A ONE-PARAMETER FAMILY OF PICK FUNCTIONS DEFINED BY THE GAMMA FUNCTION AND RELATED TO THE VOLUME OF THE UNIT BALL IN n-SPACE

CHRISTIAN BERG AND HENRIK L. PEDERSEN
(Communicated by Walter Van Assche)

Abstract. We show that

$$
F_{a}(x)=\frac{\ln \Gamma(x+1)}{x \ln (a x)}
$$

can be considered as a Pick function when $a \geq 1$, i.e. extends to a holomorphic function mapping the upper half-plane into itself. We also consider the function

$$
f(x)=\left(\frac{\pi^{x / 2}}{\Gamma(1+x / 2)}\right)^{1 /(x \ln x)}
$$

and show that $\ln f(x+1)$ is a Stieltjes function and that $f(x+1)$ is completely monotonic on $] 0, \infty\left[\right.$. In particular, $f(n)=\Omega_{n}^{1 /(n \ln n)}, n \geq 2$, is a Hausdorff moment sequence. Here Ω_{n} is the volume of the unit ball in Euclidean n-space.

1. Introduction and results

Since the appearance of the paper [3] monotonicity properties of the functions

$$
\begin{equation*}
F_{a}(x)=\frac{\ln \Gamma(x+1)}{x \ln (a x)}, \quad x>0, a>0 \tag{1}
\end{equation*}
$$

have attracted the attention of several authors in connection with monotonicity properties of the sequence $\left\{\Omega_{n}\right\}$ of volumes of the unit ball in Euclidean n-space. Recent papers about inequalities involving Ω_{n} are [2], 15], 18]. See also the survey paper [4].

Let us first consider the case $a=1$. In 10 the authors proved that F_{1} is a Bernstein function, which means that it is positive and has a completely monotonic derivative, i.e.,

$$
\begin{equation*}
(-1)^{n} F_{1}^{(n+1)}(x) \geq 0, \quad x>0, n \geq 0 \tag{2}
\end{equation*}
$$

This extended monotonicity and concavity are proved in 5] and [13] respectively.
We actually proved a stronger statement than (2), namely that the reciprocal function $x \ln x / \ln \Gamma(x+1)$ is a Stieltjes transform, i.e. belongs to the Stieltjes cone

[^0]\mathcal{S} of functions of the form
\[

$$
\begin{equation*}
g(x)=c+\int_{0}^{\infty} \frac{d \mu(t)}{x+t}, \quad x>0 \tag{3}
\end{equation*}
$$

\]

where $c \geq 0$ and μ is a non-negative measure on $[0, \infty[$ satisfying

$$
\int_{0}^{\infty} \frac{d \mu(t)}{1+t}<\infty
$$

The result was obtained using the holomorphic extension of the function F_{1} to the cut plane $\mathcal{A}=\mathbb{C} \backslash]-\infty, 0]$, leading to an explicit formula for the measure μ in (3). Our derivation used the fact that the holomorphic function $\log \Gamma(z)$ vanishes in \mathcal{A} only at the points $z=1$ and $z=2$, a result interesting in itself and included as an appendix in [10]. A simpler proof of the non-vanishing of $\log \Gamma(z)$ appeared in [11], where we also proved that F_{1} is a Pick function and obtained the following representation formula:

$$
\begin{equation*}
F_{1}(z)=1-\int_{0}^{\infty} \frac{d_{1}(t)}{z+t} d t, \quad z \in \mathcal{A} \tag{4}
\end{equation*}
$$

with

$$
\begin{equation*}
\left.d_{1}(t)=\frac{\ln |\Gamma(1-t)|+(k-1) \ln t}{t\left((\ln t)^{2}+\pi^{2}\right)} \quad \text { for } \quad t \in\right] k-1, k[, \quad k=1,2, \ldots \tag{5}
\end{equation*}
$$

and $d_{1}(t)$ tends to infinity when t approaches $1,2, \ldots$. Since $d_{1}(t)>0$ for $t>0$, (2) is an immediate consequence of (4).

We recall that a Pick function is a holomorphic function φ in the upper half-plane $\mathbb{H}=\{z=x+i y \in \mathbb{C} \mid y>0\}$ satisfying $\Im \varphi(z) \geq 0$ for $z \in \mathbb{H}$; cf. 12.

For $a=2$ Anderson and Qiu proved in [5] that F_{2} is strictly increasing on $[1, \infty[$, thereby proving a conjecture from [3]. Alzer proved in [2] that F_{2} is concave on $\left[46, \infty[\right.$. In [16] the concavity was extended to the optimal interval $] \frac{1}{2}, \infty[$.

We will now describe the main results of the present paper.
First a few words about notation. We use \ln for the natural logarithm but only applied to positive numbers. The holomorphic extension of \ln from the open halfline $] 0, \infty[$ to the cut plane $\mathcal{A}=\mathbb{C} \backslash]-\infty, 0]$ is denoted $\log z=\ln |z|+i \operatorname{Arg} z$, where $-\pi<\operatorname{Arg} z<\pi$ is the principal argument. The holomorphic branch of the logarithm of $\Gamma(z)$ for z in the simply connected domain \mathcal{A}, equal to $\ln \Gamma(x)$ for $x>0$, is denoted $\log \Gamma(z)$. This branch can also be defined as the integral

$$
\log \Gamma(z)=\int_{1}^{z} \frac{\Gamma^{\prime}(w)}{\Gamma(w)} d w, \quad z \in \mathcal{A}
$$

where the integration is along the segment from 1 to z. The imaginary part of $\log \Gamma(z)$ is a continuous branch of argument of $\Gamma(z)$ which we denote $\arg \Gamma(z)$, i.e.,

$$
\log \Gamma(z)=\ln |\Gamma(z)|+i \arg \Gamma(z), z \in \mathcal{A}
$$

The expression

$$
\begin{equation*}
F_{a}(z)=\frac{\log \Gamma(z+1)}{z \log (a z)} \tag{6}
\end{equation*}
$$

clearly defines a holomorphic extension of (11) to $\mathcal{A} \backslash\{1 / a\}$, and $z=1 / a$ is a simple pole unless $a=1$, where the residue $\ln \Gamma(1+1 / a)$ vanishes. Thus $z=1$ is a removable singularity for F_{1}.

