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Abstract. We study Klyachko models of SL(n, F ), where F is a non-
Archimedean local field. In particular, using results of Klyachko models for
GL(n, F ) due to Heumos, Rallis, Offen and Sayag, we give statements of exis-
tence, uniqueness, and disjointness of Klyachko models for admissible represen-
tations of SL(n, F ), where the uniqueness and disjointness are up to specified
conjugacy of the inducing character, and the existence is for unitarizable rep-
resentations in the case F has characteristic 0. We apply these results to

relate the size of an L-packet containing a given representation of SL(n, F ) to
the type of its Klyachko model, and we describe when a self-dual unitarizable
representation of SL(n, F ) is orthogonal and when it is symplectic.

1. Introduction

Let F be a field, let Um(F ) denote the group of m-by-m unipotent upper tri-
angular matrices over F , and let Mm,l(F ) be the set of m-by-l matrices over F
(not necessarily invertible). For each integer k satisfying 0 ≤ 2k ≤ n, define the
subgroup Gk of GL(n, F ) by:

(1.1) Gk =

{(
N X

S

) ∣∣∣N ∈ Un−2k, S ∈ Sp(2k, F ), X ∈ Mn−2k,2k(F )

}
.

Here we define, for k > 0, the symplectic group Sp(2k, F ) to be the stabilizer of the
form corresponding to the skew-symmetric matrix Jk =

( −1k
1k

)
. Fix a nontrivial

additive character θ : F+ → C, and for each k, define a character ψk on Gk as
follows:
(1.2)

If g ∈ Gk, g=

(
N X

S

)
, and N = (aij), then define ψk(g) = θ

(
n−2k−1∑

i=1

ai,i+1

)
.

In other words, ψk is only nontrivial on the unipotent factor of Gk. When n =
2m, then ψm is just the trivial character on the subgroup Gm = Sp(2m,F ), and
when k = 0, ψk is a nondegenerate character of the unipotent subgroup Un(F ) of
GL(n, F ).

Suppose that F = Fq is a finite field, let G = GL(n,Fq), and for each k, 0 ≤ 2k ≤
n, define the induced representation Tk = IndGGk

(ψk). Klyachko [8] claimed that
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for any complex irreducible representation (π, V ) of G, dimC HomG(π, Tk) ≤ 1 for
every k, and there exists a unique k, 0 ≤ 2k ≤ n, such that dimC HomG(π, Tk) = 1.
After Klyachko’s original paper, Inglis and Saxl [7] gave the first complete proof to
Klyachko’s claim.

We call an embedding of the representation (π, V ) in the induced representation
Tk a Klyachko model of the representation π. Klyachko’s original result states that
every irreducible representation of GL(n,Fq) has a unique Klyachko model, and in
particular, all of the induced representations Tk are multiplicity-free, and Tk and
Tl have no isomorphic subrepresentations when k �= l.

Now consider the case that F is a non-Archimedean local field, with G =
GL(n, F ). For each k, 0 ≤ 2k ≤ n, define the representation Tk by

Tk = IndGGk
(ψk),

where Ind denotes the ordinary (nonnormalized) induced representation for a locally
compact totally disconnected group. In this case, we have the following result on
Klyachko models of representations of GL(n, F ).

Theorem 1.1 (Heumos and Rallis, Offen and Sayag). Let G = GL(n, F ), where
F is a non-Archimedean local field. Let (π, V ) be any irreducible admissible repre-
sentation of G. We have the following:

(1)

�n/2�∑
k=0

dimC HomH(π, Tk) ≤ 1.

(2) If F has characteristic 0 and (π, V ) is unitarizable, then there exists a
unique k such that dimC HomG(π, Tk) = 1.

Heumos and Rallis [6] proved that, if n = 2m, then for any π, dimC HomH(π, Tm)
≤ 1; that is, any irreducible admissible representation has a unique symplectic
model if one exists. They also proved that, in this case, the set of admissible rep-
resentations of GL(n, F ) which have symplectic models is disjoint with the set of
representations which have Whittaker models. Finally, Heumos and Rallis proved
statements (1) and (2) of Theorem 1.1 for n ≤ 4 and conjectured that these state-
ments hold for all n. Theorem 1.1 was proved completely by Offen and Sayag in a
series of papers [9, 10, 11].

