1, 2, . . ., we have

|Fa(−k + iy)| ≥ |ln |Γ(−k + 1 + iy)||
| − k + iy||Log(a(−k + iy))| → ∞

for y → 0+ because Γ(z) has poles at z = 0,−1, . . .. Finally, for t = 0 we get (15)
from the next lemma. �

Lemma 2.3. For a > 0 we have

lim
z→0,z∈A

|Fa(z)| = 0.

Proof. Since log Γ(z+1)/z has a removable singularity for z = 0, the result follows
because |Log(az)| ≥ | ln(a|z|)| → ∞ for |z| → 0, z ∈ A. �

Lemma 2.4. For a > 0 we have the radial behaviour

(16) lim
r→∞

Fa(re
iθ) = 1 for − π < θ < π,

and there exists a constant Ca > 0 such that for k = 1, 2, . . . and −π < θ < π,

(17) |Fa((k + 1
2 )e

iθ)| ≤ Ca.

Proof. We first note that

(18) Fa(z) = F1(z)
Log(z)

Log(az)
,

and since

lim
|z|→∞,z∈A

Log(z)

Log(az)
= 1,

it is enough to prove the results for a = 1. We do this by using a method introduced
in [10, Prop. 2.4].

Define

Rk = {z = x+ iy ∈ C | −k ≤ x < −k + 1, 0 < y ≤ 1 } for k ∈ Z

and

R =

∞⋃
k=0

Rk, S = {z = x+ iy ∈ C | x ≤ 1, |y| ≤ 1}.

The function F1 is continuous on the punctured circle |z| = (k+ 1
2 )e

iθ, θ ∈ ]−π, π[,
and by Lemma 2.1 it has limits for θ → ±π. These limits are complex conjugate of
each other, and therefore |F1| has a continuous extension to the circle |z| = k + 1

2 .
Hence

(19) Mk = sup
|θ|<π

|F1((k + 1
2 )e

iθ)| < ∞

for each k = 1, 2, . . .. It is then enough to prove that Mk is bounded for k → ∞.
Stieltjes ([19, formula 20]) found the following formula for log Γ(z) for z in the

cut plane A:

(20) log Γ(z + 1) = ln
√
2π + (z + 1/2) Log z − z + μ(z).

Here

μ(z) =

∞∑
n=0

h(z + n) =

∫ ∞

0

P (t)

z + t
dt,
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where h(z) = (z + 1/2) Log(1 + 1/z) − 1 and P is periodic with period 1 and
P (t) = 1/2− t for t ∈ [0, 1[. A derivation of these formulas can also be found in [6].
The integral above is improper, and integration by parts yields

(21) μ(z) =
1

2

∫ ∞

0

Q(t)

(z + t)2
dt,

where Q is periodic with period 1 and Q(t) = t− t2 for t ∈ [0, 1[. Note that by (21)
μ is a completely monotonic function. For further properties of Binet’s function μ;
see [14].

We claim that

|μ(z)| ≤ π

8
for z ∈ A \ S.

In fact, since 0 ≤ Q(t) ≤ 1/4, we get for z = x+ iy ∈ A,

|μ(z)| ≤ 1

8

∫ ∞

0

dt

(t+ x)2 + y2
.

For x > 1 we have ∫ ∞

0

dt

(t+ x)2 + y2
≤

∫ ∞

0

dt

(t+ 1)2
= 1,

and for x ≤ 1, |y| ≥ 1 we have∫ ∞

0

dt

(t+ x)2 + y2
=

∫ ∞

x

dt

t2 + y2
<

∫ ∞

−∞

dt

t2 + 1
= π.

Since

F1(z) = 1 +
ln
√
2π + 1/2Log z − z + μ(z)

z Log z
,

for z ∈ A, we immediately get (16) and

(22) |F1(z)| ≤ 2

for all z ∈ A\S for which |z| is sufficiently large. In particular, there exists N0 ∈ N

such that

(23) |F1((k + 1
2 )e

iθ)| ≤ 2 for k ≥ N0, (k + 1
2 )e

iθ ∈ A \ S.

By continuity the quantity

(24) c = sup
{
| log Γ(z)| | z = x+ iy, 1

2 ≤ x ≤ 1, 0 ≤ y ≤ 1
}

is finite.
We will now estimate the quantity |F1((k + 1

2 )e
iθ)| when (k + 1

2 )e
iθ ∈ S, and

since F1(z) = F1(z), it is enough to consider the case when (k + 1
2 )e

iθ ∈ Rk+1. To
do this we use the relation

(25) log Γ(z + 1) = log Γ(z + k + 1)−
k∑

l=1

Log(z + l)

for z ∈ A and k ∈ N. Equation (25) follows from the fact that the functions on
both sides of the equality sign are holomorphic functions in A, and they agree on
the positive half-line by repeated applications of the functional equation for the
Gamma function.
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For z = (k + 1
2 )e

iθ ∈ Rk+1 we get | log Γ(z + k + 1)| ≤ c by (24), and hence by
(25)

| log Γ(z + 1)| ≤ c+

k∑
l=1

|Log(z + l)| ≤ c+ kπ +

k∑
l=1

| ln |z + l||.