Using the residue theorem we shall obtain:
Theorem 1.1. For $a>0$ the function F_{a} has the integral representation

$$
\begin{equation*}
F_{a}(z)=1+\frac{\ln \Gamma(1+1 / a)}{z-1 / a}-\int_{0}^{\infty} \frac{d_{a}(t)}{z+t} d t, \quad z \in \mathcal{A} \backslash\{1 / a\} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\left.d_{a}(t)=\frac{\ln |\Gamma(1-t)|+(k-1) \ln (a t)}{t\left((\ln (a t))^{2}+\pi^{2}\right)} \quad \text { for } \quad t \in\right] k-1, k[, \quad k=1,2, \ldots \tag{8}
\end{equation*}
$$

and $d_{a}(0)=0, d_{a}(k)=\infty, k=1,2, \ldots$. We have $d_{a}(t) \geq 0$ for $t \geq 0, a \geq 1 / 2$. (This is slightly improved in Remark 2.6 below.) Furthermore, F_{a} is a Pick function for $a \geq 1$ but not for $0<a<1$.

From this follows the monotonicity property conjectured in [16:
Corollary 1.2. Assume $a \geq 1$. Then

$$
\begin{equation*}
(-1)^{n} F_{a}^{(n+1)}(x)>0, \quad x>1 / a, n=0,1, \ldots \tag{9}
\end{equation*}
$$

In particular, F_{a} is strictly increasing and strictly concave on the interval $] 1 / a, \infty[$.
The function

$$
\begin{equation*}
f(x)=\left(\frac{\pi^{x / 2}}{\Gamma(1+x / 2)}\right)^{1 /(x \ln x)} \tag{10}
\end{equation*}
$$

has been studied because the volume Ω_{n} of the unit ball in \mathbb{R}^{n} is

$$
\Omega_{n}=\frac{\pi^{n / 2}}{\Gamma(1+n / 2)}, n=1,2, \ldots
$$

We prove the following integral representation of the extension of $\ln f(x+1)$ to the cut plane \mathcal{A}.
Theorem 1.3. For $z \in \mathcal{A}$ we have

$$
\begin{equation*}
\log f(z+1)=-\frac{1}{2}+\frac{\ln (2 / \sqrt{\pi})}{z}+\frac{\ln (\sqrt{\pi})}{\log (z+1)}+\frac{1}{2} \int_{1}^{\infty} \frac{d_{2}((t-1) / 2)}{z+t} d t \tag{11}
\end{equation*}
$$

In particular, $1 / 2+\ln f(x+1)$ is a Stieltjes function and $f(x+1)$ is completely monotonic.

We recall that completely monotonic functions $\varphi:] 0, \infty[\rightarrow \mathbb{R}$ are characterized by Bernstein's theorem as

$$
\begin{equation*}
\varphi(x)=\int_{0}^{\infty} e^{-x t} d \mu(t) \tag{12}
\end{equation*}
$$

where μ is a positive measure on $[0, \infty[$ such that the integrals above make sense for all $x>0$.

We also recall that a sequence $\left\{a_{n}\right\}_{n \geq 0}$ of positive numbers is called a Hausdorff moment sequence if it has the form

$$
\begin{equation*}
a_{n}=\int_{0}^{1} x^{n} d \sigma(x), n \geq 0 \tag{13}
\end{equation*}
$$

where σ is a positive measure on the unit interval. Note that $\lim _{n \rightarrow \infty} a_{n}=\sigma(\{1\})$. Hausdorff proved that these sequences are exactly the same as completely monotonic sequences; see [20, p. 108] or [8, p. 134]. It is easy to see that if φ is completely
monotonic with the integral representation (12), then $a_{n}=\varphi(n+1), n \geq 0$, is a Hausdorff moment sequence, because

$$
a_{n}=\int_{0}^{\infty} e^{-(n+1) t} d \mu(t)=\int_{0}^{1} x^{n} d \sigma(x)
$$

where σ is the image measure of $e^{-t} d \mu(t)$ under e^{-t}. Since $\lim _{x \rightarrow \infty} f(x+1)=e^{-1 / 2}$ we get

Corollary 1.4. The sequence

$$
\begin{equation*}
f(n+2)=\Omega_{n+2}^{1 /((n+2) \ln (n+2))}, n=0,1, \ldots \tag{14}
\end{equation*}
$$

is a Hausdorff moment sequence tending to $e^{-1 / 2}$.
A Hausdorff moment sequence $\left\{a_{n}\right\}_{n \geq 0}$ is easily seen to be decreasing and convex, and it is even logarithmically convex, meaning that $a_{n}^{2} \leq a_{n-1} a_{n+1}, n \geq 1$. In fact, by the Cauchy-Schwarz inequality

$$
\begin{aligned}
a_{n}^{2} & =\left(\int_{0}^{1} x^{n} d \sigma(x)\right)^{2} \\
& =\left(\int_{0}^{1} x^{(n-1) / 2} x^{(n+1) / 2} d \sigma(x)\right)^{2} \leq \int_{0}^{1} x^{n-1} d \sigma(x) \int_{0}^{1} x^{n+1} d \sigma(x)=a_{n-1} a_{n+1}
\end{aligned}
$$

The logarithmic convexity of $\left\{a_{n}\right\}_{n \geq 0}$ was obtained in [16] in a different way.