Now notice that the groups Gk are also subgroups of the special linear group
SL(n, F ). In this paper, we study Klyachko models of the group SL(n, F ) when F is
a non-Archimedean local field. Since there is more than one orbit of nondegenerate
characters of the unipotent subgroup of SL(n, F ), we must consider conjugates of
the characters ψk in (1.2) in these models. Our main result, Theorem 2.1, is the
analogue of Theorem 1.1 for the special linear group. The main difference in the
result is in the statement of uniqueness and disjointness of Theorem 2.1, where we
can only obtain uniqueness and disjointness of Klyachko models up to conjugation
of the character ψk by an element of a certain group.

We give two applications of Theorem 2.1. In the first, Corollary 2.1, we relate
the type of the Klyachko model of a representation of SL(n, F ) to the size of the
L-packet containing that representation. In the second, Corollary 3.1, we describe
when a self-dual unitarizable representation of SL(n, F ) is orthogonal and when it
is symplectic.
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2. Klyachko models of special linear groups

From now on, we let F be a non-Archimedean local field, let G = GL(n, F ), let
H = SL(n, F ), and let Gk be as in (1.1) for each k such that 0 ≤ 2k ≤ n. Note that
G ∼= H �D, where D ∼= F× is the group of matrices of the form diag(x, 1, . . . , 1)
for x ∈ F×. We will often identify G/H with D and hence with F×. Note that H
contains each Gk, and D normalizes Gk whenever 0 ≤ 2k < n.

Let (ρ,W ) be an irreducible admissible representation of H. By [14, Prop. 2.2],
there is an H-embedding of (ρ,W ) as a direct summand of some irreducible ad-
missible representation (π, V ) of G. From results in [2, 14], we know that if ρ is
unitarizable, then (π, V ) can also be taken to be unitarizable.

Given any g ∈ G, define gρ to be the representation of H on W given by gρ(h) =
ρ(g−1hg). Denote by G(ρ) the subgroup {g ∈ G|gρ ∼= ρ} of G. By [14, Cor. 2.3],
G(ρ) is an open normal subgroup of finite index in G. Since ρ is stable under
conjugation by G(ρ), we may extend ρ to a representation of the group G(ρ). We
let D(ρ) = D ∩G(ρ).

If g ∈ G normalizes Gk, and ψ is a character of Gk, denote by gψ the character
α �→ ψ(g−1αg). In this case, if g has image x ∈ F× under the map G �→ G/H ∼=
D ∼= F×, we have (in the notation of (1.2))

gψk(g) = θ

(
x−1a1,2 +

n−2k−1∑
i=2

ai,i+1

)
when 0 ≤ 2k < n− 1.

If n is odd and 2k = n− 1, then ψk is trivial, hence unaffected by conjugation. If n
is even and 2k = n, then ψk is again trivial, although Gk = Sp(2k, F ) is no longer
normalized by nontrivial elements of D. In this case, given γ ∈ D, γGk = γGkγ

−1

is the symplectic group defined by the skew-symmetric matrix γJkγ. So, in general,
γψk is a character of γGk, and Gk = γGk in all cases except when 2k = n. We first
prove a result which relates representations of H, G(ρ), and G.

Lemma 2.1. Let (ρ,W ) be an irreducible admissible representation of H and
let (π, V ) be an irreducible admissible representation of G that contains (ρ,W )
upon restriction. Consider (ρ,W ) as an irreducible representation of G(ρ). Then

IndGG(ρ)(ρ)
∼= π.

Proof. Since the restriction of (π, V ) to G(ρ) contains (ρ,W ), it follows that

IndGG(ρ)(ρ) is contained in

IndGG(ρ)(π) = IndGG(ρ)(π ⊗ 1) = π ⊗ IndGG(ρ)(1),

which is completely reducible. Therefore, IndGG(ρ)(ρ) is completely reducible, and
the number of irreducible components therein is given by

dimC

(
EndG(Ind

G
G(ρ)(ρ))

)
.

An application of Mackey’s theorem [1, Exer. 4.5.5] shows that this dimension is
1. �

The following lemma relates models for representations of G with those of H.

Lemma 2.2. Let (ρ,W ) be an irreducible admissible representation of H and let
(π, V ) be an irreducible admissible representation of G that contains (ρ,W ) upon
restriction. Suppose that for some γ ∈ D and some k with 0 ≤ 2k ≤ n, (ρ,W )

embeds in IndHγGk
(γψk). Then (π, V ) embeds in Tk = IndGγGk

(γψk) = IndGGk
(ψk).
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Proof. Since ρ embeds in IndHγGk
(γψk), we have by Frobenius reciprocity,

(2.1) HomG(ρ)(ρ, Ind
G(ρ)
γGk

(γψk)) �= (0),

where we view ρ as a representation of G(ρ) and have applied transitivity of in-

duction in that Ind
G(ρ)
γGk

(γψk) = Ind
G(ρ)
H (IndHγGk

(γψk)). Note that if σ1 and σ2

are any two representations of G(ρ) with HomG(ρ)(σ1, σ2) nonzero, an application

of Mackey’s theorem shows that HomG(Ind
G
G(ρ)(σ1), Ind

G
G(ρ)(σ2)) is also nonzero.