For l = 1, . . . , k−1 we have k−l < |z+l| < k+2−l; hence 0 < ln |z+l| < ln(k+2−l).

Furthermore, 1/2 ≤ |z + k| ≤
√
2; hence − ln 2 < ln |z + k| ≤ (ln 2)/2. Inserting

these inequalities, we get

| log Γ(z + 1)| ≤ c+ kπ +

k+1∑
j=2

ln j < c+ kπ + k ln(k + 1).

From this we get for z = (k + 1
2 )e

iθ ∈ Rk+1

(26) |F1(z)| ≤
c+ kπ + k ln(k + 1)

(k + 1
2 ) ln(k + 1

2 )
,

which tends to 1 for k → ∞. Combined with (23) we see that there exists N1 ∈ N

such that

|F1((k + 1
2 )e

iθ)| ≤ 2 for k ≥ N1, −π < θ < π,

which shows that Mk from (19) is a bounded sequence. �

Lemma 2.5. Let a > 0. For k = 1, 2, . . . there exists an integrable function
fk,a : ]−k,−k + 1[ → [0,∞] such that

(27) |Fa(x+ iy)| ≤ fk,a(x) for − k < x < −k + 1, 0 < y ≤ 1.

Proof. For z = x+ iy as above we get using (25)

| log Γ(z + 1)| ≤ | log Γ(z + k + 1)|+
k∑

l=1

|Log(z + l)| ≤ L+ kπ +

k∑
l=1

| ln |z + l||,

where L is the maximum of | log Γ(z)| for z ∈ R−1. We only treat the case k ≥ 2
because the case k = 1 is a simple modification combined with Lemma 2.3.

For l = 1, . . . , k − 2 we have 1 < |z + l| < 1 + k − l, and for l = k − 1,
k we have ln |x+ l| ≤ ln |z + l| ≤ (1/2) ln 2, so we find

(28) | log Γ(z + 1)| ≤ L+ kπ +
k∑

j=2

ln j + | ln |x+ k − 1||+ | ln |x+ k||,

so as fk,1 we can use the right-hand side of (28) divided by (k− 1) ln(k− 1). Using
(18) we next define

fk,a(x) = fk,1(x) max
z∈Rk

|Log z|
|Log(az)| . �

Proof of Theorem 1.1. For fixed w ∈ A \ {1/a} we choose ε > 0, k ∈ N such that
ε < |w|, 1/a < k + 1

2 and consider the positively oriented contour γ(k, ε) in A
consisting of the half-circle z = εeiθ, θ ∈ [−π

2 ,
π
2 ] and the half-lines z = x± iε, x ≤ 0

until they cut the circle |z| = k + 1
2 , which closes the contour. By the residue

theorem we find that

1

2πi

∫
γ(k,ε)

Fa(z)

z − w
dz = Fa(w) +

ln Γ(1 + 1/a)

1/a− w
.
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We now let ε → 0 in the contour integration. By Lemma 2.3 the contribu-
tion from the half-circle with radius ε will tend to zero, and by Lemma 2.2 and
Lemma 2.5 we get

1

2π

∫ π

−π

Fa((k + 1
2 )e

iθ)

(k + 1
2 )e

iθ − w
(k + 1

2 )e
iθ dθ +

∫ 0

−k−1
2

da(−t)

t− w
dt = Fa(w) +

ln Γ(1 + 1/a)

1/a− w
.

For k → ∞ the integrand in the first integral converges to 1 for each θ ∈ ]−π, π[
and by Lemma 2.4 Lebesgue’s theorem on dominated convergence can be applied,
so we finally get

Fa(w) = 1 +
lnΓ(1 + 1/a)

w − 1/a
−
∫ ∞

0

da(t)

t+ w
dt.

The last integral above appears as an improper integral, but we shall see that
the integrand is Lebesgue integrable. We show below that da(t) ≥ 0 when a ≥ 1/2,
and for these values of a the integrability is obvious. The function da tends to 0
for t → 0 and has a logarithmic singularity at t = 1, so da is integrable over ]0, 1[.
For k − 1 < t < k, k ≥ 2 we have

(29) da(t) =
(ln(t))2 + π2

(ln(at))2 + π2
d1(t) +

(k − 1) ln a

t ((ln(at))2 + π2)
,

and the factor in front of d1(t) is a bounded continuous function with limit 1 at 0
and at infinity. Therefore ∫ ∞

1

|da(t)|
t

dt < ∞

follows from the finiteness of the corresponding integral for a = 1 provided that we
establish

K :=

∞∑
k=2

(k − 1)

∫ k

k−1

dt

t2 ((ln(at))2 + π2)
< ∞.

