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ABSTRACT. We show that
InT'(z+1
Fo(z) = 7( )
zIn(azx)

can be considered as a Pick function when a > 1, i.e. extends to a holomorphic
function mapping the upper half-plane into itself. We also consider the function

/2 1/(zlnx)
10 (s

and show that In f(x+1) is a Stieltjes function and that f(z+1) is completely

monotonic on ]0,c0[. In particular, f(n) = Q}/("ln n),n > 2, is a Hausdorff
moment sequence. Here ), is the volume of the unit ball in Euclidean n-space.

1. INTRODUCTION AND RESULTS

Since the appearance of the paper [3], monotonicity properties of the functions

(1) () = InT'(z+1)

xIn(ax)

have attracted the attention of several authors in connection with monotonicity
properties of the sequence {2, } of volumes of the unit ball in Euclidean n-space.
Recent papers about inequalities involving Q,, are [2], [I5], [I8]. See also the survey
paper [4].

Let us first consider the case ¢ = 1. In [I0] the authors proved that F is a
Bernstein function, which means that it is positive and has a completely monotonic
derivative, i.e.,

(2) (—)"F"™ (@) >0, z>0n>0.

This extended monotonicity and concavity are proved in [5] and [I3] respectively.
We actually proved a stronger statement than (2]), namely that the reciprocal
function zlna/InT(z + 1) is a Stieltjes transform, i.e. belongs to the Stieltjes cone

, x>0,a>0,
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S of functions of the form

®) sy =c+ [P0 uso,

where ¢ > 0 and p is a non-negative measure on [0, co| satisfying

/ —d'u(t)<oo.
o 1+t

The result was obtained using the holomorphic extension of the function Fj to
the cut plane A = C\] — 00, 0], leading to an explicit formula for the measure p in
@). Our derivation used the fact that the holomorphic function log I'(z) vanishes
in A only at the points z = 1 and z = 2, a result interesting in itself and included
as an appendix in [I0]. A simpler proof of the non-vanishing of logI'(z) appeared
in [I1], where we also proved that F} is a Pick function and obtained the following
representation formula:

(4) Fi(z)=1- /O h jlfi dt, zeA,

) dt)= > |F(1(z1 ﬁ)tl);r f:)l) Int

and d; (t) tends to infinity when ¢ approaches 1,2, .... Since dy(¢) > 0 for ¢t > 0, @)
is an immediate consequence of ().

We recall that a Pick function is a holomorphic function ¢ in the upper half-plane
H={z=x+1iy e C|y >0} satisfying S¢(z) > 0 for z € H; cf. [12].

For a = 2 Anderson and Qiu proved in [5] that F5 is strictly increasing on [1, oo,
thereby proving a conjecture from [3]. Alzer proved in [2] that F, is concave on
[46, 00[. In [16] the concavity was extended to the optimal interval ], col.

We will now describe the main results of the present paper.

First a few words about notation. We use In for the natural logarithm but only
applied to positive numbers. The holomorphic extension of In from the open half-
line ]0, 00[ to the cut plane A = C\] — 00,0] is denoted Logz = In|z| + i Arg 2,
where —m < Argz < 7 is the principal argument. The holomorphic branch of the
logarithm of T'(z) for z in the simply connected domain A, equal to InT'(z) for
x > 0, is denoted log I'(z). This branch can also be defined as the integral

for telk—1,k[, k=1,2,...,

logT'(z) = /lz PF,((;;U)) dw, z€ A,

where the integration is along the segment from 1 to z. The imaginary part of
logT'(2) is a continuous branch of argument of I'(z) which we denote arg '(z), i.e.,
logT'(2) =In|T'(2)| +iarg(z), z € A.
The expression

(6) Fu(z) = —k;gf;t(;?

clearly defines a holomorphic extension of () to A\ {1/a}, and z = 1/a is a simple
pole unless a = 1, where the residue InT'(1 + 1/a) vanishes. Thus z = 1 is a
removable singularity for Fj.
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Using the residue theorem we shall obtain:

Theorem 1.1. For a > 0 the function F, has the integral representation

_ P +1e)  [Tda(t) ) "
(7) Fale) =14 = /Otht, e A\ {1/a},

In|I'(1 —¢)|+ (k- 1)In(at)
(8) da( ) = 2 2
t((In(at))? + 72)
and dq,(0) = 0,ds(k) = 00,k =1,2,.... We haved,(t) >0 fort > 0,a > 1/2. (This
is slightly improved in Remark below.) Furthermore, F, is a Pick function for
a > 1 but not for 0 < a < 1.

for telk—1,k, k=12,...,

From this follows the monotonicity property conjectured in [16]:
Corollary 1.2. Assume a > 1. Then
(9) (—)"F" () >0, z>1/a,n=0,1,....

In particular, Fj, is strictly increasing and strictly concave on the interval |1/a, ool.
The function

(10) fz) = (F(%/;ﬁ»

has been studied because the volume €),, of the unit ball in R" is
n/2

1/(z1nz)

™
T(lt+n/2)"~ 0%

We prove the following integral representation of the extension of In f(z + 1) to
the cut plane A.

Qy

Theorem 1.3. For z € A we have

(11)  logf(z+1) = —% + ln@éﬁ) + Lizgfr)l) + % /100 —dz«tzjrltw) dt.

In particular, 1/2 + 1In f(z + 1) is a Stieltjes function and f(x + 1) is completely
monotonic.

We recall that completely monotonic functions ¢ : ]0,00] — R are characterized
by Bernstein’s theorem as

(12) o) = / e ),

where 4 is a positive measure on [0, co[ such that the integrals above make sense
for all x > 0.

We also recall that a sequence {ay, }n>0 of positive numbers is called a Hausdorff
moment sequence if it has the form

1
(13) an, :/ x"do(x), n >0,
0

where o is a positive measure on the unit interval. Note that lim, o a, = o({1}).
Hausdorff proved that these sequences are exactly the same as completely mono-
tonic sequences; see [20, p. 108] or [8, p. 134]. It is easy to see that if ¢ is completely
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monotonic with the integral representation ([I2), then a, = p(n+ 1),n > 0, is a
Hausdorff moment sequence, because

oS 1
ap, = / e~ D g (t) = / 2" do(x),
0 0

where o is the image measure of e =" du(t) under e~*. Since lim, o f(z+1) =€
we get

~1/2

Corollary 1.4. The sequence
(14) Fln+2) =m0y~
is a Hausdorff moment sequence tending to e=1/2.

A Hausdorft moment sequence {ay },>0 is easily seen to be decreasing and con-
vex, and it is even logarithmically convex, meaning that a% <ap—1ap4+1, n>1. In
fact, by the Cauchy-Schwarz inequality

a’ = (/01 z" da(x)>2

1 1 1
= (/ 2(=1/2,(n+1)/2 dO’(J,‘)) S/ 21 da(ac)/ Zntl dO’(l‘) = Q1.
0 0 0

The logarithmic convexity of {a,},>0 was obtained in [10] in a different way.

2

2. PROPERTIES OF THE FUNCTION F,

In this section we will study the holomorphic extension (@) of the function Fj,
defined in ([IJ). We shall use the following property of log I'(2); cf. [10, Lemma 2.1].

Lemma 2.1. We have, for any k> 1,
lim Ologf‘(z) =In|T'(t)| —ink

z2—t,3z2>

forte] —k,—k+1[ and
lim |logT'(2)] = o0

z2—1,32>0
fort=0,-1,-2,....
Lemma 2.2. Fora >0 and t <0 we have
(15) lim QSF,(t+iy) = wda(—t),
y—0t

where d, is given by ().