Thus (2.1) implies that

HomG(ρ)

(
IndGG(ρ)(ρ), Ind

G
G(ρ)(Ind

G(ρ)
γGk

(γψk))
)
�= (0).

Using Lemma 2.1 and the transitivity of induction, this becomes

HomG(π, Ind
G
γGk

(γψk)) �= (0),

as desired. �

We now prove our main result.

Theorem 2.1. Let H = SL(n, F ), where F is a non-Archimedean local field. Let
(ρ,W ) be an irreducible admissible representation of H. We have the following:

(1) For any collection Dρ of representatives of the cosets D/D(ρ),

(2.2)

�n/2�∑
k=0

∑
γ∈Dρ

dimC HomH(ρ, IndHγGk
(γψk)) ≤ 1.

(2) If F has characteristic 0 and ρ is unitarizable, then there exists a unique in-

teger k and a unique element γ ∈ Dρ such that dimC HomH(ρ, IndHγGk
(γψk))

= 1.

Proof. Let (ρ,W ) be an irreducible admissible representation of H and let γ ∈ D.
Let (π, V ) be an irreducible admissible representation of G in which (ρ,W ) embeds

as a direct summand. If π has no Klyachko model, then HomH(ρ, IndHγGk
(γψk))

must be trivial for all integers k by Lemma 2.2, so (2.2) holds. Hence suppose from
now on that π embeds in Tk for some integer k with 0 ≤ 2k ≤ n.

Viewing ρ as a representation of G(ρ), Mackey’s theorem implies that we have
an isomorphism

(2.3) HomG

(
IndGG(ρ)(ρ), Tk

)
∼=

⊕
δ∈G/G(ρ)

HomGk
(δρ, ψk).

By Lemma 2.1 and Theorem 1.1, the dimension of the space on the left-hand side
of (2.3) is 1.

Now consider the right-hand side of (2.3). The preceding paragraph implies that

(2.4)
∑

δ∈G/G(ρ)

dimC

(
HomGk

(δρ, ψk)
)
= 1.

Note that we may assume that our representatives for the cosets in G/G(ρ) lie in
D. Then we have, for any δ ∈ D in our set of coset representatives,

HomGk
(δρ, ψk) = Homδ−1Gk

(ρ, δ
−1

ψk) = HomH(ρ, IndHδ−1Gk
(δ

−1

ψk)),
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where we have applied Frobenius reciprocity in the last equality. Letting Dρ be our
set of coset representatives for D/D(ρ), we can now rewrite (2.4) to obtain∑

γ∈Dρ

dimC

(
HomH(ρ, IndHγGk

(γψk))
)
= 1.

This forces HomH(ρ, IndHγGk
(γψk)) to be one-dimensional for a unique choice of

γ ∈ Dρ.

Now suppose ρ also embeds in IndHδGk
(δψl) for some integer l and δ ∈ D. Then

Lemma 2.2 implies that π also embeds in Tl, which forces l = k by the uniqueness
of the Klyachko model of π. This concludes the proof of (1) in the case that π has
a Klyachko model, and shows that in this case (2.2) is an equality.

Now suppose that ρ is unitarizable. Note that statement (2) now follows from (1)
as soon as it is shown that the representation π has a Klyachko model. But by [14,
Prop. 2.2, 2.7], we may assume that π is itself unitarizable. Hence by Theorem 1.1,
π has a Klyachko model. �

We will say that the representation ρ of H possesses a Klyachko model if
HomH(ρ, IndHγGk

(γψk)) is nontrivial for some integer k and some γ ∈ D. Note
that Theorem 2.1 can be adjusted to be a statement for Klyachko models for the
finite group SL(n,Fq), which sharpens the results in [15, Prop. 1].

We will need the following for an application of Theorem 2.1.

Lemma 2.3. Let k be an integer, 0 < 2k < n, and let d = (2k, n). Suppose ψ is a
character of Gk that is trivial on{(

1n−2k X
12k

) ∣∣∣X ∈ Mn−2k,2k(F )

}
.