2. Properties of the function F_{a}

In this section we will study the holomorphic extension (6) of the function F_{a} defined in (11). We shall use the following property of $\log \Gamma(z)$; cf. [10, Lemma 2.1].

Lemma 2.1. We have, for any $k \geq 1$,

$$
\lim _{z \rightarrow t, \Im z>0} \log \Gamma(z)=\ln |\Gamma(t)|-i \pi k
$$

for $t \in]-k,-k+1[$ and

$$
\lim _{z \rightarrow t, \Im z>0}|\log \Gamma(z)|=\infty
$$

for $t=0,-1,-2, \ldots$
Lemma 2.2. For $a>0$ and $t \leq 0$ we have

$$
\begin{equation*}
\lim _{y \rightarrow 0^{+}} \Im F_{a}(t+i y)=\pi d_{a}(-t) \tag{15}
\end{equation*}
$$

where d_{a} is given by (8).
Proof. For $-1<t<0$ we get

$$
\lim _{y \rightarrow 0^{+}} F_{a}(t+i y)=\frac{\ln \Gamma(1+t)}{t(\ln (a|t|)+i \pi)}
$$

hence $\lim _{y \rightarrow 0^{+}} \Im F_{a}(t+i y)=\pi d_{a}(-t)$. For $-k<t<-k+1, k=2,3, \ldots$, we find, using Lemma 2.1, that

$$
\lim _{y \rightarrow 0^{+}} F_{a}(t+i y)=\frac{\ln |\Gamma(1+t)|-i(k-1) \pi}{t(\ln (a|t|)+i \pi)}
$$

Hence $\lim _{y \rightarrow 0^{+}} \Im F_{a}(t+i y)=\pi d_{a}(-t)$ also in this case.

For $t=-k, k=1,2, \ldots$, we have

$$
\left|F_{a}(-k+i y)\right| \geq \frac{|\ln | \Gamma(-k+1+i y)| |}{|-k+i y||\log (a(-k+i y))|} \rightarrow \infty
$$

for $y \rightarrow 0^{+}$because $\Gamma(z)$ has poles at $z=0,-1, \ldots$. Finally, for $t=0$ we get (15) from the next lemma.

Lemma 2.3. For $a>0$ we have

$$
\lim _{z \rightarrow 0, z \in \mathcal{A}}\left|F_{a}(z)\right|=0
$$

Proof. Since $\log \Gamma(z+1) / z$ has a removable singularity for $z=0$, the result follows because $|\log (a z)| \geq|\ln (a|z|)| \rightarrow \infty$ for $|z| \rightarrow 0, z \in \mathcal{A}$.

Lemma 2.4. For $a>0$ we have the radial behaviour

$$
\begin{equation*}
\lim _{r \rightarrow \infty} F_{a}\left(r e^{i \theta}\right)=1 \text { for }-\pi<\theta<\pi \tag{16}
\end{equation*}
$$

and there exists a constant $C_{a}>0$ such that for $k=1,2, \ldots$ and $-\pi<\theta<\pi$,

$$
\begin{equation*}
\left|F_{a}\left(\left(k+\frac{1}{2}\right) e^{i \theta}\right)\right| \leq C_{a} \tag{17}
\end{equation*}
$$

Proof. We first note that

$$
\begin{equation*}
F_{a}(z)=F_{1}(z) \frac{\log (z)}{\log (a z)} \tag{18}
\end{equation*}
$$

and since

$$
\lim _{|z| \rightarrow \infty, z \in \mathcal{A}} \frac{\log (z)}{\log (a z)}=1
$$

it is enough to prove the results for $a=1$. We do this by using a method introduced in [10, Prop. 2.4].

Define

$$
R_{k}=\{z=x+i y \in \mathbb{C} \mid-k \leq x<-k+1,0<y \leq 1\} \text { for } k \in \mathbb{Z}
$$

and

$$
R=\bigcup_{k=0}^{\infty} R_{k}, \quad S=\{z=x+i y \in \mathbb{C}|x \leq 1,|y| \leq 1\}
$$

The function F_{1} is continuous on the punctured circle $\left.|z|=\left(k+\frac{1}{2}\right) e^{i \theta}, \theta \in\right]-\pi, \pi[$, and by Lemma 2.1 it has limits for $\theta \rightarrow \pm \pi$. These limits are complex conjugate of each other, and therefore $\left|F_{1}\right|$ has a continuous extension to the circle $|z|=k+\frac{1}{2}$. Hence

$$
\begin{equation*}
M_{k}=\sup _{|\theta|<\pi}\left|F_{1}\left(\left(k+\frac{1}{2}\right) e^{i \theta}\right)\right|<\infty \tag{19}
\end{equation*}
$$

for each $k=1,2, \ldots$ It is then enough to prove that M_{k} is bounded for $k \rightarrow \infty$.
Stieltjes ([19, formula 20]) found the following formula for $\log \Gamma(z)$ for z in the cut plane \mathcal{A} :

$$
\begin{equation*}
\log \Gamma(z+1)=\ln \sqrt{2 \pi}+(z+1 / 2) \log z-z+\mu(z) \tag{20}
\end{equation*}
$$

