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ON MATHER’S α-FUNCTION OF MECHANICAL SYSTEMS

WEI CHENG

(Communicated by Yingfei Yi)

Abstract. We study Mather’s α-function for mechanical systems. We show
that for mechanical systems, the α-function is differentiable at c = 0 in at least
one direction. We also give a topological condition on the potential function
to guarantee the existence of a flat part near c = 0 for general mechanical
systems. Some examples are also given.

1. Introduction

Let L : TTn → R be the Tonelli Lagrangian on the n-torus satisfying the follow-
ing properties:
(L1) Smoothness: L : TTn → R is of class at least C2.

(L2) Convexity: The Hessian ∂2L
∂ẋ2 (x, ẋ) is positively definite on each fibre TxT

n.
(L3) Superlinearity:

lim
|ẋ|→∞

L(x, ẋ)

|ẋ| = ∞, uniformly on x ∈ T
n.

Let M (L) be the set of Φt-invariant Borel probability measures on TTn, where
Φt is the Euler-Lagrange flow of L. For every μ ∈ M (L), we can define its average
action

(1) A(μ) =

∫
Tn

L dμ.

The integral is defined since L is bounded below. If A(μ) < +∞, we may associate
to μ its rotation vector ρ(μ) ∈ H1(T

n,R) = R
n. The rotation vector ρ(μ) is uniquely

characterized by

〈c, ρ(μ)〉 =
∫

ηc dμ, for all c ∈ H1(Tn,R),

where ηc is a representative of the de Rham cohomological class c ∈ H1(Tn,R) ∼= R
n

and the bracket on the left side of the equality above is the canonical pairing
of H1(Tn,R) and H1(T

n,R). The integral on the right is well defined, since an
addition of an exact form to ηc does not change the integral (see [Mat1, Mat2]).
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For every h ∈ H1(T
n,R), we define Mather’s β-function, β : H1(T

n,R) → R, as

(2) β(h) = inf{A(μ) : μ ∈ M (L), ρ(μ) = h}.
It is easy to see that β(h) is a convex function onH1(T

n,R) with superlinear growth.
We define Mather’s α-function, α : H1(Tn,R) → R, as the Fenchel transformation
of the β-function, i.e.,

(3) α(c) = max{〈c, h〉 − β(h) : h ∈ H1(T
n,R)}, for all c ∈ H1(Tn,R).

From the basic facts in convex analysis, α(c) is also a convex function on H1(Tn,R)
with superlinear growth. It is well known that

(4) α(c) = − inf
μ∈M (L)

∫
TTn

L− c dμ.

The following inf-max formula for the α-function is also useful (see [CIPP]):

(5) α(c) = inf
u∈C1(Tn)

max
x∈Tn

H(x, du(x) + c).

Many authors contributed to the structure of the α-functions or β-functions; see
e.g. [BIK, C, LPV, Mas1, Mas2, O]. This paper is motivated by the two following
problems:

Problem 1. Is it true that for any autonomous Tonelli Lagragian the α-function
is differentiable in at least one direction everywhere?

Problem 2. For mechanical systems with the form L(x, v) = 1
2 |v|2−U(x), is there

some relation between the topological structure of the level set {x ∈ T
n : U(x) =

maxx∈Tn U(x)} and the regularity properties of the α-function?

In this paper, we give partial answers for the problems above in sections 2 and
3 respectively. We have:

(1) (Corollary 1) For the Tonelli Lagrangian in the form �(v) − U(x), where
� is strictly convex, �(0) = 0 = minv∈Rn �(v) and maxx∈Tn U(x) = 0, the
α-function is differentiable in some directions at c = 0.

(2) (Theorem 3) If there exist k vector fieldsXi on T
n independently, 1 � k � n

such that the Xi’s satisfy (9) and (10) with
∫
Tn Xi(x)dx �= 0, i = 1, . . . , k,

then the α-function has k-dimensional flat part near c = 0.
(3) (Theorem 4) If the critical set E of U of the system L(x, v) = 1

2 |v|2 −U(x)
does not contain a simple closed homotopically nontrivial smooth curve,
then the α-function has fully dimensional flat part near c = 0.