Then the equivalence class of IndHGk
(ψ) is stable under conjugation by Dd.

Proof. Suppose δ ∈ Dn, say δ = diag(xn, 1, . . . , 1). Then

δ = diag(xn−1, x−1, . . . , x−1)diag(x, x, . . . , x) ∈ HZ,

where Z is the center of G. Thus
δ(IndHGk

(ψ)) ∼= IndHGk
(ψ).

Thus Dn stabilizes the equivalence class of IndHGk
(ψ).

Now suppose δ ∈ Dn−2k so that δ = diag(an−2k, 1, . . . , 1) for some a ∈ F×. Let
α = diag(a, . . . , a, 1, . . . , 1) ∈ G, where the blocks of a’s and 1’s have respective
lengths n− 2k and 2k. Note that δ ∈ αH and that conjugation by α fixes ψ. Thus

δ(IndHGk
(ψ)) = α(IndHGk

(ψ)) = IndHGk
(αψ) = IndHGk

(ψ).

Therefore, Dn−2k stabilizes the equivalence class of IndHGk
(ψ).

It follows from the preceding paragraphs that the group generated by Dn and
Dn−2k stabilizes the equivalence class of IndHGk

(ψ). To complete the proof, note

that this group is precisely Dd. �
The Local Langlands Correspondence for GL(n) [4, 5] gives a bijection from the

set of equivalence classes of irreducible representations of G to a set consisting of
certain n-dimensional complex representations of the Weil-Deligne group W ′

F of
F . The existence of the Langlands Correspondence for SL(n) follows from this
by the work of Gelbart and Knapp [3]. Here the equivalence classes of irreducible
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representations of H are parameterized by certain homomorphisms from W ′
F to

PGL(n,C). Moreover, in the case of SL(n), the correspondence is now many-to-
one; the fibers of the parameterization are the L-packets of H. In [3, Thm. 4.1],
it is shown that the L-packets of H coincide with the orbits of G on equivalence
classes of irreducible representations of H. Thus if ρ is an irreducible admissible
representation of H, the size of the L-packet containing ρ is precisely (G : G(ρ)) =
(D : D(ρ)). The following result gives a relationship between the Klyachko model
of a representation ρ of H and the size of the L-packet containing ρ.

Corollary 2.1. Let k be an integer, 0 < 2k < n. Let d = (2k, n). If the irreducible

admissible representation ρ of H occurs in IndHGk
(γψk) for some γ ∈ D, then Dd ⊂

D(ρ). In particular, the size of the L-packet of ρ is at most the index of (F×)d in
F×. Thus if d = 1, then ρ must be stable; that is, the L-packet containing ρ is a
singleton.

Proof. Recalling that D ∼= F×, the second and third statements follow immediately
from the first, which we now verify. It follows from Lemma 2.3 that Dd stabilizes
IndHGk

(γψk). Let δ ∈ Dd. Then ρ occurs in IndHGk
(γδψk). By the uniqueness

statement in Theorem 2.1, we must then have that γδ ∈ γD(ρ), so δ ∈ D(ρ). �

3. Self-dual representations

Let G be a totally disconnected locally compact group with (π, V ) an irreducible
admissible representation of G, and ι a continuous automorphism of G such that
ι2 is the identity. Let (π̂, V̂ ) denote the smooth contragredient of (π, V ), where V̂
is the smooth dual of V , and define the representation (ιπ, V ) by ιπ = π ◦ ι. From
Schur’s Lemma, the representation π satisfies ιπ ∼= π̂ if and only if there exists a
nondegenerate bilinear form, unique up to scalar multiple, say B : V × V → C,
such that

(3.1) B(π(g)v, ιπ(g)w) = B(v, w) for all v, w ∈ V, g ∈ G.

It follows that B must be either symmetric, in which case we write ει(π) = 1,
or skew-symmetric, in which case we write ει(π) = −1. If ιπ �∼= π̂, then we let
ει(π) = 0. When ι is the trivial automorphism, then ιπ = π ∼= π̂ just means that
π is self-dual. In this case, we simply write ε(π) for ει(π). If π is self-dual and
ε(π) = 1, we say that π is orthogonal, and if ε(π) = −1, we say that π is symplectic.

We begin with the following, which is a slight generalization of [13, Lemma 2.1].
Since the proof is virtually identical to the proof in [13], we just give an outline.