Choosing N ∈ N such that aN > 1, we can estimate

K <
∞∑
k=1

∫ (k+1)a

ka

dt

t(ln2(t) + π2)
<

∫ Na

a

dt

t(ln2(t) + π2)
+

∞∑
k=N

∫ (k+1)a

ka

dt

t ln2(t)

=

∫ Na

a

dt

t(ln2(t) + π2)
+

1

ln(aN)
< ∞.

We next examine positivity of da.
For 0 < t < 1 we have

da(t) =
ln |Γ(1− t)|

t((ln(at))2 + π2)
> 0

because Γ(s) > 1 for 0 < s < 1.
For k ≥ 2 and t ∈ ]k − 1, k[ the numerator Na in da can be written as

Na(t) = ln Γ(k − t) +
k−1∑
l=1

ln
ta

t− l
,

where we have used the functional equation for Γ. Hence

Na(t) ≥
k−1∑
l=1

ln
k

k − l
+ (k − 1) ln a = (k − 1) ln k − ln Γ(k) + (k − 1) ln a,
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because Γ(k− t) > 1 and t/(t− l) is decreasing for k− 1 < t < k. From (20) we get

(30) ln Γ(k) = ln
√
2π + (k − 1/2) ln k − k + μ(k),

and in particular for k = 2

μ(2) = 2− 3

2
ln 2− ln

√
2π.

Using (30) we find that

Na(t) ≥ k− 1

2
ln k− ln

√
2π−μ(k)+(k−1) lna ≥ k− 1

2
ln k−2+

3

2
ln 2+(k−1) lna,

because μ is decreasing on ]0,∞[ as shown by (21).
For a ≥ 1/2 and k − 1 < t < k with k ≥ 2 we then get

Na(t) ≥ k(1− ln 2)− 1

2
ln k +

5

2
ln 2− 2 ≥ 0,

because the sequence ck, k ≥ 2, on the right-hand side is increasing with c2 = 0.
We also see that da(t) tends to infinity for t approaching the end points of the

interval ]k − 1, k[. For z = 1/a+ iy, y > 0, we get from (7)

�Fa(1/a+ iy) = − ln Γ(1 + 1/a)

y
+

∫ ∞

0

yda(t)

(1/a+ t)2 + y2
dt.

The last term tends to 0 for y → 0, while the first term tends to−∞ when 0 < a < 1.
This shows that Fa is not a Pick function for these values of a. �

Remark 2.6. We proved in Theorem 1.1 that da(t) is non-negative on [0,∞[ for
a ≥ 1/2. This is not best possible, and we shall explain that the smallest value of
a for which da(t) is non-negative is a0 = 0.3681154742....

Replacing k by k + 1 in the numerator Na for da given by (8), we see that

Na(t) = ln |Γ(1− t)|+ k ln(at) for t ∈]k, k + 1[, k = 1, 2, . . . ,

is non-negative if and only if

ln(1/a) ≤ ln(k + s) +
1

k
ln |Γ(1− k − s)| for s ∈]0, 1[, k = 1, 2, . . . ,

and using the reflection formula for Γ this is equivalent to ln(1/a) ≤ ρ(k, s) for all
0 < s < 1 and all k = 1, 2, . . ., where

(31) ρ(k, s) = ln(k + s)− 1

k
ln

(
Γ(k + s)

sin(πs)

π

)
.

Using Stieltjes’ formula (20), we find that

ρ(k, s) = 1 +
ln(π/2)

2k
−(1/k) [(s− 1/2) ln(s+ k) + ln sin(πs)− s+ μ(s+ k)](32)

for all s ∈ ]0, 1[ and k = 1, 2, . . . . For fixed s ∈ ]0, 1[ we see that ρ(k, s) → 1 as
k → ∞, so ln(1/a) ≤ 1 is a necessary condition for non-negativity of da(t). This
condition is not sufficient, because for ln(1/a) = 1 the inequality 1 ≤ ρ(k, s) is
equivalent to

0 ≥ (1/2) ln(2/π) + (s− 1/2) ln(s+ k) + ln sin(πs)− s+ μ(s+ k),

which does not hold when k is sufficiently large and 1/2 < s < 1.
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For each k = 1, 2, . . . it is easy to verify that the function ρk(s) = ρ(k, s) has a
unique minimum mk over ]0, 1[, and clearly

(33) ln(1/a0) = inf{mk, k ≥ 1}
determines the smallest value of a for which da(t) is non-negative. Using Maple
one obtains that mk is decreasing for k = 1, . . . , 510 and increasing for k ≥ 510
with limit 1. Therefore m510 = infmk = 0.9993586013... corresponding to a0 =
0.3681154742....We add thatm1 = 1.6477352344...,m178 = 1.0000028637...,m179 =
0.9999936630....