Here

$$
\mu(z)=\sum_{n=0}^{\infty} h(z+n)=\int_{0}^{\infty} \frac{P(t)}{z+t} d t
$$

where $h(z)=(z+1 / 2) \log (1+1 / z)-1$ and P is periodic with period 1 and $P(t)=1 / 2-t$ for $t \in[0,1[$. A derivation of these formulas can also be found in 6]. The integral above is improper, and integration by parts yields

$$
\begin{equation*}
\mu(z)=\frac{1}{2} \int_{0}^{\infty} \frac{Q(t)}{(z+t)^{2}} d t \tag{21}
\end{equation*}
$$

where Q is periodic with period 1 and $Q(t)=t-t^{2}$ for $t \in[0,1[$. Note that by (21) μ is a completely monotonic function. For further properties of Binet's function μ; see 14 .

We claim that

$$
|\mu(z)| \leq \frac{\pi}{8} \text { for } z \in \mathcal{A} \backslash S
$$

In fact, since $0 \leq Q(t) \leq 1 / 4$, we get for $z=x+i y \in \mathcal{A}$,

$$
|\mu(z)| \leq \frac{1}{8} \int_{0}^{\infty} \frac{d t}{(t+x)^{2}+y^{2}}
$$

For $x>1$ we have

$$
\int_{0}^{\infty} \frac{d t}{(t+x)^{2}+y^{2}} \leq \int_{0}^{\infty} \frac{d t}{(t+1)^{2}}=1
$$

and for $x \leq 1,|y| \geq 1$ we have

$$
\int_{0}^{\infty} \frac{d t}{(t+x)^{2}+y^{2}}=\int_{x}^{\infty} \frac{d t}{t^{2}+y^{2}}<\int_{-\infty}^{\infty} \frac{d t}{t^{2}+1}=\pi
$$

Since

$$
F_{1}(z)=1+\frac{\ln \sqrt{2 \pi}+1 / 2 \log z-z+\mu(z)}{z \log z}
$$

for $z \in \mathcal{A}$, we immediately get (16) and

$$
\begin{equation*}
\left|F_{1}(z)\right| \leq 2 \tag{22}
\end{equation*}
$$

for all $z \in \mathcal{A} \backslash S$ for which $|z|$ is sufficiently large. In particular, there exists $N_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|F_{1}\left(\left(k+\frac{1}{2}\right) e^{i \theta}\right)\right| \leq 2 \text { for } k \geq N_{0},\left(k+\frac{1}{2}\right) e^{i \theta} \in \mathcal{A} \backslash S \tag{23}
\end{equation*}
$$

By continuity the quantity

$$
\begin{equation*}
c=\sup \left\{|\log \Gamma(z)| \mid z=x+i y, \frac{1}{2} \leq x \leq 1,0 \leq y \leq 1\right\} \tag{24}
\end{equation*}
$$

is finite.
We will now estimate the quantity $\left|F_{1}\left(\left(k+\frac{1}{2}\right) e^{i \theta}\right)\right|$ when $\left(k+\frac{1}{2}\right) e^{i \theta} \in S$, and since $F_{1}(\bar{z})=\overline{F_{1}(z)}$, it is enough to consider the case when $\left(k+\frac{1}{2}\right) e^{i \theta} \in R_{k+1}$. To do this we use the relation

$$
\begin{equation*}
\log \Gamma(z+1)=\log \Gamma(z+k+1)-\sum_{l=1}^{k} \log (z+l) \tag{25}
\end{equation*}
$$

for $z \in \mathcal{A}$ and $k \in \mathbb{N}$. Equation (25) follows from the fact that the functions on both sides of the equality sign are holomorphic functions in \mathcal{A}, and they agree on the positive half-line by repeated applications of the functional equation for the Gamma function.

For $z=\left(k+\frac{1}{2}\right) e^{i \theta} \in R_{k+1}$ we get $|\log \Gamma(z+k+1)| \leq c$ by (24), and hence by (25)

$$
|\log \Gamma(z+1)| \leq c+\sum_{l=1}^{k}|\log (z+l)| \leq c+k \pi+\sum_{l=1}^{k}|\ln | z+l| |
$$

For $l=1, \ldots, k-1$ we have $k-l<|z+l|<k+2-l$; hence $0<\ln |z+l|<\ln (k+2-l)$. Furthermore, $1 / 2 \leq|z+k| \leq \sqrt{2}$; hence $-\ln 2<\ln |z+k| \leq(\ln 2) / 2$. Inserting these inequalities, we get

$$
|\log \Gamma(z+1)| \leq c+k \pi+\sum_{j=2}^{k+1} \ln j<c+k \pi+k \ln (k+1)
$$

From this we get for $z=\left(k+\frac{1}{2}\right) e^{i \theta} \in R_{k+1}$

$$
\begin{equation*}
\left|F_{1}(z)\right| \leq \frac{c+k \pi+k \ln (k+1)}{\left(k+\frac{1}{2}\right) \ln \left(k+\frac{1}{2}\right)} \tag{26}
\end{equation*}
$$

which tends to 1 for $k \rightarrow \infty$. Combined with (23) we see that there exists $N_{1} \in \mathbb{N}$ such that

$$
\left|F_{1}\left(\left(k+\frac{1}{2}\right) e^{i \theta}\right)\right| \leq 2 \text { for } k \geq N_{1},-\pi<\theta<\pi
$$

which shows that M_{k} from (19) is a bounded sequence.
Lemma 2.5. Let $a>0$. For $k=1,2, \ldots$ there exists an integrable function $\left.f_{k, a}:\right]-k,-k+1[\rightarrow[0, \infty]$ such that

$$
\begin{equation*}
\left|F_{a}(x+i y)\right| \leq f_{k, a}(x) \text { for }-k<x<-k+1,0<y \leq 1 \tag{27}
\end{equation*}
$$