Lemma 3.1. Let (π, V ) be an irreducible, admissible, and unitarizable representa-
tion of the totally disconnected locally compact group G, and let ι be a continuous
automorphism of G such that ι2 is the identity. Then ει(π) = 1 if and only if
there exists a conjugate linear automorphism ϕ : V → V such that ϕ2 = 1, and
ϕ(ιπ(g)v) = π(g)ϕ(v) for all v ∈ V and all g ∈ G.

Proof. Since (π, V ) is unitarizable, there is a positive definite Hermitian form 〈·, ·〉
on V which is G-invariant. First assume that there exists a conjugate linear au-
tomorphism ϕ on V with the above properties. If we define a bilinear form B by
B(v, w) = 〈v, ϕ(w)〉, then it follows that B is nondegenerate and satisfies (3.1). To

prove that B is symmetric, it is enough to show that 〈v, w〉 = 〈ϕ(v), ϕ(w)〉, which
follows from the uniqueness of 〈·, ·〉 up to a positive scalar multiple.
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Conversely, suppose that B is a nondegenerate symmetric form on V which
satisfies (3.1). Any element of the smooth dual V̂ of V is of the form 〈·, w〉, for a
unique w ∈ V . For any w ∈ V , the map u �→ B(u,w) is a smooth linear functional
of V , and so there is a unique w′ such that B(u,w) = 〈u,w′〉. This defines a

conjugate linear map w �→ w′ on V . Now, we must have 〈v, w〉 = λ〈v′, w′〉, for all
v, w ∈ V and for some positive real number λ, by uniqueness of the Hermitian form
〈·, ·〉. If we define ϕ(v) =

√
λv′, then ϕ : V → V has the desired properties. �

The next result is a generalization of [13, Cor. 2.2], and we again use an argument
very similar to the one appearing there.

Lemma 3.2. Let (π, V ) be an irreducible, admissible, and unitarizable representa-
tion of G, let ι be a continuous automorphism of G such that ι2 is the identity, and
let H be a closed subgroup of G which is stable under ι. Let ψ be a one-dimensional
representation of H such that ιψ = ψ̄, and such that dimC HomH(π, ψ) = 1. If
ιπ ∼= π̂, then ει(π) = 1.

Proof. Let 〈·, ·〉 denote the G-invariant Hermitian form on V . We know that ιπ ∼= π̂,

and we say that T : V → V̂ is the corresponding intertwining operator. There is
also a conjugate linear isomorphism L : V → V̂ given by L(w) = 〈·, w〉; note that L
satisfies L(π(g)v) = π̂(g)L(v) for all g ∈ G, v ∈ V . Then η = L−1 ◦T is a conjugate
linear automorphism of V satisfying η(ιπ(g)v) = π(g)η(v) for all g ∈ G, v ∈ V . By
Schur’s lemma, we must have η2 = α, where α is some nonzero complex scalar.

Now, let � ∈ HomH(π, ψ), with � �= 0, and define �̃ : V → C by �̃(v) = �(η(v)).
Then, for any h ∈ H, v ∈ V , we have

�̃(π(h)v) = �(ιπ(h)η(v)) = ιψ(h)�(η(v)) = ψ(h)�̃(v),

since η(π(h)v) = ιπ(h)η(v) and ιψ = ψ̄. So, �̃ ∈ HomH(π, ψ), and we must have

�̃ = λ� for some nonzero complex scalar λ. Since we then have �(η(v)) = λ�(v)
for all v, by substituting η(v) for v and from the fact that η2(v) = αv, we obtain
α�(v) = λ̄λ�(v). We now have α = λ̄λ, and we define ϕ = λ−1η. Now, ϕ : V → V
is a conjugate linear automorphism such that ϕ2 = 1 and ϕ(ιπ(g)v) = π(g)ϕ(v) for
all g ∈ G, v ∈ V . By Lemma 3.1, we have ει(π) = 1. �

If (π, V ) is an irreducible admissible representation of G, and z is an element of
the center of G, then it follows from Schur’s lemma that π(z) acts as a scalar on
V , which we denote by ωπ(z). The next result follows directly from [15, Prop. 2].

Lemma 3.3. Let s ∈ G such that s2 = z is in the center of G. Define the
automorphism ι on G by ι(g) = s−1gs, so ι2 is the identity. Then for any irreducible
admissible representation (π, V ) of G, we have ε(π) = ωπ(z)ει(π).

In [12, Sec. 3, Ex. (2)], Prasad describes when a generic self-dual representation
of SL(n, F ) is orthogonal and when it is symplectic (excluding the case that n is 2
mod 4 and F does not contain a square root of −1). Here, we extend these results
to include any self-dual irreducible admissible representation which is unitarizable.