3. Properties of the function f

Proof of Theorem 1.3. The function

ln f(x) =
(x/2) lnπ − ln Γ(1 + x/2)

x lnx

clearly has a meromorphic extension to A \ 1 with a simple pole at z = 1 with
residue ln 2. We denote this meromorphic extension as log f(z) and have

log f(z + 1) =
ln
√
π

Log(z + 1)
− 1

2
F2

(
z + 1

2

)
.

Using the representation (7), we immediately get (11). It is well-known that
1/Log(z + 1) is a Stieltjes function (cf. [9, p. 130]), and the integral represen-
tation is

(34)
1

Log(z + 1)
=

∫ ∞

1

dt

(z + t)((ln(t− 1))2 + π2)
.

It follows that ln(
√
ef(x+1)) is a Stieltjes function, in particular completely mono-

tonic, showing that
√
ef(x+1) belongs to the class L of logarithmically completely

monotonic functions studied in [17] and in [7]. Therefore f(x+1) is also completely
monotonic. �

4. Representation of 1/Fa

For a > 0 we consider the function

(35) Ga(z) = 1/Fa(z) =
z Log(az)

log Γ(z + 1)
,

which is holomorphic in A with an isolated singularity at z = 1, which is a simple
pole with residue ln a/Ψ(2) = ln a/(1−γ) if a 	= 1, while it is a removable singularity
when a = 1. Here Ψ(z) = Γ′(z)/Γ(z) and γ is Euler’s constant.

Theorem 4.1. For a > 0 the function Ga has the integral representation

(36) Ga(z) = 1 +
ln a

(1− γ)(z − 1)
+

∫ ∞

0

ρa(t)

z + t
dt, z ∈ A \ {1},

where

(37) ρa(t) = t
ln |Γ(1− t)|+ (k − 1) ln(at)

(ln |Γ(1− t)|)2 + ((k − 1)π)2
for t ∈ ]k − 1, k[ , k = 1, 2, . . . ,

and ρa(0) = 1/γ, ρa(k) = 0, k = 1, 2, . . ., which makes ρa continuous on [0,∞[.
We have ρa(t) ≥ 0 for t ≥ 0, a ≥ a0 = 0.3681154742... (cf. Remark 2.6), and
Ga(x+ 1) is a Stieltjes function for a ≥ 1 but not for 0 < a < 1.
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Proof. We notice that for −k < t < −k + 1, k = 1, 2, . . . , we get using Lemma 2.1

lim
y→0+

Ga(t+ iy) =
t(ln(a|t|) + iπ)

ln |Γ(1 + t)| − i(k − 1)π
,

and for t = −k, k = 1, 2, . . . , we get

lim
y→0+

|Ga(−k + iy)| = 0

because of the poles of Γ; hence limy→0+ �Ga(t+ iy) = −πρa(−t) for t < 0.

For fixed w ∈ A \ {1} we choose ε > 0, k ∈ N such that ε < |w|, 1 < k + 1
2 ,

and we consider the positively oriented contour γ(k, ε) in A, which was used in the
proof of Theorem 1.1.

By the residue theorem we find that

1

2πi

∫
γ(k,ε)

Ga(z)

z − w
dz = Ga(w) +

ln a

(1− γ)(1− w)
.

We now let ε → 0 in the contour integration. The contribution from the ε-half
circle tends to 0, and we get

1

2π

∫ π

−π

Ga((k + 1
2 )e

iθ)

(k + 1
2 )e

iθ − w
(k+ 1

2 )e
iθ dθ−

∫ 0

−k−1
2

ρa(−t)

t− w
dt = Ga(w)+

ln a

(1− γ)(1− w)
.

Finally, letting k → ∞ we get (36), leaving the details to the reader. Clearly,
ρa ≥ 0 if and only if da defined in (8) is non-negative. It follows that Ga(x + 1)
is a Stieltjes function for a ≥ 1 but not for 0 < a < 1, since in the latter case
�Ga(1 + iy) > 0 for y > 0 sufficiently small. �

Remark 4.2. The integral representation in Theorem 4.1 was established in [10, (6)]
in the case of a = 1. Since

Ga(z) = G1(z) + ln(a)
z

log Γ(z + 1)
,

the formula for Ga can be deduced from the formula for G1 and the formula

(38)
z

log Γ(z + 1)
=

1

(1− γ)(z − 1)
+

∫ ∞

0

τ (t)dt

z + t
, z ∈ A \ {1},

where

(39) τ (t) =
(k − 1)t

(ln |Γ(1− t)|)2 + ((k − 1)π)2
for t ∈ ]k − 1, k[ , k = 1, 2, . . . .
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