Proof. For $z=x+i y$ as above we get using (25)

$$
|\log \Gamma(z+1)| \leq|\log \Gamma(z+k+1)|+\sum_{l=1}^{k}|\log (z+l)| \leq L+k \pi+\sum_{l=1}^{k}|\ln | z+l| |
$$

where L is the maximum of $|\log \Gamma(z)|$ for $z \in \overline{R_{-1}}$. We only treat the case $k \geq 2$ because the case $k=1$ is a simple modification combined with Lemma 2.3,

For $l=1, \ldots, k-2$ we have $1<|z+l|<1+k-l$, and for $l=k-1$, k we have $\ln |x+l| \leq \ln |z+l| \leq(1 / 2) \ln 2$, so we find

$$
\begin{equation*}
|\log \Gamma(z+1)| \leq L+k \pi+\sum_{j=2}^{k} \ln j+|\ln | x+k-1| |+|\ln | x+k| | \tag{28}
\end{equation*}
$$

so as $f_{k, 1}$ we can use the right-hand side of (28) divided by $(k-1) \ln (k-1)$. Using (18) we next define

$$
f_{k, a}(x)=f_{k, 1}(x) \max _{z \in \overline{R_{k}}} \frac{|\log z|}{|\log (a z)|}
$$

Proof of Theorem 1.1. For fixed $w \in \mathcal{A} \backslash\{1 / a\}$ we choose $\varepsilon>0, k \in \mathbb{N}$ such that $\varepsilon<|w|, 1 / a<k+\frac{1}{2}$ and consider the positively oriented contour $\gamma(k, \varepsilon)$ in \mathcal{A} consisting of the half-circle $z=\varepsilon e^{i \theta}, \theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and the half-lines $z=x \pm i \varepsilon, x \leq 0$ until they cut the circle $|z|=k+\frac{1}{2}$, which closes the contour. By the residue theorem we find that

$$
\frac{1}{2 \pi i} \int_{\gamma(k, \varepsilon)} \frac{F_{a}(z)}{z-w} d z=F_{a}(w)+\frac{\ln \Gamma(1+1 / a)}{1 / a-w}
$$

We now let $\varepsilon \rightarrow 0$ in the contour integration. By Lemma 2.3 the contribution from the half-circle with radius ε will tend to zero, and by Lemma 2.2 and Lemma 2.5 we get

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{F_{a}\left(\left(k+\frac{1}{2}\right) e^{i \theta}\right)}{\left(k+\frac{1}{2}\right) e^{i \theta}-w}\left(k+\frac{1}{2}\right) e^{i \theta} d \theta+\int_{-k-\frac{1}{2}}^{0} \frac{d_{a}(-t)}{t-w} d t=F_{a}(w)+\frac{\ln \Gamma(1+1 / a)}{1 / a-w} .
$$

For $k \rightarrow \infty$ the integrand in the first integral converges to 1 for each $\theta \in]-\pi, \pi[$ and by Lemma 2.4 Lebesgue's theorem on dominated convergence can be applied, so we finally get

$$
F_{a}(w)=1+\frac{\ln \Gamma(1+1 / a)}{w-1 / a}-\int_{0}^{\infty} \frac{d_{a}(t)}{t+w} d t
$$

The last integral above appears as an improper integral, but we shall see that the integrand is Lebesgue integrable. We show below that $d_{a}(t) \geq 0$ when $a \geq 1 / 2$, and for these values of a the integrability is obvious. The function d_{a} tends to 0 for $t \rightarrow 0$ and has a logarithmic singularity at $t=1$, so d_{a} is integrable over $] 0,1[$. For $k-1<t<k, k \geq 2$ we have

$$
\begin{equation*}
d_{a}(t)=\frac{(\ln (t))^{2}+\pi^{2}}{(\ln (a t))^{2}+\pi^{2}} d_{1}(t)+\frac{(k-1) \ln a}{t\left((\ln (a t))^{2}+\pi^{2}\right)} \tag{29}
\end{equation*}
$$

and the factor in front of $d_{1}(t)$ is a bounded continuous function with limit 1 at 0 and at infinity. Therefore

$$
\int_{1}^{\infty} \frac{\left|d_{a}(t)\right|}{t} d t<\infty
$$

follows from the finiteness of the corresponding integral for $a=1$ provided that we establish

$$
K:=\sum_{k=2}^{\infty}(k-1) \int_{k-1}^{k} \frac{d t}{t^{2}\left((\ln (a t))^{2}+\pi^{2}\right)}<\infty
$$

Choosing $N \in \mathbb{N}$ such that $a N>1$, we can estimate

$$
\begin{aligned}
K & <\sum_{k=1}^{\infty} \int_{k a}^{(k+1) a} \frac{d t}{t\left(\ln ^{2}(t)+\pi^{2}\right)}<\int_{a}^{N a} \frac{d t}{t\left(\ln ^{2}(t)+\pi^{2}\right)}+\sum_{k=N}^{\infty} \int_{k a}^{(k+1) a} \frac{d t}{t \ln ^{2}(t)} \\
& =\int_{a}^{N a} \frac{d t}{t\left(\ln ^{2}(t)+\pi^{2}\right)}+\frac{1}{\ln (a N)}<\infty
\end{aligned}
$$