In section 3, we also give some examples of mechanical systems with arguments
to expose the link between the topological structure of the projected Aubry set A0

and the regularity properties of the α-function.

2. Differentiability of the α-function

This section is motivated by the famous Hedlund example on the geodesic flow
on T

3; see [Ba] for details or [Y] for a similar example of mechanical systems.
Given any c ∈ H1(Tn,R) ∼= R

n, c is specified to a real vector in R
n as its

representative element in the cohomology class c. From now on, we identify the
cohomology class c with c ∈ R

n for convenience, since the exact 1-forms do not
contribute to the action.
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Now let L(x, v) = 1
2 |v|2−U(x) be a Tonelli Lagrangian of the mechanical system

on T
n, where U : Tn → R is a C2 function and maxx∈Tn U(x) = 0. Define

E = {x ∈ T
n : U(x) = 0 = max

x∈Tn
U(x)}.

It is clear that E ⊂ T
n is a compact set.

For convenience, let us lift the torus to its universal covering space. Let Q =
[0, 1)n be the fundamental domain of the covering space R

n, Ẽ ⊂ Q be the natural
quotient of the lift of E in Q.

Since the fundamental group π1(T
n) ∼= Z

n, for any n ∈ Z
n, let Γn be the C1

closed curve in T
n whose lifts to the universal covering space R

n is a straight line
segment having the endpoints x̃1 and x̃2 = x̃1 + n.

Theorem 1. Let E admit a homotopically nontrivial C1 simple closed curve Γn

for some nonzero n ∈ Z
n; i.e., the natural quotient of Γ̃n in Q is Ẽ. Then the

corresponding α-function in the direction n can be represented by

α(rn) =
1

2
|rn|2, r ∈ R.

Proof. For convenience, we lift the Hamiltonian H(x, p) = 1
2 |p|2 + U(x) to the

universal covering space R
n × R

n of T∗
T
n; that is, U can be regarded as a Z

n-
periodic function with respect to x. Given any smooth Z

n-periodic function u on
R

n, there exists t ∈ [0, 1] such that the directional derivative with respect to n of

u on Γ̃n(t) is 0. Then for c = c(r) = rn, r > 0, the inf-max formulae (5) of the
α-function implies that

max
x∈Q

1

2
|du+ c|2 + U(x) � max

x∈Q

1

2
|c|2 + U(x) =

1

2
|c|2.

Then we have α(c) � 1
2 |c|2. On the other hand, we have α(c) � 1

2 |c|2 by choosing
u to be any constant function. �

Lemma 1. Let LU,� be the Tonelli Lagrangian in the form LU,�(x, v) = �(v)−U(x)

with strictly convex kinetic energy � and potential U . Suppose U(x) � Ũ(x) for any

x ∈ T
n and �(v) � �̃(v) for any v ∈ R

n. Then the relation between the α-function
of the systems LU,� and LŨ,�̃ satisfies

αU,� � αŨ ,�̃.

Proof. This is deduced directly from the definition and formula (4). �

Now suppose the potential U is not trivially constant. Then there exist both a
minimum and a maximum of U since T

n is compact. Let y and z ∈ T
n be such

that

U(y) = min
x∈Tn

U(x) < U(z) = max
x∈Tn

U(x).(6)

Then we can find an alternative potential function Uδ on T
n for small δ > 0 such

that

max
x∈Tn

Uδ(x) = Uδ(z) = U(z), Uδ(x) � U(x) for any x ∈ T
n(7)

and

Uδ(x) ≡ Uδ(z) for x �∈ B(y, δ).(8)
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The potential Uδ can be obtained by the smooth Urysohn lemma since E is a
compact subset in T

n and there exists a ball B(y, δ) ⊂ T
n \ E.