Proof. For —1 <t < 0 we get
. , In(1+1¢)
lim Fi(t = A
Jm Fat+iy) = S0 o i
hence lim,_,o+ SF,(t +iy) = mda(—t). For —k <t < —k+1, k=2,3,..., we find,
using Lemma [2.7] that

. o LA+ —ik— )7
Jim, Fo(t+ay) = t(In(alt]) + i)

Hence lim,_,o+ SF,(t +iy) = nd,(—t) also in this case.
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Fort=—k, k=1,2,..., we have
In |T'(—k + 1 +dy)||
k + iy|| Log(a(—k + iy))|

for y — 0T because I'(z) has poles at z = 0, —1,.... Finally, for t = 0 we get (5]
from the next lemma. O

[Fo(=Fk +iy)| = =

Lemma 2.3. For a > 0 we have

lim |Fy(2)] =0.

z—0,z€ A

Proof. Since logI'(z+ 1)/z has a removable singularity for z = 0, the result follows
because | Log(az)| > |In(alz])| — oo for |z] — 0,z € A. O

Lemma 2.4. For a > 0 we have the radial behaviour
(16) lim F,(re?) =1 for —m <0 <,
T—>00
and there exists a constant C, > 0 such that fork=1,2,... and —m < 0 <,
(17) |Fo((k+ %)ei9)| < C,.
Proof. We first note that

(19) Fole) = Fi (o)
and since
Log(2)

)

li =
\z|—><l>g,lzeA Log(az)
it is enough to prove the results for a = 1. We do this by using a method introduced
in [I0, Prop. 2.4].
Define
Ry={z=2+iyeC| -k<z<—-k+1,0<y<1} for keZ

and

R=|JRi, S={z=a2+iyeCla<lly <1}
k=0

The function Fj is continuous on the punctured circle |z| = (k+3)e®, 6 € |-, 7],
and by Lemma [2.1]it has limits for § — 4. These limits are complex conjugate of
each other, and therefore |Fy| has a continuous extension to the circle |z| = k + .
Hence
(19) My, = sup |Fi((k+ 1)e)] < oo

0| <
for each kK =1,2,.... It is then enough to prove that M} is bounded for k — oco.

Stieltjes ([19, formula 20]) found the following formula for logI'(z) for z in the

cut plane A:

(20) logT(z + 1) = In V27 + (2 + 1/2) Log 2 — 2 + pu(z).

Here

u(z) = Z h(z+n) = /000 f_(’_t)tdt,

n=0
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where h(z) = (2 + 1/2)Log(1 + 1/z) — 1 and P is periodic with period 1 and
P(t)=1/2—tfor ¢t € [0,1[. A derivation of these formulas can also be found in [6].
The integral above is improper, and integration by parts yields

@) ue) =5 [

where @ is periodic with period 1 and Q(t) =t —t2 for t € [0, 1. Note that by (2I))
1 is a completely monotonic function. For further properties of Binet’s function pu;
see [14].

We claim that

u(2)] < g for z € A\ S.

In fact, since 0 < Q(t) < 1/4, we get for z = x + iy € A,

|u<z>|s1/ S
8 Jo (t+m)2+y2

/°° dt </°° dt 1
o (t+z)2+y2 )y @t+12 7

and for z < 1, |y| > 1 we have

/°° dt /°° dt </°° dt
- = _ —_ = T.
0 (t—|—.’L')2+y2 T t2+y2 7oot2+1

For x > 1 we have

Since
Inv2 1/2L -
Fi(s) =1+ nv2r+1/2Logz z—f—u(z)7
zLog z
for z € A, we immediately get (IG) and
(22) [F1i(2)| <2

for all z € A\ S for which |z| is sufficiently large. In particular, there exists Ny € N
such that

(23) IFi((k+ 3)e)| < 2for k > Ny, (k+ 3)e € A\ S.
By continuity the quantity

(24) c=sup{|logl(z)| | z=a+iy, s <z <1,0<y<1}

is finite.