We next examine positivity of d_{a}.
For $0<t<1$ we have

$$
d_{a}(t)=\frac{\ln |\Gamma(1-t)|}{t\left((\ln (a t))^{2}+\pi^{2}\right)}>0
$$

because $\Gamma(s)>1$ for $0<s<1$.
For $k \geq 2$ and $t \in] k-1, k\left[\right.$ the numerator N_{a} in d_{a} can be written as

$$
N_{a}(t)=\ln \Gamma(k-t)+\sum_{l=1}^{k-1} \ln \frac{t a}{t-l},
$$

where we have used the functional equation for Γ. Hence

$$
N_{a}(t) \geq \sum_{l=1}^{k-1} \ln \frac{k}{k-l}+(k-1) \ln a=(k-1) \ln k-\ln \Gamma(k)+(k-1) \ln a,
$$

because $\Gamma(k-t)>1$ and $t /(t-l)$ is decreasing for $k-1<t<k$. From (20) we get

$$
\begin{equation*}
\ln \Gamma(k)=\ln \sqrt{2 \pi}+(k-1 / 2) \ln k-k+\mu(k) \tag{30}
\end{equation*}
$$

and in particular for $k=2$

$$
\mu(2)=2-\frac{3}{2} \ln 2-\ln \sqrt{2 \pi}
$$

Using (30) we find that
$N_{a}(t) \geq k-\frac{1}{2} \ln k-\ln \sqrt{2 \pi}-\mu(k)+(k-1) \ln a \geq k-\frac{1}{2} \ln k-2+\frac{3}{2} \ln 2+(k-1) \ln a$,
because μ is decreasing on $] 0, \infty[$ as shown by (21).
For $a \geq 1 / 2$ and $k-1<t<k$ with $k \geq 2$ we then get

$$
N_{a}(t) \geq k(1-\ln 2)-\frac{1}{2} \ln k+\frac{5}{2} \ln 2-2 \geq 0
$$

because the sequence $c_{k}, k \geq 2$, on the right-hand side is increasing with $c_{2}=0$.
We also see that $d_{a}(t)$ tends to infinity for t approaching the end points of the interval $] k-1, k[$. For $z=1 / a+i y, y>0$, we get from (7)

$$
\Im F_{a}(1 / a+i y)=-\frac{\ln \Gamma(1+1 / a)}{y}+\int_{0}^{\infty} \frac{y d_{a}(t)}{(1 / a+t)^{2}+y^{2}} d t
$$

The last term tends to 0 for $y \rightarrow 0$, while the first term tends to $-\infty$ when $0<a<1$. This shows that F_{a} is not a Pick function for these values of a.

Remark 2.6. We proved in Theorem 1.1 that $d_{a}(t)$ is non-negative on $[0, \infty[$ for $a \geq 1 / 2$. This is not best possible, and we shall explain that the smallest value of a for which $d_{a}(t)$ is non-negative is $a_{0}=0.3681154742 \ldots$.

Replacing k by $k+1$ in the numerator N_{a} for d_{a} given by (8), we see that

$$
\left.N_{a}(t)=\ln |\Gamma(1-t)|+k \ln (a t) \text { for } t \in\right] k, k+1[, \quad k=1,2, \ldots,
$$

is non-negative if and only if

$$
\left.\ln (1 / a) \leq \ln (k+s)+\frac{1}{k} \ln |\Gamma(1-k-s)| \text { for } s \in\right] 0,1[, \quad k=1,2, \ldots
$$

and using the reflection formula for Γ this is equivalent to $\ln (1 / a) \leq \rho(k, s)$ for all $0<s<1$ and all $k=1,2, \ldots$, where

$$
\begin{equation*}
\rho(k, s)=\ln (k+s)-\frac{1}{k} \ln \left(\Gamma(k+s) \frac{\sin (\pi s)}{\pi}\right) . \tag{31}
\end{equation*}
$$

Using Stieltjes' formula (20), we find that

$$
\begin{align*}
& \rho(k, s)=1+\frac{\ln (\pi / 2)}{2 k} \\
& \quad-(1 / k)[(s-1 / 2) \ln (s+k)+\ln \sin (\pi s)-s+\mu(s+k)] \tag{32}
\end{align*}
$$

for all $s \in] 0,1[$ and $k=1,2, \ldots$ For fixed $s \in] 0,1[$ we see that $\rho(k, s) \rightarrow 1$ as $k \rightarrow \infty$, so $\ln (1 / a) \leq 1$ is a necessary condition for non-negativity of $d_{a}(t)$. This condition is not sufficient, because for $\ln (1 / a)=1$ the inequality $1 \leq \rho(k, s)$ is equivalent to

$$
0 \geq(1 / 2) \ln (2 / \pi)+(s-1 / 2) \ln (s+k)+\ln \sin (\pi s)-s+\mu(s+k)
$$

which does not hold when k is sufficiently large and $1 / 2<s<1$.

For each $k=1,2, \ldots$ it is easy to verify that the function $\rho_{k}(s)=\rho(k, s)$ has a unique minimum m_{k} over $] 0,1[$, and clearly

$$
\begin{equation*}
\ln \left(1 / a_{0}\right)=\inf \left\{m_{k}, k \geq 1\right\} \tag{33}
\end{equation*}
$$

determines the smallest value of a for which $d_{a}(t)$ is non-negative. Using Maple one obtains that m_{k} is decreasing for $k=1, \ldots, 510$ and increasing for $k \geq 510$ with limit 1. Therefore $m_{510}=\inf m_{k}=0.9993586013 \ldots$ corresponding to $a_{0}=$ $0.3681154742 \ldots$ We add that $m_{1}=1.6477352344 \ldots, m_{178}=1.0000028637 \ldots, m_{179}=$ 0.9999936630....