Theorem 2. For any mechanical Tonelli Lagrangian 1
2 |v|2−U(x), the correspond-

ing α-function α(c) is differentiable in some directions at c = 0.

Proof. If U ≡ C is a contant, then the system is completely integrable and α(c) =
1
2 |c|2, which is trivial. Now suppose U �≡ C.

We apply Theorem 1 to the system 1
2 |v|2 − Uδ(x) at first for some small δ > 0.

In that case, Ẽ = Q \ B(y, δ). Then there exists Γ̃n ⊂ Ẽ as in Theorem 1 for

some n ∈ Z
n. Each Γ̃n determines a direction n such that αδ(rn) =

1
2 |rn|2, where

αδ is the α-function of the system with potential Uδ. The number of such n’s is
decided by δ. Here we omit the argument of that number. Then we have that αδ

is quadratic in the direction n and is differentiable at c = 0.
From the construction of the potential Uδ, together with Lemma 1, we easily have

αδ(c) � α(c) for all c. Then the differentiability of α at c = 0 along the direction
n can be obtained since αδ(0) = α(0) and both of them are convex functions. �

Corollary 1. For the Tonelli Lagrangian in the form �(v) − U(x), where � is
strictly convex, �(0) = 0 = minv∈Rn �(v) and maxx∈Tn U(x) = 0, the α-function is
differentiable in some directions at c = 0.

Proof. We only discuss the nontrivial case. Let L1(x, v) = �(v)− U(x), L2(x, v) =
λ2

2 |v|2 − Uδ(x) for some λ > 0 and small δ > 0 as before. Then L1 � L2 by the
strict convexity assumption of � and the definition of Uδ. Denoting by αi, i = 1, 2,
the α-function of Li respectively, we have α1 � α2, and the differentiability of α1 in
some directions follows from that of α2, which has been proved in Theorem 2. �

Remark 1. If Problem 1 in section 1 can be solved so as to be true, then the main
result of [BC] can be improved. We will try it in other papers in the future.

3. Flat part of the α-function

Let L0(x, v) = 1
2 |v|2−U(x) with the potential U(x) � 0 and maxx∈Tn U(x) = 0,

κ(x) =
√
2(−U(x)). We want to find a C1 vector field X(x) as a function X :

T
n → R

n such that

(9) |X(x)| = κ(x)

and

(10) dX(x) = dX∗(x).

Condition (10) means that X is a gradient-like vector field corresponding to a closed
1-form on T

n in the following sense: the closed 1-form ω is defined by

ω(x)(v) = 〈X(x), v〉, v ∈ TxT
n ∼= R

n.

Now let us recall some basic facts on the construction of the closed 1-form on a
closed smooth manifold M . Letting f : M → T

1 be a smooth map, the circle T
1

is equipped with the canonical angular form dθ, where dθ is a closed 1-form, which
cannot be represented as a differential of a smooth function on T

1. The pullback
f∗(dθ) is a closed 1-form on M . It is not hard to show that a closed 1-form ω on
M can be represented by this form if and only if the de Rham cohomology class
[ω] ∈ H1(M,Z) (see [Fab]).
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In particular in the case of M = T
n, we can construct the required closed 1-

form as follows: Letting ( ∂
∂x1

, . . . , ∂
∂xn

) be the local coordinates of TTn, any closed
1-form is locally exact by Poincaré’s lemma. Then there exists an open cover
{Ωi} of T

n such that there exist smooth functions fi defined on Ωi such that
ω|Ωi

= dfi|Ωi
. More precisely, for the purpose of conditions (9) and (10), define the

local vector field Xi(x) = (0, . . . , ∂fi
∂xi

, . . . , 0) on Ωi, where fi is a smooth function

on T
n such that | ∂fi∂xi

| = κ(x). The smoothness of the fi’s can be guaranteed if

maxx∈Tn U(x) < 0. The global vector fields can be given by partition of unity. It
is clear that the Xi’s are independent.