We will now estimate the quantity |Fy((k + 3)e’)| when (k + 3)e’ € S, and

since Fy(z) = Fy(z), it is enough to consider the case when (k + 3)e" € Ryy1. To
do this we use the relation

k
(25) logT'(z+1) =logT'(z +k+1) —ZLog(z—l—l)
=1

for z € A and k € N. Equation (20) follows from the fact that the functions on
both sides of the equality sign are holomorphic functions in A, and they agree on
the positive half-line by repeated applications of the functional equation for the
Gamma function.
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For z = (k + 3)e" € Ry41 we get |logT'(z + k + 1)| < ¢ by (24)), and hence by
@3)

k k
|logT'(z + 1) §c+Z|Log(z+l)| §c+k7T+Z|ln|z+l\|.
=1 =1

Forl=1,...,k—1wehave k—I < |2+l| < k+2—1; hence 0 < In |z+I| < In(k+2-1).
Furthermore, 1/2 < |z 4+ k| < v/2; hence —In2 < In|z + k| < (In2)/2. Inserting
these inequalities, we get

k+1

[logT(z + 1)] SC—l—kr—i—Zlnj <c+kr+kln(k+1).

j=2

From this we get for z = (k + 1)e? € R4y

c+kr+kin(k+1)
(26) [F1(2)] < T R
(k+35)In(k+3)
which tends to 1 for £ — oo. Combined with (23) we see that there exists N; € N
such that

|Fy((k+ 3)e®)| <2for k> Ny, -7 <0 <m,

which shows that M}, from (I3) is a bounded sequence. O
Lemma 2.5. Let a > 0. For k = 1,2,... there exists an integrable function
fra 1=k, —k+1[ — [0, 00] such that
(27) |Fo(z 4+ 1y)| < fralx) for —k <z < —-k+1,0<y <Ll
Proof. For z = x + iy as above we get using (2]
k k
[logT'(z+1)| < [logT'(z+ k+1)| + > |Log(z+1)] < L+kr+ Y |In|z+1]|,
1=1 =1

where L is the maximum of |logI'(z)| for z € R_;. We only treat the case k > 2
because the case k = 1 is a simple modification combined with Lemma 23]
For il = 1,...,k—2we have 1 < |2+ < 1+k—1, and for | = k — 1,
k we have In|z + 1| <In|z +1| < (1/2)In2, so we find
k
(28)  |logP(z+ )| < L+kr+ Y Inj+|Infe+k— 1]+ ||z + k|,
j=2
so as fi,1 we can use the right-hand side of ([28)) divided by (k— 1) In(k —1). Using
([I8) we next define
|Log
x) = T) max ——————. O
fk,a( ) fk,l( )ZGR_k|LOg(aZ)|
Proof of Theorem [I1l For fixed w € A\ {1/a} we choose ¢ > 0,k € N such that
e < |w[,1/a < k+ % and consider the positively oriented contour y(k,£) in A
consisting of the half-circle z = ge?, 0 € [-Z, Z] and the half-lines z = x +-ic,x <0

2172
until they cut the circle [z| = k + %, which closes the contour. By the residue
theorem we find that
1 F.(2) InT(141/a)

1/a—w
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We now let ¢ — 0 in the contour integration. By Lemma [23] the contribu-
tion from the half-circle with radius € will tend to zero, and by Lemma and
Lemma we get

1 [T Fo((k+ 3)e”)
21 J_n (k4 3)e’ —w

0
) o (—t
(k+%)e“9d0+/ ld( )
,k,§

mT(1+ 1/a)
1/a—w

For k — oo the integrand in the first integral converges to 1 for each 6 € |—m, 7|
and by Lemma [2.4] Lebesgue’s theorem on dominated convergence can be applied,
so we finally get

Fa(w) =14 BT@+1a) /OO da(t) g
0

w—1/a t+w
The last integral above appears as an improper integral, but we shall see that
the integrand is Lebesgue integrable. We show below that d,(t) > 0 when a > 1/2,
and for these values of a the integrability is obvious. The function d, tends to 0
for ¢ — 0 and has a logarithmic singularity at ¢ = 1, so d, is integrable over |0, 1].
For k— 1<t <k, k> 2 we have
(In(t))? + =2 (k—1)lna
29 do(t) = ——5——d1(t
(29) a(t) (In(at))? + 72 1+ t ((In(at))? +w2)’
and the factor in front of d;(¢) is a bounded continuous function with limit 1 at 0
and at infinity. Therefore
% |do (¢
[0
1

t
follows from the finiteness of the corresponding integral for a« = 1 provided that we

establish
K-—i(k—l)/k dt < 00
=L e 2 ()2 +72) =

Choosing N € N such that alN > 1, we can estimate

oo (kJrl)a dt Na dt oo (k+1)a dt
2 fou HEW 172 o PO+ A ke ()