Corollary 3.1. Let F be a non-Archimedean local field of characteristic 0, and
let (π, V ) be a self-dual, irreducible, admissible, and unitarizable representation of
H = SL(n, F ). Then

(1) If n is odd or n ≡ 0(mod 4), then ε(π) = 1.
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(2) If n ≡ 2(mod 4) and F contains a square root of −1, then ε(π) = 1 if
and only if the central element −I of SL(n, F ) acts trivially on V , that is,
ε(π) = ωπ(−I).

Proof. By Theorem 2.1(2), there exists a k, 0 ≤ 2k ≤ n, and a γ ∈ D, such that

dimC HomG(π, Ind
H
γGk

(γψk)) = dimC HomGk
(π, γψk) = 1.

First suppose that 2k < n, so that we may assume γGk = Gk.
If n ≡ 0(mod 4), then define s = diag(−1, 1, . . . ,−1, 1); if n ≡ 3(mod 4),

then define s = diag(−1, 1, . . . , 1,−1); and if n ≡ 1(mod 4), then define s =
diag(1,−1, . . . ,−1, 1). In each case, s ∈ H and s2 = I. If we define ι on H by ι(g) =
s−1gs, then we must check that Gk is stable under ι. In general, if we conjugate
the symplectic group defined by the skew-symmetric matrix J by a matrix a, the

result is the symplectic group defined by the skew-symmetric matrix (ta
−1

)J(a−1).
In these cases, we are conjugating Sp(2k, F ), defined by Jk, by the diagonal matrix
s2k with entries given by the last 2k entries of s. Since s2kJks2k = Jk in each case,
it is indeed true that Gk is fixed by ι. Now, we have γψk(s

−1hs) = γψk(h) for every
h ∈ Gk, and

ιπ ∼= π ∼= π̂, since π is self-dual. By Lemma 3.2, we have ει(π) = 1,
and by Lemma 3.3 we have ε(π) = 1, as desired.

Now suppose that n ≡ 2(mod 4), and that F contains a square root of −1, and
say β ∈ F such that β2 = −1. Define s = diag(β,−β, . . . , β,−β), and define ι on
H by ι(g) = s−1gs. Then s ∈ H and s2 = −I. In this case, defining s2k as above,
we have s−1

2k Jks
−1
2k = −Jk, and since the symplectic group defined by the skew-

symmetric matrix Jk is the same as the one defined by −Jk, we again have that
Gk is stable under ι. As before, we have γψk(s

−1hs) = γψk(h) for every h ∈ Gk,
and also ιπ ∼= π̂. By Lemmas 3.2 and 3.3, we conclude that ε(π) = ωπ(−I).

In the case that 2k = n, we have that ψk is trivial, so that s(γψk) = ψk, but we
must check that γGk is fixed by ι. In this case, if γ = diag(x, 1, . . . , 1), then γGk

is the symplectic group defined by the skew-symmetric matrix J̃ =
( −A
A

)
, where

A is the k-by-k matrix diag(x, 1, . . . , 1). In each case for ι and s above, for n even,
ι(γGk) is the symplectic group defined by the skew-symmetric matrix s−1J̃s−1. It
follows that γGk is fixed by each ι by observing that this skew-symmetric matrix
defines the same symplectic group as J̃ . �

Remarks. In [15, Sec. 6], the second-named author studies the values of ει(π), where
π is an irreducible admissible representation of GL(n, F ), and ι is the
transpose-inverse automorphism composed with conjugation by the longest Weyl
element. The statement in [15, Thm. 8] that ει(π) = 1 for all such π does not have
a complete proof there. What is actually proved is that if π is an irreducible ad-
missible representation of GL(n, F ), and there exists a character ψ of the maximal
unipotent subgroup such that ιψ = ψ̄ and π has a unique ψ-degenerate Whittaker
model, then ει(π) = 1. Also, the conclusion cannot be made in [15, Sec. 3] using
similar methods that ει(π) = 1 for every irreducible representation π of the finite
group GL(n,Fq). However, this statement is already known to be true for the finite
group GL(n,Fq), while this is still an open question for the p-adic group GL(n, F ).

For the statement in [15, Thm. 8] that ε(π) = 1 for every self-dual, irreducible,
admissible representation π of GL(n, F ), the proof is complete. It is possible that
similar methods could be used to extend Corollary 3.1 to all self-dual irreducible
admissible representations of SL(n, F ).
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