Then define a new Lagrangian

(11) L1(x, v) =
1

2
|v −X(x)|2 = L0(x, v)− 〈X(x), v〉.

Denote by α0 and α1 the α-functions of L0 and L1 respectively.

Lemma 2. If for the potential U of L0 there exists a C1 vector field X satisfying
(9) and (10) and c =

∫
Tn X(x)dx, then

(12) α0(c) = α1(0) = 0

with |c| �
∫
Tn κ(x)dx. Consequently, with the conditions above, the α-function has

a flat part near 0 in the direction c if c �= 0.

Proof. It is well known that for a positive definite Lagrangian L, L − λ has the
same Euler-Lagrange equation if the 1-form λ is closed. It is clear from (11) that
if c =

∫
Tn X(x)dx, then α1(0) = α0(c) = 0. |c| �

∫
Tn κ(x)dx follows easily from

the definition of the vector field X. If c �= 0, then (12) implies that α0(rc) = 0 for
0 � r � 1 since α0(0) = minc∈Rn α0(c) and the α-function is convex. �

Theorem 3. If there exist k vector fields Xi on T
n independently, 1 � k � n,

such that the Xi’s satisfy (9) and (10) with
∫
Tn Xi(x)dx �= 0, i = 1, . . . , k, then the

α-function has k-dimensional flat part near c = 0.

Proof. This is a direct consequence of Lemma 2. �

Now we apply Lemma 2 to some examples.

Example 1. When n = 1 and maxx∈Tn U(x) = 0, the flat part |c| �
∫
T1 κ(x)dx of

the α-function is well known; see e.g. [LPV]. Let Vε(x) = U(x)− ε for ε > 0. Then

L0
ε(x, v)− 〈Xε(x), v〉 =

1

2
|v|2 − Vε(x)− 〈Xε(x), v〉 =

1

2
|v −Xε(x)|2 = L1

ε(x, v),

where Xε satisfies (9) and (10) for the potential Vε. The existence of such an Xε

can easily be obtained by Xε =
√
−Vε. Denote by α0

ε and α1
ε the α-function of

L0
ε and L1

ε respectively. Then we have α1
ε(0) = α0

ε(cε) = 0 by Lemma 2, where
cε =

∫
T1 Xε(x)dx. This implies that α0(cε)− ε = 0 for any ε > 0. So α(c0) = 0 by

the continuity of cε with respect to ε, and c0 �= 0 if U �≡ 0. Thus the α-function
has flat part on [0, c0], and the case of [−c0, 0] is similar by choosing Xε = −

√
−Vε.

Example 2. Let U be a smooth function on T
n, and suppose that the critical set

E defined in section 2 does not contain a simple closed homotopically nontrivial C1

curve; e.g., U is a function of Morse type. Then the ε-trick in Example 1 and the
construction of independent vector fields Xi as before imply the following:
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Theorem 4. If the critical set E of U of the system L(x, v) = 1
2 |v|2−U(x) does not

contain a simple closed homotopically nontrivial smooth curve, then the α-function
has fully dimensional flat part near c = 0.

Proof. If the critical set E of U does not contain a simple closed homotopically
nontrivial smooth curve, then there exist n independent gradient-like vector fields
{Xi,ε}ni=1 for Vε(x) = U(x)−ε as in Example 1. Applying the argument in Example
1 to each Xi,ε, we can see that there exists c0,i �= 0 such that the α-function has
flat part in the direction of c0,i. The independency of Xi,ε means the independency
of such c0,i’s; thus we get the conclusion. �

Remark 1. For the mechanical systems with the form L(x, v) = 1
2 |v|2 − U(x), the

critical set E = {x : U(x) = maxx∈Tn U(x)} is exactly the projected Aubry set A0.
For the definition of Aubry set and projected Aubry set, see e.g. [Mat3, Be, Fat, FS].
So the existence of the flat part near c = 0 is closely related to the topological
structure of A0. Actually a very complicated structure of A0 exists, e.g., Mather’s
striking example ([Mat3]).