= /N“ dt + L < o0
) t?(t) +72)  In(alN) '
We next examine positivity of d,.
For 0 <t < 1 we have
In |T'(1 —t)]
do(t) = ——F—5—"5 >0
) = (@) 13 >

because I'(s) > 1 for 0 < s < 1.
For k > 2 and t € |k — 1, k[ the numerator N, in d, can be written as

k—1
No(t) =InT(k 1) + > In t%
=1

where we have used the functional equation for I". Hence

k-1
N, (t) > Zlnkk i +(k—1)Ina=(k—1)Ink—Inl(k)+ (k—1)Ina,
=1
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because I'(k —¢) > 1 and ¢/(t — ) is decreasing for k —1 < ¢t < k. From (20) we get
(30) InT(k) = Inv27r + (k- 1/2) Ink — k + pu(k),
and in particular for k = 2
w(2)=2- gln2—1nm.
Using ([B0) we find that
N,(t) > k—%mk—ln\/%—u(k)ﬂk—mna > k—%lnk—2+gln2+(k—1)lna,

because p is decreasing on 0, co[ as shown by (ZI).
Fora>1/2and k —1 <t < k with k > 2 we then get

1
N,(t) > k(1 —1n2) — 5111/@4—21112—2207

because the sequence ¢y, k > 2, on the right-hand side is increasing with co = 0.
We also see that d,(t) tends to infinity for ¢ approaching the end points of the
interval |k — 1,k[. For z = 1/a+ iy,y > 0, we get from (7))

InT(1+1/a) +/°° yde (t)
Y o (/a+1)*+y?
The last term tends to 0 for y — 0, while the first term tends to —oco when 0 < a < 1.
This shows that F, is not a Pick function for these values of a. O

gFa(l/a + Zy) =

Remark 2.6. We proved in Theorem [[T] that d,(t) is non-negative on [0, oo for
a > 1/2. This is not best possible, and we shall explain that the smallest value of
a for which d,(t) is non-negative is ag = 0.3681154742....

Replacing k by k + 1 in the numerator N, for d, given by (&), we see that

N,(t) =In|T'(1 —t)| + kln(at) for t €]k, k+1], k=1,2,...,
is non-negative if and only if

1
In(1/a) §ln(k+s)+gln\F(1—k—s)| for s €]0,1[, k=1,2,...,

and using the reflection formula for T this is equivalent to In(1/a) < p(k, s) for all
0<s<landall k=1,2,..., where

(31) p(k,s) = In(k + 5) — % In (F(k + s)smfrﬂ) .
Using Stieltjes’ formula (20)), we find that

plk,s) =1+ ln(;km
(32) —(1/k) [(s = 1/2)In(s + k) + Insin(7s) — s + pu(s + k)]

for all s € ]0,1[ and &k = 1,2,.... For fixed s € ]0,1[ we see that p(k,s) — 1 as
k — oo, so In(1/a) < 1 is a necessary condition for non-negativity of d,(t). This
condition is not sufficient, because for In(1/a) = 1 the inequality 1 < p(k,s) is
equivalent to

0> (1/2)In(2/7) + (s —1/2)In(s + k) + Insin(ws) — s + u(s + k),

which does not hold when k is sufficiently large and 1/2 < s < 1.
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For each k = 1,2,... it is easy to verify that the function pi(s) = p(k, s) has a
unique minimum my, over |0, 1[, and clearly

(33) In(1/ag) = inf{my, k > 1}
determines the smallest value of a for which d,(¢) is non-negative. Using Maple
one obtains that my is decreasing for £k = 1,...,510 and increasing for k£ > 510

with limit 1. Therefore ms19 = inf mp = 0.9993586013... corresponding to ag =
0.3681154742.... We add that my = 1.6477352344..., m17s = 1.0000028637..., m179 =
0.9999936630....