3. Properties of the function f

Proof of Theorem 1.3. The function

$$
\ln f(x)=\frac{(x / 2) \ln \pi-\ln \Gamma(1+x / 2)}{x \ln x}
$$

clearly has a meromorphic extension to $\mathcal{A} \backslash 1$ with a simple pole at $z=1$ with residue $\ln 2$. We denote this meromorphic extension as $\log f(z)$ and have

$$
\log f(z+1)=\frac{\ln \sqrt{\pi}}{\log (z+1)}-\frac{1}{2} F_{2}\left(\frac{z+1}{2}\right)
$$

Using the representation (7), we immediately get (11). It is well-known that $1 / \log (z+1)$ is a Stieltjes function (cf. [9, p. 130]), and the integral representation is

$$
\begin{equation*}
\frac{1}{\log (z+1)}=\int_{1}^{\infty} \frac{d t}{(z+t)\left((\ln (t-1))^{2}+\pi^{2}\right)} \tag{34}
\end{equation*}
$$

It follows that $\ln (\sqrt{e} f(x+1))$ is a Stieltjes function, in particular completely monotonic, showing that $\sqrt{e} f(x+1)$ belongs to the class \mathcal{L} of logarithmically completely monotonic functions studied in [17] and in [7]. Therefore $f(x+1)$ is also completely monotonic.

4. Representation of $1 / F_{a}$

For $a>0$ we consider the function

$$
\begin{equation*}
G_{a}(z)=1 / F_{a}(z)=\frac{z \log (a z)}{\log \Gamma(z+1)} \tag{35}
\end{equation*}
$$

which is holomorphic in \mathcal{A} with an isolated singularity at $z=1$, which is a simple pole with residue $\ln a / \Psi(2)=\ln a /(1-\gamma)$ if $a \neq 1$, while it is a removable singularity when $a=1$. Here $\Psi(z)=\Gamma^{\prime}(z) / \Gamma(z)$ and γ is Euler's constant.
Theorem 4.1. For $a>0$ the function G_{a} has the integral representation

$$
\begin{equation*}
G_{a}(z)=1+\frac{\ln a}{(1-\gamma)(z-1)}+\int_{0}^{\infty} \frac{\rho_{a}(t)}{z+t} d t, \quad z \in \mathcal{A} \backslash\{1\} \tag{36}
\end{equation*}
$$

where

$$
\begin{equation*}
\left.\rho_{a}(t)=t \frac{\ln |\Gamma(1-t)|+(k-1) \ln (a t)}{(\ln |\Gamma(1-t)|)^{2}+((k-1) \pi)^{2}} \quad \text { for } \quad t \in\right] k-1, k[, \quad k=1,2, \ldots \tag{37}
\end{equation*}
$$

and $\rho_{a}(0)=1 / \gamma, \rho_{a}(k)=0, k=1,2, \ldots$, which makes ρ_{a} continuous on $[0, \infty[$. We have $\rho_{a}(t) \geq 0$ for $t \geq 0, a \geq a_{0}=0.3681154742 \ldots$ (cf. Remark 2.6), and $G_{a}(x+1)$ is a Stieltjes function for $a \geq 1$ but not for $0<a<1$.

Proof. We notice that for $-k<t<-k+1, k=1,2, \ldots$, we get using Lemma 2.1

$$
\lim _{y \rightarrow 0^{+}} G_{a}(t+i y)=\frac{t(\ln (a|t|)+i \pi)}{\ln |\Gamma(1+t)|-i(k-1) \pi}
$$

and for $t=-k, k=1,2, \ldots$, we get

$$
\lim _{y \rightarrow 0^{+}}\left|G_{a}(-k+i y)\right|=0
$$

because of the poles of Γ; hence $\lim _{y \rightarrow 0^{+}} \Im G_{a}(t+i y)=-\pi \rho_{a}(-t)$ for $t<0$.
For fixed $w \in \mathcal{A} \backslash\{1\}$ we choose $\varepsilon>0, k \in \mathbb{N}$ such that $\varepsilon<|w|, 1<k+\frac{1}{2}$, and we consider the positively oriented contour $\gamma(k, \varepsilon)$ in \mathcal{A}, which was used in the proof of Theorem 1.1 .

By the residue theorem we find that

$$
\frac{1}{2 \pi i} \int_{\gamma(k, \varepsilon)} \frac{G_{a}(z)}{z-w} d z=G_{a}(w)+\frac{\ln a}{(1-\gamma)(1-w)}
$$

We now let $\varepsilon \rightarrow 0$ in the contour integration. The contribution from the ε-half circle tends to 0 , and we get

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{G_{a}\left(\left(k+\frac{1}{2}\right) e^{i \theta}\right)}{\left(k+\frac{1}{2}\right) e^{i \theta}-w}\left(k+\frac{1}{2}\right) e^{i \theta} d \theta-\int_{-k-\frac{1}{2}}^{0} \frac{\rho_{a}(-t)}{t-w} d t=G_{a}(w)+\frac{\ln a}{(1-\gamma)(1-w)}
$$

Finally, letting $k \rightarrow \infty$ we get (36), leaving the details to the reader. Clearly, $\rho_{a} \geq 0$ if and only if d_{a} defined in (8) is non-negative. It follows that $G_{a}(x+1)$ is a Stieltjes function for $a \geq 1$ but not for $0<a<1$, since in the latter case $\Im G_{a}(1+i y)>0$ for $y>0$ sufficiently small.