Example 3. Let U be a smooth function on T
n, and let the critical set E defined

in section 2 contain a simple closed homotopically nontrivial C1 curve Γn, i.e., the
example described in Theorem 1. It is clear from the construction of gradient-like
vector fields before that there exist n gradient-like vector fields X1, . . . , Xn on T

n

for the ε-perturbed system as in Example 1 such that the closed 1-form related
to Xn is exact and X1, . . . , Xn−1 may be independent. Then a similar argument
shows that there is no flat part along the direction of n ∈ Z

n since Xn is a gradient
field. Rewriting

1

2
|v|2 − U(x)− 〈c, v〉 = 1

2
|v − c|2 − 1

2
|c|2 − U(x),

we also have that the α-function is quadratic in the direction of n, which is the
same statement as in Theorem 1.

Remark 2. When we consider the case that the projected Aubry set A0 = E
contains a general closed homotopically nontrivial C1 curve, we need to find the
obstacle to the existence of such a gradient-like vector field. The author hopes to
try it in the future.
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[Man1] Mañé, R., Generic properties and problems of minimizing measures of Lagrangian sys-
tems, Nonlinearity, 9(1996), no. 2, 273–310. MR1384478 (97d:58118)

[Mas1] Massart, D., On Aubry sets and Mather’s action functional, Israel J. Math., 134(2003),
157–171. MR1972178 (2004g:37088)

[Mas2] Massart, D., Vertices of Mather’s beta function. II, Ergodic Theory Dynam. Systems,
29(2009), no. 4, 1289–1307. MR2529650

[Mat1] Mather, John N., Action minimizing invariant measures for positive definite Lagrangian
systems, Math. Z., 207(1991), no. 2, 169–207. MR1109661 (92m:58048)

[Mat2] Mather, John N., Variational construction of connecting orbits, Ann. Inst. Fourier (Greno-
ble), 43(1993), no. 5, 1349–1386. MR1275203 (95c:58075)

[Mat3] Mather, John N., Examples of Aubry sets, Ergodic Theory Dynam. Systems, 24(2004),
no. 5, 1667–1723. MR2104599 (2005h:37143)

[O] Osuna, O., Vertices of Mather’s beta function, Ergodic Theory Dynam. Systems,
25(2005), no. 3, 949–955. MR2142954 (2005m:37150)

[Y] Yu, Y., Properties of effective Hamiltonian and connections with Aubry-Mather theory in
two dimension, preprint, 2009.

Department of Mathematics, Nanjing University, Nanjing, 210093, People’s Republic

of China

E-mail address: chengwei@nju.edu.cn

http://www.ams.org/mathscinet-getitem?mr=1650090
http://www.ams.org/mathscinet-getitem?mr=1650090
http://www.ams.org/mathscinet-getitem?mr=2034601
http://www.ams.org/mathscinet-getitem?mr=2034601
http://www.ams.org/mathscinet-getitem?mr=2031431
http://www.ams.org/mathscinet-getitem?mr=2031431
http://www.ams.org/mathscinet-getitem?mr=1384478
http://www.ams.org/mathscinet-getitem?mr=1384478
http://www.ams.org/mathscinet-getitem?mr=1972178
http://www.ams.org/mathscinet-getitem?mr=1972178
http://www.ams.org/mathscinet-getitem?mr=2529650
http://www.ams.org/mathscinet-getitem?mr=1109661
http://www.ams.org/mathscinet-getitem?mr=1109661
http://www.ams.org/mathscinet-getitem?mr=1275203
http://www.ams.org/mathscinet-getitem?mr=1275203
http://www.ams.org/mathscinet-getitem?mr=2104599
http://www.ams.org/mathscinet-getitem?mr=2104599
http://www.ams.org/mathscinet-getitem?mr=2142954
http://www.ams.org/mathscinet-getitem?mr=2142954

	1. Introduction
	2. Differentiability of the -function
	3. Flat part of the -function
	Acknowledgments
	References