3. PROPERTIES OF THE FUNCTION f
Proof of Theorem [L3l The function
2)1 —InT'(1 2
i o = (Z/DIT =T+ 2/2)

zlnx
clearly has a meromorphic extension to A\ 1 with a simple pole at z = 1 with
residue In2. We denote this meromorphic extension as log f(z) and have

~ Inym 1 z+1

Using the representation (), we immediately get (). It is well-known that
1/Log(z 4+ 1) is a Stieltjes function (cf. [9, p. 130]), and the integral represen-
tation is

1 e dt
Log(z+1) /1 (z+t)((In(t — 1))2 +m2)°
It follows that In(y/ef(z+1)) is a Stieltjes function, in particular completely mono-
tonic, showing that v/ef(z+1) belongs to the class £ of logarithmically completely

monotonic functions studied in [I7] and in [7]. Therefore f(x+1) is also completely
monotonic. g

(34)

4. REPRESENTATION OF 1/F,

For a > 0 we consider the function

_ zLog(az)

- logI'(z+1)’

which is holomorphic in A with an isolated singularity at z = 1, which is a simple

pole with residue Ina/¥(2) = Ina/(1—7) if a # 1, while it is a removable singularity
when a = 1. Here ¥(z) =TI"(2)/T'(z) and v is Euler’s constant.

(35) Ga(z) = 1/Fa(2)

Theorem 4.1. For a > 0 the function G, has the integral representation

B Ina *palt) o
(36) Ga(z)1+(1_7)(z_1)+/0 z—f—tdt’ e A\ {1},

where

In|T'(1 —¢t)| + (k — 1) In(at)
37 o(t) =t
B 2l = @ E@—o07 + (- Dm?
and pa(0) = 1/7,pa(k) = 0, k = 1,2,..., which makes p, continuous on [0, 0.
We have p(t) > 0 fort > 0, a > ap = 0.3681154742... (¢f. Remark [20)), and
Go(z +1) is a Stieltjes function for a > 1 but not for 0 < a < 1.

for telk—-1,k[, k=12,...,
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Proof. We notice that for —k <t < —-k+1,k=1,2,..., we get using Lemma 2]

. _ t(In(alt]) + i)
lim Ga(t +iy) = :
Jm, Galt+39) = m T =itk — 1

and for t = -k, k=1,2,..., we get
lim |Gu.(—=k+iy)|=0
yl%{r‘ ( iy)|

because of the poles of I'; hence lim,_,o+ SG4(t + iy) = —mpa(—t) for t < 0.

For fixed w € A\ {1} we choose ¢ > 0,k € N such that ¢ < |w|,1 < k + 3,
and we consider the positively oriented contour y(k,¢) in A, which was used in the
proof of Theorem [T.11

By the residue theorem we find that

1 Ga(2) Ina
— T gy — Golw) + ———2
2mi /Y(k75) z—w (w) (1=9)(1—w)

We now let ¢ — 0 in the contour integration. The contribution from the e-half
circle tends to 0, and we get

1 (" Ga((k+ 3)e”)
27 ), (k+ D)e? —w

0
- —t) Ina
ket d ’Qde—/ Polt) o)+ RO
ko)t | W T —w)
Finally, letting & — oo we get (B, leaving the details to the reader. Clearly,
po > 0 if and only if d, defined in () is non-negative. It follows that G,(z + 1)
is a Stieltjes function for @ > 1 but not for 0 < a < 1, since in the latter case
SGo (1 +dy) > 0 for y > 0 sufficiently small. O

Remark 4.2. The integral representation in Theorem [£.] was established in [10, (6)]
in the case of a = 1. Since

z

al?) = 1 —_—,

Gal2) = 1) + (@) r s
the formula for G, can be deduced from the formula for G; and the formula

z 1 7 (t)dt

®  rerm o aoaesn ), sar ceAV
where

kE—1)t
(39) ()= 1) for telk—LA, k=12....

(In [P =) + ((k = D)m)?
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