Remark 4.2. The integral representation in Theorem4.1 was established in [10, (6)] in the case of $a=1$. Since

$$
G_{a}(z)=G_{1}(z)+\ln (a) \frac{z}{\log \Gamma(z+1)}
$$

the formula for G_{a} can be deduced from the formula for G_{1} and the formula

$$
\begin{equation*}
\frac{z}{\log \Gamma(z+1)}=\frac{1}{(1-\gamma)(z-1)}+\int_{0}^{\infty} \frac{\tau(t) d t}{z+t}, \quad z \in \mathcal{A} \backslash\{1\} \tag{38}
\end{equation*}
$$

where

$$
\begin{equation*}
\left.\tau(t)=\frac{(k-1) t}{(\ln |\Gamma(1-t)|)^{2}+((k-1) \pi)^{2}} \quad \text { for } \quad t \in\right] k-1, k[, \quad k=1,2, \ldots \tag{39}
\end{equation*}
$$

References

[1] N. I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis. English translation, Oliver and Boyd, Edinburgh, 1965. MR.0184042 (32:1518)
[2] H. Alzer, Inequalities for the Volume of the Unit Ball in \mathbb{R}^{n}. II, Mediterr. J. Math. 5 (2008), 395-413. MR2465568 (2009j:26018)
[3] G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Special functions of quasiconformal theory, Expo. Math. 7 (1989), 97-136. MR 1001253 (90k:30032)
[4] G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Topics in special functions, Papers on analysis, 5-26, Rep. Univ. Jyväskylä Dep. Math. Stat., 83, 2001, Univ. Jyväskylä. MR 1886609 (2003e:33001)
[5] G. D. Anderson, S.-L. Qiu, A monotonicity property of the gamma function, Proc. Amer. Math. Soc. 125 (1997), 3355-3362. MR1425110 (98h:33001)
[6] E. Artin, The Gamma Function. Holt, Rinehart and Winston, New York, 1964. MR0165148 (29:2437)
[7] C. Berg, Integral representation of some functions related to the Gamma function, Mediterr. J. Math. 1 (2004), 433-439. MR2112748 (2005h:33002)
[8] C. Berg, J. P. R. Christensen, P. Ressel, Harmonic analysis on semigroups. Theory of positive definite and related functions. Graduate Texts in Mathematics, vol. 100, Springer-Verlag, Berlin-Heidelberg-New York, 1984. MR747302 (86b:43001)
[9] C. Berg, G. Forst, Potential Theory on Locally Compact Abelian Groups, Springer, Berlin-Heidelberg-New York, 1975. MR0481057|(58:1204)
[10] C. Berg, H. L. Pedersen, A completely monotone function related to the Gamma function, J. Comput. Appl. Math. 133 (2001), 219-230. MR1858281 (2003k:33001)
[11] C. Berg, H. L. Pedersen, Pick functions related to the gamma function, Rocky Mount. J. Math. 32 (2002), 507-525. MR1934903 (2004h:33007)
[12] W. F. Donoghue Jr., Monotone Matrix Functions and Analytic Continuation. SpringerVerlag, Berlin-Heidelberg-New York, 1974. MR0486556 (58:6279)
[13] A. Elbert, A. Laforgia, On some properties of the Gamma function, Proc. Amer. Math. Soc. 128 (2000), 2667-2673. MR1694859 (2000m:33002)
[14] S. Koumandos, H. L. Pedersen, Completely monotonic functions of positive order and asymptotic expansions of the logarithm of Barnes double gamma function and Euler's gamma function, J. Math. Anal. Appl. 355 (2009), 33-40. MR2514449 (2010e:33004)
[15] C. Mortici, Monotonicity properties of the volume of the unit ball in \mathbb{R}^{n}, Optim. Lett. 4 (2010), 457-464.
[16] Feng Qi, Bai-Ni Guo, Monotonicity and logarithmic convexity relating to the volume of the unit ball, arXiv:0902.2509v1[math.CA].
[17] Feng Qi, Bai-Ni Guo, Chao-Ping Chen, Some completely monotonic functions involving the gamma and polygamma functions, J. Aust. Math. Soc. 80 (2006), no. 1, 81-88. MR 2212317 (2007b:33004)
[18] S.-L. Qiu, M. Vuorinen, Some properties of the gamma and psi functions, with applications, Math. Comp. 74 (2005), 723-742. MR2114645 (2005i:33002)
[19] T. J. Stieltjes, Sur le développement de $\log \Gamma(a)$, J. Math. Pures Appl., Sér. 4, 5 (1889), 425-444. In Collected Papers, Volume II, pp. 215-234, edited by G. van Dijk, Springer, Berlin-Heidelberg-New York, 1993. MR1272017(95g:01033)
[20] D. V. Widder, The Laplace Transform. Princeton University Press, Princeton, NJ, 1941. MR0005923 (3:232d)

Institute of Mathematical Sciences, University of Copenhagen, Universitetsparken
5, DK-2100 København \varnothing, Denmark
E-mail address: berg@math.ku.dk
Department of Basic Sciences and Environment, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark

E-mail address: henrikp@dina.kvl.dk

[^0]: Received by the editors December 10, 2009 and, in revised form, June 9, 2010.
 2010 Mathematics Subject Classification. Primary 33B15; Secondary 30E20, 30E15.
 Key words and phrases. Gamma function, completely monotonic function, Pick function.
 Both authors acknowledge support by grant 272-07-0321 from the Danish Research Council for Nature and Universe.

